
Floors are Flat: Leveraging Semantics for Real-Time Surface Normal Prediction

Steven Hickson∗

shickson@gatech.edu

Karthik Raveendran†

krav@google.com

Alireza Fathi†

alirezafathi@google.com

Kevin Murphy†

kpmurphy@google.com

Irfan Essa∗

irfan@cc.gatech.edu

Abstract

We propose 4 insights that help to significantly improve

the performance of deep learning models that predict sur-

face normals and semantic labels from a single RGB image.

These insights are: (1) denoise the ”ground truth” surface

normals in the training set to ensure consistency with the

semantic labels; (2) concurrently train on a mix of real and

synthetic data, instead of pretraining on synthetic and fine-

tuning on real; (3) jointly predict normals and semantics

using a shared model, but only backpropagate errors on pix-

els that have valid training labels; (4) slim down the model

and use grayscale instead of color inputs. Despite the sim-

plicity of these steps, we demonstrate consistently improved

state of the art results on several datasets, using a model

that runs at 12 fps on a standard mobile phone.

1. Introduction

In this paper, we address the problem of learning a model

that can predict surface normals and semantic labels for

each pixel, given a single monocular RGB image. This has

many practical applications, such as in augmented reality

and robotics.

Most high-performing methods train deep neural net-

works to perform the task of estimating surface normals us-

ing large training sets. However, an often overlooked aspect

of such approaches is the quality of the data that is used for

training (and testing). We have found that the standard tech-

nique for estimating surface normals from noisy depth data,

such as the widely used method of Ladicky et al. [16], can

result in inconsistent estimates for the normals of neighbor-

ing points (see Figure 4 for an example). This results in

methods with inferior performance.

We propose a simple technique to fix this, by regulariz-

ing the prediction of normals that correspond to the same

surface. This encodes our intuition that floors should be flat

∗Google/Georgia Tech
†Google

Figure 1: Visualization of different ways of computing

”ground truth” normals. Top left: a sample image from the

NYUDv2 dataset. Top-right: computed using method sim-

ilar to [6] with a small window. Bottom-left: results of our

method using larger depth-adaptive smoothing. Bottom-

right: results of our method after semantic smoothing (if

labels are available). Note that the back and right wall are

cleaned up to a large degree due to this correction.

and pointing up, etc. To estimate which pixels belong to the

same surface, we leverage the fact that many depth datasets

also have per-pixel semantic labels. This in itself does not

tell us which facet of the object a pixel belongs to, but we

use simple heuristics to solve this problem, as described in

Section 3. See Figure 1 for an illustration of the benefits of

this approach. Code is released to create the data here[1].

Unfortunately, even after such “data cleaning”, most real

world datasets are still too small to train deep models, so it

has become popular to leverage synthetically generated im-

ages. These are noise-free, but it is not obvious how best

to combine real and synthetic data. The standard practice

(e.g., [18]) is to pretrain on the synthetic Scenenet dataset

and then fine tune on the real dataset. We propose a simple

improvement to this idea, which is to train the model on a

carefully chosen mix of real and synthetic images in each

minibatch. This simple insight improves results consider-

ably, as we show in Section 4.

In addition to improving the way data is used, we pro-

pose some improvements to standard modeling methods. In

particular, we train a model to jointly predict surface nor-

mals and semantic labels, using an encoder-decoder net-

work with two output heads. We take care to only back-

propagate errors on outputs for which we have labels. We

show this approach improves performance on both tasks, as

we discuss in Section 5.

Finally, since most of the applications of depth estima-

tion require a real-time method, we describe some tricks

to make our model much smaller and faster, with negligible

loss in accuracy. The result is a method that can run at 12fps

on a standard mobile phone, while achieving state-of-the-art

accuracy on standard benchmarks. Video demo here[2].

In summary, our main contributions are as follows:

• A method for computing reliable ground truth nor-

mals using depth adaptive computation with ”semantic

smoothing”.

• A method for training by mixing synthetic and real

data which gives state of the art results.

• A method that jointly learns semantics and surface nor-

mals in an end-to-end manner, increasing the accuracy

of both.

• A way to make the model run in real-time (12 fps) on

a mobile phone while still giving good accuracy.

2. Related Work

Traditional methods for estimating surface normals were

largely limited by sources for ground truth data, and in-

stead incorporated explicit priors such as shading, vanish-

ing points [13], or world constraints [9]. With the advent

of widely available and inexpensive depth sensors, data-

driven approaches to this problem became more popular.

Ladicky et al [16] introduced a discriminatively trained

learning based algorithm by combining pixel and segment-

level cues. Fouhey [7] and colleagues explored the use

of learned sparse 3D geometric primitives and higher level

constraints to predict surface normals.

In recent years, convolutional neural networks (CNNs)

have proven to be a very effective means of tackling a wide

range of image-level tasks. Wang et al. [29] introduced the

first CNN-based method to solve the problem of dense sur-

face normal estimation by fusing both scene level and patch

level predictions. Eigen and colleagues [6] were the first

to predict depth, surface normals, and semantic segmen-

tation using the same multi-scale network architecture for

each task (though not jointly). Bansal et al. [3] improved

upon this architecture using skip connections and used it

as input to jointly predict pose and style of 3D CAD mod-

els from an RGB image. In SURGE, Wang et al. [28] use

a dense CRF to refine the output of their CNN model and

demonstrate higher quality results on planar regions.

Researchers have also begun to explore the connections

between various pixel level labelling tasks. Dharmasiri et

al. [5] demonstrate that by having a single network jointly

predict surface normals, depth, and curvature, they are able

to almost match or improve upon networks tuned for these

tasks independently. Similarly, Nekrasov [20] and col-

leagues explored the connections between depth estimation

and semantic segmentation with a focus on the effects of

asymmetric dataset sizes. Xu et al. [30] developed a pre-

diction and distillation network that uses multiple interme-

diate representations such as contours and surface normals

to achieve the final task of depth estimation and scene pars-

ing. Similarly, Kokkinos [15] showed that a single unified

architecture is capable of learning a wide range of image

labeling tasks. A couple of works [21, 31] enforce consis-

tency between joint predictions of depth and normals. In

this paper, we show that semantic segmentation can im-

prove normal prediction when predicting both jointly which

results in even higher performance on planar regions. Some

work, such as [17] have had success purely predicting pla-

nar regions instead of surface normals, though this limits

the scope of the problem.

Another promising avenue for gathering data for surface

normal estimation is synthetic rendering. Zhang et al. [32]

train their normal prediction network on a large dataset of

rendered images and fine-tune it on real data. Ren et al. [22]

use an unsupervised domain adaptation method based on

adversarial learning to transfer learned features from syn-

thetic to real images. In this paper, we use synthetic data in

our training but batch-wise mix it with real data in an end

to end training setup.

3. Computing better ground truth normals

In this section, we discuss two simple methods for

computing better ground truth normals from (real) depth

datasets.

3.1. Datasets

We use two commonly used real-world depth datasets.

NYUDv2 [19] is a dataset of indoor environments taken

with a Kinect device which results in approximately

450,000 640x480 RGB-depth pairs. 1449 of these im-

ages, split into a predefined train/test, have the depth pre-

processed and have semantic labels for each pixel. This is

the dataset used by most methods for evaluation. See Fig-

ure 2 for an example.

Figure 2: Illustration of the NYU data, together with the predictions of our model on them. Columns, from left to right: RGB

image, depth, ground truth surface normals, our predictions, error image (where black is under 11.25 degrees errors, and then

error increases from yellow to purple).

Figure 3: Qualitative evaluation on the Scannet data. Columns are the same as in Figure 2.

Scannet [4] is a dataset of approximately 2 million 640x480

RGBD sensor images that also include pixel-level semantic

segmentation. Instead of 2D annotation like in NYUDv2,

these are done in the full 3D environment and projected

back into 2D. This allows it to have many more annota-

tions compared to NYUDv2; however, due to this method,

the annotations and edges don’t match up as perfectly. See

Figure 3 for an example.

3.2. Problems with current techniques

Surface normals for real world datasets are typically de-

rived from the depth data captured by commodity depth

sensors or stereo matching algorithms. For instance, the

NYUDv2 dataset was captured using a Kinect v1, while

Figure 4: A common example of the errors seen in the nor-

mals from [16] that many use for training and evaluation. In

these visualizations, (r, g, b) map to (x, y, z) of the normal

at that location. Note the oversmoothing, which reduces

and removes the normals of small objects. This image also

demonstrates why it is important to only backpropagate on

pixels that have valid depth, as the right side of the image

has incorrect normal data due to noisy and missing depth

values.

ScanNet uses a similar Structure sensor. These sensors are

well known to suffer from axial noise which is related to

the distance of the surface from the sensor. As a conse-

quence, surface normals that are computed from this data

tend to exhibit artifacts that are noticeable, especially on

distant planar regions.

Broadly speaking, prior work has used one of two nor-

mal estimation methods to generate ground truth for train-

ing: least-squares estimation on a per-point basis using

RANSAC after de-noising the point cloud [16], or local

plane computation using the covariance matrix over a win-

dow [19]. In our experiments, we have found both of these

approaches result in ground truth normals that have consid-

erably more errors. For instance, in Figure 4, the former

method produces oversmoothed and incorrectly oriented

planar patches on regions like the sink, while Figure 5(d)

produces highly noisy planar surfaces. We hypothesize that

this could cause inferior results when used to train. In Ta-

ble 1, we show that training on noisy ground truth normals

results in a noticeable drop in accuracy. Training on [19] re-

sults in a mean angle error of 27.5 degrees, compared to 22

degrees when trained on our proposed normals. When vi-

sual inspecting the results shown in Figure 5 and Figure 4,

it is obvious that past papers have been training and evaluat-

ing on erroneous data. Figure 5e) Statistics show that 20%

of the planar angles are off by 90 degrees and 38% are off

by 18 degrees. We correct this to give 0 planar angle error.

3.3. Improving Normals Using Point Clouds

We propose to use the method introduced in [14] to com-

pute surface normals from a point cloud. We begin by

smoothing the depth and filling holes as in [6] and then con-

(a) (b)

(c) (d)

(e)
(f)

Figure 5: Effect of window smoothing size on surface nor-

mals. a) RGB image. b) Normals computed with a normal

smoothing size of 10. c) In-painted depth. d) Normals com-

puted similar to [19] from (c) using window size 10. e) The

planar angle error of b). f) The normals with window size

30 that we train on (backpropagating only when c is valid).

struct a 3D point cloud with PCL [24]. A key insight here

is to use a large depth-adaptive smoothing window that ade-

quately compensates for the noise introduced by the sensor,

while not smoothing over visually salient depth discontinu-

ities. While this is a straight-forward approach, it is impor-

tant to note that it has not been done by any of the previous

papers and our ablation studies show it greatly improves

results. For this, we use the integral image approach im-

plemented in PCL [14]. Compared to [19], this samples a

larger window more densely based off of the depth of the

current point. We select a smoothing parameter of 30 for

both real datasets (NYUDv2 and ScanNet) and 10 for the

synthetic SceneNet dataset since it has minimal noise in its

rendered depth estimates. We evaluate this method in Sec-

tion 3.5.

3.4. Improving Normals with Semantics

To further reduce the amount of noise and get closer

to absolute truth, we can leverage the semantics of the

datasets. For certain semantic classes, e.g. walls and floors,

we know that the results are usually planar (or at least piece-

wise planar). We use that information to smooth out the

normals for those instances. Given that the datasets we are

using all have some level of semantic information labeled,

this is free contextual information.

While semantic segmentation gives us labels for objects,

it does not distinguish between facets of the same class (for

instance, walls facing in different directions). We perform

an efficient post-processing step to identify regions with

pixels that have consistent normals and semantic labels. We

adapt the standard connected components algorithm to start

at a pixel and grow the region outwards by adding pixels

with normals that are within 30 degrees of the current av-

eraged normal of the region, and of the same class as the

starting pixel. We restrict this process to semantic labels

that we assume to be planar. However, even if this assump-

tion is violated, the normal variance constraint prevents ar-

bitrary growth of these supposedly planar regions. Once we

have computed the regions, we assign the averaged normal

to all pixels of this region if the region is of a minimum size.

An example of this is shown in Figure 1. We evaluate this

method in Section 3.5.

3.5. Evaluation

Accuracy Error

Method ≤ 11.25
◦

≤ 22.5
◦

≤ 30
◦ Mean Angle

Baseline 46.2% 57.7% 63.8% 27.5◦

Denoising 49.5% 64.6% 71.1% 22◦

Semantics 60.6% 77.9% 83.4% 14.7◦

Table 1: Accuracy and error rates of our normals model

(without semantic output head) when evaluated on the

NYUDv2 normals from [16]. First row shows results using

our simple network training on standard normals as shown

in the top right of Figure 1. Second row shows results us-

ing our denoising method (bottom left of Figure 1). Third

row shows results using our semantic smoothing method

(bottom right of Figure 1). Evaluation is performed on the

normals from [16], which demonstrates the necessity of a

dataset cleanup.

Table 1 shows an ablation study done on NYUDv2 with

different types of training data all evaluated on [16] with the

simple mobile encoder-decoder network described in Sec-

tion 6 without the performance increases we discuss later.

The first row shows the results when trained on the normals

used by many papers as shown in the top right of Figure

1, the second row shows training on our normals computed

from Section 3.3, the final row shows training on our pro-

posed ground truth surface normals that are semantically

corrected. The normals from Section 3.3 result in much bet-

ter accuracy compared to [6] or [16], especially in the larger

angle errors and the mean angle error. Leveraging seman-

tics improves results even more. This simple idea improves

the mean angle error by almost 13 degrees and reduces the

smallest angle errors by 14%. This is a substantial increase

better than most new architectures would yield.

4. Combining synthetic and real data

We train and evaluate our network on several publicly

available datasets, both real and synthetic, to reduce our

dataset bias and produce more robust normals, as we ex-

plain below.

4.1. Synthetic datasets

Scenenet [18] is a semi-photorealistic synthetic dataset of

indoor environments comprised of ∼ 4 million 320x240 im-

ages with corresponding depth and semantics. See Figure 6

for an example. We compute the normals for Scenenet us-

ing the method proposed in Section 3; however, we use a

normal smoothing size of 10 given the input depth data is

less noisy than data from conventional depth sensors.

4.2. Mixing real and synthetic

Since most prior work utilizes NYUDv2, our method

was initially trained and evaluated only on it. However,

we found this doesn’t necessarily generalize well to other

data, as shown in Table 3. (All results are obtained using

the normals branch of the model architecture that is shown

in Figure 8; see Section 6 for details.)

We also discovered that the standard practice of pre-

training on Scenenet and finetuning on NYU results in a

model that generalizes poorly. However, by simply mix-

ing 10 synthetic scenenet images with 1 real image in ev-

ery minibatch, we were able to improve performance on

both datasets. Best results were obtained by mixing all 3

datasets, using 10 parts of Scenenet, 5 parts of Scannet,

and 1 part of NYUDv2. Qualitative results on Scenenet are

shown in Figure 6, on NYU are shown in Figure 2, and on

Scannet in Figure 3. See Supplementary for more examples.

4.3. Comparison with the state-of-the-art

In Table 2, we show our results compared to previous

state of the art surface normal estimation methods. Previ-

ous methods compute normals using the method of [19] or

[16] applied to various datasets. Here we compare all meth-

ods by evaluating on NYUDv2; for baseline methods, we

compute normals using the method of [16], whereas for our

method, we use our approach for computing normals during

training. For testing, all methods use the method of [16] to

compute normals. We outperform the previous state-of-the-

art (SOTA), [21], despite using a more than 100x smaller

model, due to the higher quality of our data. For complete-

ness, we also report the performance of our method when

Accuracy Error

Method 11.25 22.5 30 Mean Angle rmse

[8] 39.2 52.9 57.8 35.2 -

[16] 27.7 49.0 58.7 33.5 -

[5] 44.9 67.7 76.3 20.6 -

[28] 47.3 68.9 76.6 20.6 -

[21] 48.4 71.5 79.5 19 26.9

Ours 48.9 72.3 81.2 17 30.2

Ours on NYU’ 59.5 72.2 77.3 19.7 19.3

Table 2: Comparison against state of the art on surface nor-

mal estimation task. All methods (except in the last row) are

evaluated on the normals from the NYUDv2 dataset com-

puted using the method of [16]; in the last row, we show

our method evaluated on the normals from NYU computed

using our method, which we denote by NYU’.

Training set

Accuracy Scenenet+NYU FT Datasets Mixed

NYU % < 11.25 57 59.5

% < 22.5 69.6 72.2

% < 30 74.6 77.3

Mean Angle Error 21.3 19.7

Scannet % < 11.25 36.7 50.1

% < 22.5 54.6 63.2

% < 30 60.9 68.2

Mean Angle Error 34.1 28.8

Scenenet % < 11.25 21 64.5

% < 22.5 48.2 70.7

% < 30 59.9 68.2

Mean Angle Error 37.6 26.1

Table 3: Normal Accuracy comparisons with different test-

ing and training datasets. The columns are the training set

used and the rows are the evaluation accuracy for each indi-

vidual dataset. Scenenet+NYU FT means the standard prac-

tice of pretrained on synthetic and finetuned on NYUDv2.

Datasets Mixed means the dataset is trained all from scratch

with a batch-wise mix. The best result for each row is bold.

evaluated on our proposed method of computing normals

from NYU; this test set is more accurate, and is also more

similar to training, so we see performance is even greater.

5. Jointly predicting semantics and normals

In order to evaluate the effect of combining normals and

semantic labeling, we did an ablation study using just the

Scannet dataset. We chose it because it is a large, complex,

real dataset with both normals and semantic labels. We used

the 13 semantic labels from NYUDv2 for our experiments.

These consist of bed, books, ceiling, chair, floor, furniture,

objects, picture, sofa, table, tv, window, and wall. To fairly

Figure 6: Qualitative evaluation on Scenenet data. Columns, from left to right: RGB image, depth, ground truth surface

normals, our predictions, error image (where black is under 11.25 degrees errors, and then error increases from yellow to

purple).

Figure 7: Examples of our semantic labeling predictions for

the Scannet dataset. From left to right: RGB image, ground

truth, our predictions.

compare, we train on only Scannet in this ablation study,

and ignore other datasets.

5.1. Semantics

In order to train semantic labeling, we use our same

architecture and training with slight changes. We change

the regression output of 3 channels with a cosine loss to

a classification output of 14 labels using a softmax cross-

entropy loss. Experimentally, semantic labeling seems to

be a harder task than surface normal estimation, so in order

to train, we finetune our whole architecture initialized from

our normals prediction with a lower learning rate (0.001).

Results showing the need for this are included in the Sup-

plementary material. Semantic only prediction is shown in

the Semantics column of Table 4. See Figure 7 for some

qualitative results. Note that there is occasional error in the

ground truth of the semantics as well. Even though seman-

tics are just an intermediate task for our method, our results

are still very promising. Our prediction in Figure 7 correctly

predicts both chairs as chairs (blue), even though the ground

truth doesn’t have this labeled correctly.

5.2. Joint Prediction

To train our method jointly, we duplicate the decoder us-

ing the architecture shown in Figure 8. We then finetune

both the encoder and the dual decoders using the weights

from our normal prediction network. The cosine and soft-

max cross-entropy losses are summed with a 20x weight

modifier given to the cosine loss to balance them. An abla-

tion study demonstrating why this is used is in the Supple-

mentary material.

Contrary to prior work[15] that shows joint prediction

reduces accuracy, our network improves when combining

both semantics and normals. This is shown in Table 4. Sur-

face normal estimation improves slightly (though it is im-

portant to note that small changes in the surface normal ac-

curacy can still make large differences in practice due to the

difference in angle error being so noticable when wrong).

Interestingly, semantic labeling gets a large 6% increase in

pixel accuracy. We hypothesize this is due to the importance

of shape as a cue for semantic labels. Note that this actu-

ally outperforms the previous results evaluated on Scannet

in Table 3 as well. It’s possible that without new normals

proposed in Section 3, this performance increase would not

happen.

Method

Accuracy Normals Semantics Joint

% < 11.25 49.3 N/A 50.9

% < 22.5 63.2 N/A 65.2

% < 30 68.2 N/A 70

Mean Angle Error 29 N/A 28

Semantic Accuracy % N/A 59 65.6

Table 4: This shows the results of Joint semantics and nor-

mals prediction on Scannet. The Normals column is the ac-

curacy of a network only trained on Scannet normals. The

semantics is the accuracy when only trained on Scannet se-

mantics. Joint is the accuracy when both are trained con-

currently as per Section 5.

6. Training a realtime model

In this section, we describe how to use the above tech-

niques, combined with a lightweight model, to build a real-

time mobile system with state of the art accuracy. We dis-

cuss our model size, training pipeline, and important tricks

Figure 8: Our Architecture for joint prediction involves a shared encoder inspired by Mobilenet [25], followed by two U-net

decoders. Each outputs its prediction and has a separate loss for either segmentation or normal prediction. The losses along

with regularization are summed and optimized jointly. When doing just normal prediction, we simply drop the segmentation

decoder and loss. See Section 6 for details.

(reducing the number of channels and utilizing grayscale)

used to get the model on a mobile device.

6.1. Model

Prior approaches to the task of normal prediction have

used feature extractors trained on VGG [26] or ResNet [12].

In contrast, we use a light-weight architecture that lends it-

self well to mobile applications. For our surface normal

experiments and ablation studies, we use a modified ver-

sion MobileNetV2 [25] encoder followed by the U-net de-

coder [23]. The key changes to MobileNetV2 are a nor-

mal residual instead of the inverted residual, PReLU [11]

instead of ReLU, removing global average pooling, and in-

creasing the convolutional filter size to 5.

For the decoder, we use U-net with 4 bilinear resizes,

convolutions, and concatenations (see Supplementary ma-

terial). These correspond to the blocks in MobileNetV2.

The final output of the decoder is resized to the width and

height of the input image (320 x 240 in our experiments),

with the number of channels defined by the output task (i.e.

3 for normals and 14 for semantic labeling of NYU13).

After training our network, we can remove unnecessary

ops and only use the normals encoder-decoder path by con-

verting that model to a flatbuffer using Tensorflow Lite[10].

Our final network is under 2MB in size. We run infer-

ence using this model on the phone via ops implemented

as OpenGL shaders.

6.2. Finetuning vs. Training from scratch

Conventionally, encoder-decoder networks use a larger

encoder like ResNet101 (which is pretrained on Imagenet)

and then fine-tune them for the specific task. However, for

the task of surface normal estimation, we found that training

from scratch in an end-to-end manner gave us better results.

This could be due to the Imagenet dataset bias, our small

network encoder, or the uniqueness of the task.

For training, when learning only surface normals in a

single architecture as in our ablation studies, we use RM-

SProp [27] with a weight decay of 0.98, a learning rate of

0.045. When we train on surface normals and semantics,

we fine tune off the surface normals model with a lower

learning rate of 0.001.

6.3. RGB vs. Grayscale

Interestingly enough, for the task of surface normal esti-

mation, color doesn’t give much more of an advantage over

grayscale data. This is shown in Table 5. This suggests

that the neural network learns edges and color invariant fea-

tures. This can potentially reduce the size and number of

operations in a network. An ablation study on this is shown

in Table 5.

6.4. Network Size

In Mobilenet [25], an encoder-decoder architecture is

proposed with network size and speed described in the num-

ber of multiply-adds (MpAdds). We also test our normal

prediction network as a function of network size in the same

manner. The results are shown in Table 6.

% of images grayscale

Accuracy 0% 50% 100%

NYU % < 11.25 59.1 59.2 59.1

% < 22.5 72.2 72.2 72.2

% < 30 77.4 77.3 77.3

Mean Angle Error 19.5 19.4 19.5

Scannet % < 11.25 49.6 49.5 49.6

% < 22.5 63.6 63.6 63.4

% < 30 68.6 68.6 68.5

Mean Angle Error 28.8 28.8 28.9

Scenenet % < 11.25 60.7 63.2 63.3

% < 22.5 70.3 70.6 70.5

% < 30 72.9 72.9 72.8

Mean Angle Error 27.1 26.5 26.5

Average % < 11.25 57.075 57.625 57.7

% < 22.5 69.025 69.05 68.975

% < 30 73.325 73.3 73.225

Mean Angle Error 24.225 24.075 24.125

Table 5: This ablation study shows the effect of color on the

network by changing the percent of input training images

that are converted to grayscale. Interestingly enough, color

does not seem that important for surface normal estimation.

Channel Multiplier

Accuracy 12 16 22 32

NYU % < 11.25 56.1 57.1 58 59.3

% < 22.5 67.7 68.6 69.3 69.6

% < 30 72.3 73.1 73.7 73.9

Mean Angle Error 22.8 22.3 22 21.8

ScanNet % < 11.25 44.5 46 47.6 50.1

% < 22.5 60.3 61.4 62.3 63.2

% < 30 65.9 66.9 67.6 68.2

Mean Angle Error 30.6 30 29.5 28.8

SceneNet % < 11.25 59.9 61.5 62.3 64.5

% < 22.5 68.8 69.6 70 70.7

% < 30 71.4 72.1 72.4 78.2

Mean Angle Error 27.8 27.2 26.9 26.1

Average Eval % < 11.25 54.08 55.13 56.48 58.15

% < 22.5 66.55 67.35 68.20 68.63

% < 30 71.10 71.85 72.53 74.10

Mean Angle Error 25.55 25.05 24.63 24.20

million MpAdds 467 673 987 1624

Table 6: Here we use an ablation studty to test performance

vs network size. The channel multiplier is a multiplier that

determines the number of output channels calculated at each

block. For instance, the final output of the encoder at chan-

nel multiplier 32 has 1280 channels, whereas, at channel

multiplier 16, it has 640 channels.

A semantic segmentation model was also proposed by

[25] with DeepLab as a decoder, where the last encoder

layer is removed to minimize model size. The deeplab

model is 2.75B MpAdds with stride 16 and 152.6B MpAdds

with stride 8. We found that it is actually better to keep the

last layer and just reduce the channel size of each layer; this

results in a faster and smaller model. Our proposed net-

work has 1.624B MpAdds at its largest, and only 467M for

the mobile version, 300x smaller than the fast deeplab ver-

sion. The other SOTA methods we compare against earlier

in the paper, that utilize Resnet-101 or VGG-19, have be-

tween 91B and 5000B MpAdds, which is several orders of

magnitude larger than our proposed network even though

our method has much results, which is a large contribution.

6.5. Applications

Figure 9: A sample AR application that uses the surface

orientation to place a virtual character and text[2].

Using the channel scaling and other model minimization

techniques discussed above, we created a lightweight archi-

tecture that runs at 12fps on a mobile phone. To demon-

strate our SOTA results on normal estimation in real-time,

we use this estimation to place stickers on surfaces in their

natural orientation. A video of this demo is included in the

supplementary material. Screenshots showing this demo

running on the mobile device are shown in Figure 9. By

simply clicking a region, the sticker or object can be placed

realistically in AR using the predicted normals.

7. Conclusion

We have shown several simple methods for significantly

improving the accuracy of any CNN method for predicted

surface normals, namely: calculate the ground truth nor-

mals in a better way; combine real and synthetic data in a

better way; and jointly train for normal prediction and se-

mantic segmentation. We have also shown how to use these

ideas to train a lightweight model that gives state of the art

results, has low memory footprint, and runs at interactive

rates on a mobile phone.

References

[1] Paper code. https://github.com/

StevenHickson/CreateNormals.

[2] Paper video. https://www.youtube.com/watch?

v=QrXqmUBlmbc.

[3] A. Bansal, B. C. Russell, and A. Gupta. Marr revisited:

2d-3d alignment via surface normal prediction. CoRR,

abs/1604.01347, 2016.

[4] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A.

Funkhouser, and M. Nießner. Scannet: Richly-annotated

3d reconstructions of indoor scenes. In CVPR, volume 2,

page 10, 2017.

[5] T. Dharmasiri, A. Spek, and T. Drummond. Joint prediction

of depths, normals and surface curvature from rgb images

using cnns. In Intelligent Robots and Systems (IROS), 2017

IEEE/RSJ International Conference on, pages 1505–1512.

IEEE, 2017.

[6] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In The IEEE International Conference

on Computer Vision (ICCV), December 2015.

[7] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d prim-

itives for single image understanding. In 2013 IEEE Inter-

national Conference on Computer Vision, pages 3392–3399,

Dec 2013.

[8] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d prim-

itives for single image understanding. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3392–3399, 2013.

[9] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box

in the box: Joint 3d layout and object reasoning from single

images. pages 353–360, 12 2013.

[10] Google. Tensorflow lite. https://www.tensorflow.

org/lite/, 2018. Accessed: 2018-11-14.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[13] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. International Journal of Computer

Vision, 75(1):151–172, Oct 2007.

[14] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab.

Adaptive neighborhood selection for real-time surface nor-

mal estimation from organized point cloud data using inte-

gral images. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 2684–2689.

IEEE, 2012.

[15] I. Kokkinos. Ubernet: Training a universal convolutional

neural network for low-, mid-, and high-level vision using

diverse datasets and limited memory. In CVPR, volume 2,

page 8, 2017.

[16] L. Ladicky, B. Zeisl, and M. Pollefeys. Discriminatively

trained dense surface normal estimation. In ECCV, 2014.

[17] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz. Planercnn:

3d plane detection and reconstruction from a single image.

arXiv preprint arXiv:1812.04072, 2018.

[18] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison.

Scenenet rgb-d: Can 5m synthetic images beat generic im-

agenet pre-training on indoor segmentation. In Proceedings

of the International Conference on Computer Vision (ICCV),

volume 4, 2017.

[19] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, 2012.

[20] V. Nekrasov, T. Dharmasiri, A. Spek, T. Drummond,

C. Shen, and I. Reid. Real-time joint semantic segmentation

and depth estimation using asymmetric annotations. arXiv

preprint arXiv:1809.04766, 2018.

[21] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia. Geonet: Ge-

ometric neural network for joint depth and surface normal

estimation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 283–291, 2018.

[22] Z. Ren and Y. J. Lee. Cross-domain self-supervised multi-

task feature learning using synthetic imagery. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[23] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In

International Conference on Medical image computing and

computer-assisted intervention, pages 234–241. Springer,

2015.

[24] R. B. Rusu and S. Cousins. 3d is here: Point cloud library

(pcl). In Robotics and automation (ICRA), 2011 IEEE Inter-

national Conference on, pages 1–4. IEEE, 2011.

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018.

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[27] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Di-

vide the gradient by a running average of its recent magni-

tude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012.

[28] P. Wang, X. Shen, B. Russell, S. Cohen, B. Price, and A. L.

Yuille. Surge: Surface regularized geometry estimation from

a single image. In Advances in Neural Information Process-

ing Systems, pages 172–180, 2016.

[29] X. Wang, D. Fouhey, and A. Gupta. Designing deep net-

works for surface normal estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 539–547, 2015.

[30] D. Xu, W. Ouyang, X. Wang, and N. Sebe. Pad-net:

Multi-tasks guided prediction-and-distillation network for

simultaneous depth estimation and scene parsing. CoRR,

abs/1805.04409, 2018.

[31] Z. Yang, P. Wang, W. Xu, L. Zhao, and R. Nevatia. Unsuper-

vised learning of geometry with edge-aware depth-normal

consistency. arXiv preprint arXiv:1711.03665, 2017.

[32] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and

T. Funkhouser. Physically-based rendering for indoor scene

understanding using convolutional neural networks. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pages 5057–5065. IEEE, 2017.

