
SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator

Shunwang Gong1 Lei Chen2 Michael Bronstein1,4 Stefanos Zafeiriou1,3

1Imperial College London, UK 2New York University, USA 3FaceSoft.io 4Twitter

{shunwang.gong16, m.bronstein, s.zafeiriou}@imperial.ac.uk lc3909@nyu.edu

Abstract

Intrinsic graph convolution operators with differentiable

kernel functions play a crucial role in analyzing 3D shape

meshes. In this paper, we present a fast and efficient in-

trinsic mesh convolution operator that does not rely on the

intricate design of kernel function. We explicitly formulate

the order of aggregating neighboring vertices, instead of

learning weights between nodes, and then a fully connected

layer follows to fuse local geometric structure information

with vertex features. We provide extensive evidence showing

that models based on this convolution operator are easier

to train, and can efficiently learn invariant shape features.

Specifically, we evaluate our method on three different types

of tasks of dense shape correspondence, 3D facial expres-

sion classification, and 3D shape reconstruction, and show

that it significantly outperforms state-of-the-art approaches

while being significantly faster, without relying on shape de-

scriptors. Our source code is available on GitHub1.

1. Introduction

Geometric deep learning [9] has led to a series of break-

throughs in a broad spectrum of problems ranging from

biochemistry [15, 17], physics [12] to recommender sys-

tems [29]. This method allows computational models that

are composed of multiple layers to learn representations of

irregular data structures, such as graphs and meshes. The

majority of current works focus on the study of generic

graphs [20, 33, 37], whereas it is still challenging to extract

non-linear low-dimensional features from manifolds.

A path to ‘solving’ issues related to 3D computer vision

then appears to be paved by defining intrinsic convolution

operators. Attempts along this path started from formulat-

ing local intrinsic patches on meshes [21, 27, 28], and some

other efforts [14, 34] exploit the similar idea of learning

the filter weights between the nodes in a local graph neigh-

borhood with utilizing pre-defined local pseudo-coordinate

systems over the graphs.

1https://github.com/sw-gong/spiralnet_plus

Figure 1. Examples of texture transfer from a reference shape in

neural pose (left) using shape correspondences predicted by Spi-

ralNet++ (middle) and SpiralNet (right) [25]. Note that we use

only 3D coordinates as input features for both methods.

Driven by the significance of the design of kernel weight

function, a few questions arise: Is designing better weight

function the vital part of learning representations of man-

ifolds? Can we find more efficient convolution operators

without introducing elusive kernel functions and pseudo-

coordinates? It is somewhat intricate to answer if consid-

ering the problems defined on generic graphs with varied

topologies. These problems, however, are possible to be ad-

dressed in terms of meshes, where data [1, 3, 5, 11, 31, 36]

are generally aligned.

In this paper, we address these problems by introduc-

ing a simple operator, called SpiralNet++, which captures

local geometric structure from serializing the local neigh-

borhood of vertices. Instead of randomly generating se-

quences per epoch [25], SpiralNet++ generates spiral se-

quences only once in order to employ the prior knowledge

of fixed meshes, which improves robustness. Since our ap-

proach explicitly encodes local information, the model is

capable of efficiently learning discriminative features on 3D

shapes. We further propose a dilated SpiralNet++ which al-

lows to leverage neighborhoods at multiple scales to achieve

detailed captures.

SpiralNet++ is fast, efficient, and easy to apply to various

tasks in the domain of 3D computer vision. In our experi-

ments, we bring this operator into three types of challenging

problems, i.e., dense shape correspondence, 3D facial ex-

pression classification, and 3D shape reconstruction. With-

out relying on pre-processed shape descriptors or pseudo-

coordinate systems, our approach outperforms the compet-

itive baselines by a large margin in all the tasks.

2. Related Work

Geometric deep learning. Geometric deep learning

[9] began with attempts to generalize convolutional neu-

ral networks for data with an underlying structure that is

non-Euclidean. It has been widely adopted to the tasks of

graphs and 3D geometry, such as node classification [20,

33], community detection [10], molecule prediction [35],

mesh deformation prediction [22], protein interaction pre-

diction [15].

Dense Shape Correspondence. We refer to related

surveys [2, 32] on shape correspondence. Ovsjanikov et

al. [30] formulated a function correspondence problem to

find a compact representation that could be used for point-

to-point maps. Litany et al. [26] took dense descriptor fields

defined on two shapes as inputs and established a soft map

between the two given objects, allowing end-to-end train-

ing. Masci et al. [27] proposed to apply filters to local

patches represented in geodesic polar coordinates. Boscaini

et al. [7] proposed the ACNN by using an anisotropic patch

extraction method, exploiting the maximum curvature di-

rections to orient patches. Monti et al. [28] established a

unified framework generalizing CNN architectures to non-

euclidean domains. Verma et al. [34] proposed a graph-

convolution operator of dynamic correspondence between

filter weights and neighboring nodes with arbitrary connec-

tivity, which is computed from features learned by the net-

work. Lim et al. [25] firstly proposed SpiralNet and applied

it on this task, which achieved highly competitive results.

However, we observe that because spiral sequences are ran-

domly generated at each epoch, the model is hard to con-

verge and normally requires a larger sequence length as well

as high dimensional shape descriptors as input. In order to

solve these issues, we present SpiralNet++ that overcomes

all of these drawbacks.

3D Facial Expression Classification. Facial expression

recognition is a long-established computer vision problem

with numerous datasets and methods having been proposed

to address it. Cheng et al. [11] proposed a high-resolution

4D facial expression dataset, 4DFAB, building a statistical

learning model for static and dynamic expression recogni-

tion. In this paper, we are the first to introduce SpiralNet++

and other geometric deep learning methods into this task.

Shape Reconstruction. Shape reconstruction is a

task that recreates the surface or creates another cross-

section [4]. Ranjan et al. [31] proposed a convolutional

mesh autoencoder (CoMA) based on ChebyNet [13] and

spatial pooling to generate 3D facial meshes. Bouritsas

et al. [8] then integrated the idea of spiral convolution

[25] into mesh autoencoder based on the architecture of

CoMA, called Neural3DMM. In contrast to SpiralNet [25],

they manually selected a reference vertex on the template

mesh and defined the spiral sequence based on the short-

est geodesic distance from the reference vertex. We argue

that it is actually unnecessary to calculate specific spirals

but only introducing redundant procedures, since under the

assumption of meshes having the same topology, the spi-

rals are already fixed and the same across all the meshes

once defined. Additionally, to allow fixed-size spirals for

explicit k-disk, they do zero-padding for the vertices that

have a smaller spiral length than the average length of k-

disk. Intuitively, vertices with a shorter spiral sequence

than the average would decrease training efficiency of the

weights applied on the concatenated feature vectors, since

non-negligible zero paddings always have them not up-

dated. In this paper, our approach addresses these deficien-

cies and shows the state-of-the-art performance on this task.

3. Our Approach

We assume the input domain is represented as a manifold

triangle mesh M = (V, E ,F), where V, E ,F correspond to

sets of vertices, edges and faces.

3.1. Main Concept

In contrast to previous approaches [14, 28, 34] which ag-

gregate neighboring node features based on trainable weight

functions, our method encodes node features under a ex-

plicitly defined spiral sequence, and a fully connected layer

follows to encode input features combined with ordering

information. It is a simple yet efficient approach. In the fol-

lowing sections, we will elaborate on the definition of spiral

sequence and the convolution operation in detail.

3.2. Spiral Sequence

We begin with the definition of spiral sequences, which

is the core step of our proposed operator. Given a cen-

ter vertex, the sequence can be quite naturally enumerated

by intuitively following a spiral, as illustrated in Figure 2.

The degrees of freedom are merely the orientation within

each ring (clockwise or counter-clockwise) and the choice

of the starting direction. We fix the orientation to counter-

clockwise here and choose an arbitrary starting direction.

The spirals are pre-computed only once.

We first define a k-ring and a k-disk around a center ver-

Figure 2. Examples of Spiral++ and DilatedSpiral++ on a triangle

mesh. Note that the dilated version supports exponential expan-

sion of the receptive field without increasing the spiral length.

tex v as follows:

0−ring(v) = {v},

k−disk(v) = ∪i=0,...,ki−ring(v),

(k + 1)−ring(v) = N (k−ring(v))\k−disk(v),

where N (V) is the set of all vertices adjacent to any vertex

in set V .

Here we denote the spiral length as l. Then S(v, l) is an

ordered set consisting of l vertices from a concatenation of

k-rings. Note that only part of the last ring will be concate-

nated to ensure a fixed-length serialization. We define it as

follows:

S(v, l) ⊂ (0−ring(v), 1−ring(v), . . . , k−ring(v)).

It shows remarkable advantages to allow the model to learn

a high-level feature representation in terms of each vertex in

a consistent and robust way when we freeze spirals during

training. Compared with SpiralNet [25], we credit the ma-

jor improvement of our approach in terms of speed and effi-

ciency to employing the nature of aligned meshes. Note that

since we do not restrict spirals to the scope of a predefined

number of rings, we are not involved in performance de-

cays caused by introducing zero-padding [8]. Furthermore,

under the assumption of meshes having the same topology,

the same vertex across meshes will always have the same

spiral sequence regardless of the choice of starting direc-

tion, which eases the pain of manually defining the refer-

ence point and calculating the start point. By serializing the

local neighborhood of vertices we are able to encode rel-

evant information in a straightforward way with very little

preprocessing.

3.3. Spiral Convolution

An euclidean CNN [24] designs a two-dimensional ker-

nel sliding on 2D images and maps D input feature maps to

E output feature maps.

A common extension of CNNs into irregular domains,

such as graphs, is typically expressed as a neighborhood ag-

gregation or message passing scheme. With x
(k−1)
i ∈ R

F

denoting node features of node i and e
(k−1)
i,j ∈ R

D denot-

ing (optional) edge features from node i to node j in layer

(k − 1), message passing graph neural networks can be de-

scribed as:

x
(k)
i = γ(k)

(

x
(k−1)
i ,�j∈N (i) φ

(k)(x
(k−1)
i ,x

(k−1)
j , e

(k−1)
i,j)

)

where x
(k)
i ∈ R

F ′

, and � denotes a differentiable

permutation-invariant function, e.g., sum, mean or max, and

φ denotes a differentiable kernel function. γ represents

MLPs. In contrast to CNNs for regular inputs, where there

is a clear one-to-one mapping, the main challenge in the

case of irregular domains is to define the corerspondence

between neighbors and weight matrices which relies on the

kernel function φ.

Thanks to the nature of the spiral serialization of neigh-

boring nodes, we can define our spiral convolution in an

equivalent manner to the euclidean CNNs, easing the pain

of calculating the assignment value of xj to the weight ma-

trix. We define our spiral convolution operator for a node i

as

x
(k)
i = γ(k)

(

||
j∈S(i,l)

x
(k−1)
j

)

where γ denotes MLPs and ‖ is the concatenation opera-

tion. Note that we concatenate node features in the spiral

sequence following the order defined in S(i, l).

Dilated spiral convolution. With the motivation of expo-

nentially expanding the receptive field without losing reso-

lution or coverage, we define dilated spiral convolution op-

erators. Obviously, spiral convolution operators could im-

mediately gain the power of capturing multi-scale contexts

without increasing complexity from uniformly sampling the

spiral sequence while keeping the same spiral length, as il-

lustrated in Figure 2.

4. Experiments

In this section, we evaluate our method on three tasks,

i.e., dense shape correspondence, 3D facial expression clas-

sification, and 3D shape reconstruction. We compare our

method against FeaStNet [34], MoNet [28], ChebyNet [13]

and SpiralNet [25]. To enable a fair comparison, the model

architectures and the kernel size of different convolutions

Figure 3. Visualization of pointwise geodesic errors (in % geodesic diameter) of our method and SpiralNet [25] on the test shapes of the

FAUST [3] human dataset. The error values are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm.

Hot colors represent large errors.

Method Acc. (%) Time/Epoch # Param

FeaStNet [34] 79.24 3.016s 1.91M

MoNet [28] 86.05 1.962s 1.91M

ChebyNet [13] 98.77 2.634s 1.91M

SpiralNet [25] 72.84 2.756s 1.91M

SpiralNet-LSTM [25] 25.15 3.653s 1.93M

SpiralNet++ 99.88 0.98s 1.91M

SpiralNet-LSTM++ 97.86 1.989s 1.93M

Table 1. Dense shape correspondence on the FAUST [3] dataset.

Test accuracy is the ratio of the correct correspondence prediction

with the geodesic error of 0.

are the same and fixed, which yields the same level of pa-

rameterization. Furthermore, we use raw 3D coordinates as

input node features instead of 3D shape descriptors as tradi-

tionally used for shape analysis. All the compared methods

are with our implementation in order to enforce the same ex-

perimental setting except for Neural3DMM [8] that we uti-

lize their code directly. We train and evaluate each method

on a single NVIDIA RTX 2080 Ti.

4.1. Dense Shape Correspondence

We validate our method on a collection of three-

dimensional meshes solving the task of shape correspon-

dence similar to [6, 27, 28, 34]. Shape correspondence

refers to the task of labeling each node of a given shape

to the corresponding node of a reference shape [27]. We

use the FAUST dataset [3], containing 10 scanned human

Figure 4. Geodesic error plot of the shape correspondence exper-

iments on the FAUST [3] humans dataset. Geodesic error is mea-

sured according to the Princeton benchmark protocol [18]. The x

axis displays the geodesic error in % of diameter and the y axis

shows the percentage of correspondences that lie within a given

geodesic error around the correct node.

shapes in 10 different poses, resulting in a total of 100 non-

watertight meshes with 6,890 nodes each. The first 80 sub-

jects in FAUST were used for training with the remaining

20 for testing.

Architectuers and parameters. As for all the ex-

periments, we follow the network architecture of

[27]. It consists of the following sequence of lin-

ear layers (1x1 convolutions) and graph convolutions:

Methods Anger Disgust Fear Happiness Sadness Surprise Acc. (%) Time/Epoch # Param

Baseline [11] / / / / / / 70.27 / /

FeaStNet [34] 48.40 70.47 63.43 85.86 64.00 92.06 69.89 ± 1.43 7.364s 69.6k

MoNet [28] 57.87 73.41 63.29 82.86 59.29 89.52 70.29 ± 3.55 6.457s 69.5k

ChebyNet [13] 65.47 73.18 71.14 92.00 67.41 90.48 75.85 ± 1.47 6.009s 69.4k

SpiralNet++ 68.40 82.47 71.57 91.29 67.65 93.97 78.59 ± 0.64 3.604s 69.4k

Table 2. 3D facial expression classification on the 4DFAB [11] facial expression dataset. We present the test accuracies obtained by all the

methods for each expression (i.e., anger, disgust, fear, happiness, sadness and surprise) and all the expressions. *As for the Baseline [11],

we use the reported result in their paper.

Lin(16)→Conv(32)→Conv(64)→Conv(128)→Lin(256)

→Lin(6890), where the numbers indicate the amount of

output channels of each layer. A non-linear activation

function, ELU (exponential linear unit), is used after each

Conv and the first linear layer. The kernel size or spiral

length of all the Convs is 10.

The models are trained with the standard cross-entropy

classification loss. We take Adam [19] as the optimizer with

the learning rate of 3e-3 (SpiralNet++, MoNet, ChebyNet),

1e-3 (SpiralNet), 1e-2 (FeaStNet), and dropout probability

0.5. As for input features we use the raw 3D XYZ vertice

coordinates instead of 544 dimensional SHOT descriptors

which was previously used in MoNet [28], SpiralNet [25].

Discussion. In Table 1, we present the accuracy of the

exact correspondence (with 0% geodesic error) obtained

by SpiralNet++ and other approaches. It shows that our

method significantly outperforms all the baselines with

99.88% accuracy and it’s counterpart SpiralNet. It should

be noted that our method enjoys an extremely fast speed

with the training time of 0.98s per epoch in average, which

owes to our method exploiting the essence of the fixed

mesh topologies. From experiments, We also observed that

SpiralNet [25] generally requires around 2500 epochs to

converge while it is sufficient for SpiralNet++ to converge

within 100 epochs. In Figure 4, we plot the percentage of

correspondences that are within a certain geodesic error. In

Figure 3, it can be seen that most nodes are classified cor-

rectly with our method, which is much better than Spiral-

Net. Figure 1 visualizes the obtained correspondence using

texture transfer.

4.2. 3D Facial Expression Classification

As the second experiment, we address the problem of

3D facial expression classification using the 4DFAB dataset

[11], which is a large scale dataset of high-resolution 3D

faces. Previous efforts against this task focused on extract-

ing low-dimensional features with PCA and LDA based on

manually defined facial landmarks and a multi-class SVM

was then employed to classify expressions [11]. Similar to

the deep convolutional neural networks used to classify the

high-resolution images in the ImageNet [23], we develop

an end-to-end hierarchical architecture with our method and

other geometric deep learning approaches (e.g., ChebyConv

[13], FeaStConv [34], MoNet [28]) to solve this 3D mesh

classification problem. Following the experimental setup

introduced in [11], we partition the data into 10 folds, and

17 distinct participants in testset are not shown in trainset

(with 153 distinct participants). The number of each class

is balanced in both training set and test set.

Pooling. The models use a mesh pooling operation based

on edge contraction [16]. The pooling operation iteratively

contracts vertex pairs to simplify meshes, while maintain-

ing surface error approximation using quadric metrics. The

output feature is then directly obtained by the multiplication

of input feature with a downsampling transform matrix. We

denote a pooling layer using this algorithm with Pool(c),

with c being the downsampling factor.

Architectures and parameters. We design the following

end-to-end architecture to classify 3D facial expressions:

Conv(16) → Pool(4) → Conv(16) → Pool(4) → FC(32)

→ FC(6). Dropout with a probability of 0.5 is used before

each FC layer. We take a standard cross entropy loss func-

tion and ELU activation function. Training is done for 300

epochs with the learning rate of 1e-3, learning rate decay of

0.99 per epoch, L2 regularization of 5e-4, batch size of 32.

It should be noted that raw 3D XYZ coordinates are used

as the input, and for MoNet, we use the relative Cartesian

coordinates of linked nodes as its pseudo-coordinates. Fur-

thermore, we fixed the same hyperparameters (i.e., kernel

size, spiral sequence length or order of the polynomial K)

for each convolution, which gives the same size of param-

eter space of R
K×Cin×Cout in terms of each convolution

layer.

Discussion All results of the 3D facial expression classifi-

cation are shown in Table 2. It shows that with our proposed

Figure 5. Qualitative results of 3d shape reconstruction in the CoMA [31] dataset. Pointwise error (euclidean distance from the groundtruth)

is computed for visualization. The error values are saturated at 10 (millimeters). Hot colors represent large errors.

Method Mean Error Median Error Time/Epoch # Params

FeaStNet [34] 0.523 ± 0.643 0.297 133.183s 157.9k

MoNet [28] 0.526 ± 0.605 0.353 97.009s 155.4k

CoMA [31] 0.470 ± 0.598 0.263 77.943s 117.5k

ChebyConv (K=9) [13] 0.436 ± 0.562 0.242 86.627s 154.9k

Neural3DMM [8] 0.443 ± 0.560 0.245 107.137 157.0k

SpiralNet++ 0.426 ± 0.538 0.238 30.417s 154.9k

DilatedSpiralNet++ 0.423 ± 0.534 0.236 29.181s 154.9k

Table 3. 3D shape reconstruction experiments results in the CoMA [31] dataset. Errors are in millimeters.

architecture, all of the graph convolution operations outper-

form the baseline [11]. We credit these improvements to

the capacity of learning intrinsic shape features compared to

the baseline method. Specifically, our method achieves the

highest recognition rate of 78.59% on average. This indi-

cates that SpiralNet++ can be successfully applied to multi-

scale mesh data improving previous results in this domain.

Furthermore, it can be seen that our method is much more

faster than all the other approaches.

4.3. 3D Shape Reconstruction

As our largest experiment, we evaluate the effectiveness

of SpiralNet++ on an extreme facial expression dataset. We

demonstrate that a standard autoencoder architecture with

SpiralNet++ allows the synthesis of high-fidelity 3D face

with rich expression details. We use the dataset introduced

in [31], which consists of 12 classes of extreme expressions,

containing over 20,465 3D meshes, each with about 5,023

vertices and 14,995 edges. Following the interpolation ex-

perimental setup [8, 31], we divide the dataset into training

and test sets with a split ratio of 9:1. We compare our Spiral-

Net++ against a number of baselines including CoMA [31]

and Neural3DMM [8], and furthermore, for the first time,

we bring MoNet [28] and FeaStNet [34] into this problem to

explore the performance of other intrinsic convolution op-

erations on generative models. It is worth highlighting that

in the original work of CoMA [31], they used ChebyNet

with K = 6. However, in order to have a fair comparison

with other experiments, we show both results obtained with

K = 6 (i.e., CoMA) and K = 9. In the end, we evaluate

our proposed dilated spiral convolution on this problem.

Pooling and unpooling. The performance of each gener-

ative model is closely related to the pooling and unpooling

procedures. The same pooling strategy introduced in Sec-

tion 4.2 is used here. In the unpooling stage, contracted

vertices are recovered using the barycentric coordinates of

the closet triangle in the decimated mesh [31].

Architectures and parameters. We build a standard au-

toencoder architecture, consisting of an encoder and a de-

coder. The encoder includes several convolutional layers in-

terleaved between pooling layers, and one fully connected

layer is applied in the end of the encoder to encode non-

linear mesh representations. Specifically, the structure is:

3 × {Conv(32)→ Pool(4)} → {Conv(64) → Pool(4)} →
FC(16), with ELU activation function after each Conv layer.

The structure of the decoder is the reversed order of the en-

coder with the replacement of pooling layers to unpooling

layers. Note that one more convolutional layer with the out-

put dimensional of 3 should be added to the end of the de-

coder to reconstruct 3D shape coordinates. Training is done

using Adam [19] for 300 epochs with learning rate of 0.001,

learning rate decay of 0.99 per epoch and a batch size of 32.

We evaluate all the methods with the same architecture

and hyperparameters. The kernel size of each methods is set

as 9 in order to keep aligned with Neural3DMM [8], where

they chose 1-hop deriving the spiral length of 9.

Discussion. Table 3 shows mean euclidean errors with

standard deviations, median errors and the training time per

epoch. Our SpiralNet++ and its dilated version outperform

all the other approaches. The result of our proposed dilated

spiral convolution validates our assumption, which shows

the higher capacity of capturing non-linear low-dimensional

representations of 3D shape meshes without increasing pa-

rameters. We credit this improvement to its larger receptive

field brought by sampling larger input feature space. More-

over, we should stress the remarkable speed of our method.

With the same autoencoder architecture, SpiralNet++ is a

few times faster than all the other methods. It should be

noted that the performance of Neural3DMM is even worse

than CoMA when bring weight matrices to the same num-

ber, which can be attributed to the fact that model learning is

disrupted from introducing non-negligible information (i.e.,

zero-padding). The performance of Neural3DMM would

decrease with the variance of vertex degrees increase. Fig-

ure 5 shows the visualization of reconstructed faces in the

test set. Larger errors can be seen from the faces generated

by CoMA and Neural3DMM, and in particular, it become

worse on the faces with extreme expressions. However, Spi-

ralNet++ shows better reconstruction quality in these cases.

5. Conclusions

We explicitly introduce SpiralNet++ to the domain of 3D

shape meshes, where data are generally aligned instead of

varied topologies, which allows SpiralNet++ to efficiently

fuse neighboring node features with local geometric struc-

ture information. We further apply this method to the tasks

of dense shape correspondence, 3D facial expression classi-

fication and 3D shape reconstruction. Extensive experimen-

tal results show that our approach are faster and outperform

competitive baselines in all the tasks.

6. Acknowledgements

SG and MB were supported in part by the ERC Con-

solidator Grant No.724228 (LEMAN), Google Faculty Re-

search Awards, Amazon AWS Machine Learning Research

grant, and the Royal Society Wolfson Research Merit

award. SZ was partially supported by the EPSRC Fel-

lowship DEFORM (EP/S010203/1) and a Google Faculty

Award.

References

[1] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

and J. Davis. Scape: shape completion and animation of

people. In ACM transactions on graphics (TOG), volume 24,

pages 408–416. ACM, 2005.

[2] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein. Recent

trends, applications, and perspectives in 3d shape similarity

assessment. In Computer Graphics Forum, volume 35, pages

87–119. Wiley Online Library, 2016.

[3] F. Bogo, J. Romero, M. Loper, and M. J. Black. Faust:

Dataset and evaluation for 3d mesh registration. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3794–3801, 2014.

[4] J.-D. Boissonnat. Shape reconstruction from planar cross

sections. Computer vision, graphics, and image processing,

44(1):1–29, 1988.

[5] J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dun-

away. A 3d morphable model learnt from 10,000 faces. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5543–5552, 2016.

[6] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-

ing shape correspondence with anisotropic convolutional

neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 3189–3197, 2016.

[7] D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, and

D. Cremers. Anisotropic diffusion descriptors. In Computer

Graphics Forum, volume 35, pages 431–441. Wiley Online

Library, 2016.

[8] G. Bouritsas, S. Bokhnyak, M. Bronstein, and S. Zafeiriou.

Neural 3d morphable models: Spiral convolutional networks

for 3d shape representation learning and generation. arXiv

preprint arXiv:1905.02876, 2019.

[9] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 34(4):18–

42, 2017.

[10] Z. Chen, X. Li, and J. Bruna. Supervised community de-

tection with line graph neural networks. arXiv preprint

arXiv:1705.08415, 2017.

[11] S. Cheng, I. Kotsia, M. Pantic, and S. Zafeiriou. 4dfab: A

large scale 4d database for facial expression analysis and bio-

metric applications. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 5117–

5126, 2018.

[12] N. Choma, F. Monti, L. Gerhardt, T. Palczewski, Z. Ron-

aghi, P. Prabhat, W. Bhimji, M. Bronstein, S. Klein, and

J. Bruna. Graph neural networks for icecube signal classifi-

cation. In 2018 17th IEEE International Conference on Ma-

chine Learning and Applications (ICMLA), pages 386–391.

IEEE, 2018.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in neural information processing sys-

tems, pages 3844–3852, 2016.

[14] M. Fey, J. Eric Lenssen, F. Weichert, and H. Müller.

Splinecnn: Fast geometric deep learning with continuous b-

spline kernels. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 869–877,

2018.

[15] P. Gainza, F. Sverrisson, F. Monti, E. Rodola, M. M. Bron-

stein, and B. E. Correia. Deciphering interaction fingerprints

from protein molecular surfaces. bioRxiv, page 606202,

2019.

[16] M. Garland and P. S. Heckbert. Surface simplification us-

ing quadric error metrics. In Proceedings of the 24th an-

nual conference on Computer graphics and interactive tech-

niques, pages 209–216. ACM Press/Addison-Wesley Pub-

lishing Co., 1997.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.

Dahl. Neural message passing for quantum chemistry. In

Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 1263–1272. JMLR. org,

2017.

[18] V. G. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic

maps. In ACM Transactions on Graphics (TOG), volume 30,

page 79. ACM, 2011.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[20] T. N. Kipf and M. Welling. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[21] I. Kokkinos, M. M. Bronstein, R. Litman, and A. M. Bron-

stein. Intrinsic shape context descriptors for deformable

shapes. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 159–166. IEEE, 2012.

[22] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna.

Surface networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2540–

2548, 2018.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural compu-

tation, 1(4):541–551, 1989.

[25] I. Lim, A. Dielen, M. Campen, and L. Kobbelt. A simple ap-

proach to intrinsic correspondence learning on unstructured

3d meshes. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 0–0, 2018.

[26] O. Litany, T. Remez, E. Rodola, A. Bronstein, and M. Bron-

stein. Deep functional maps: Structured prediction for dense

shape correspondence. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 5659–5667,

2017.

[27] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian man-

ifolds. In Proceedings of the IEEE international conference

on computer vision workshops, pages 37–45, 2015.

[28] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5115–5124, 2017.

[29] F. Monti, M. Bronstein, and X. Bresson. Geometric matrix

completion with recurrent multi-graph neural networks. In

Advances in Neural Information Processing Systems, pages

3697–3707, 2017.

[30] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher,

and L. Guibas. Functional maps: a flexible representation

of maps between shapes. ACM Transactions on Graphics

(TOG), 31(4):30, 2012.

[31] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Gener-

ating 3d faces using convolutional mesh autoencoders. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 704–720, 2018.

[32] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or.

A survey on shape correspondence. In Computer Graphics

Forum, volume 30, pages 1681–1707. Wiley Online Library,

2011.

[33] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Ben-

gio, and R. D. Hjelm. Deep graph infomax. arXiv preprint

arXiv:1809.10341, 2018.

[34] N. Verma, E. Boyer, and J. Verbeek. Feastnet: Feature-

steered graph convolutions for 3d shape analysis. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2598–2606, 2018.

[35] K. Veselkov, G. Gonzalez, S. Aljifri, D. Galea,

R. Mirnezami, J. Youssef, M. Bronstein, and I. Laponogov.

Hyperfoods: Machine intelligent mapping of cancer-beating

molecules in foods. Scientific reports, 9(1):9237, 2019.

[36] D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated

mesh animation from multi-view silhouettes. In ACM Trans-

actions on Graphics (TOG), volume 27, page 97. ACM,

2008.

[37] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826,

2018.

