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Abstract

Shape priors have been a game changer to achieve

robust 3D reconstruction. Prior knowledge encoded in

trained networks has proven to be effective in generating

images. Based on a similar paradigm, various methods

were proposed to generate 3D shape from images. To gen-

erate a voxel or point cloud representation of 3D shapes

these methods required adding an extra dimension to the

deep network, to handle 3D data. Unlike these methods, we

try to reconstruct 3D shape from images by using a param-

eterized representation of the shape. For a 3D model, the

information is mainly concentrated on the surface. We per-

form iterative parameterization of the surface to obtain a

planar representation. This representation is encoded with

surface information to generate 2D geometry images, which

can be conveniently learned using traditional deep neural

networks without additional overhead. We propose an effi-

cient iterative planar parameterization to represent regions

of high Gaussian curvature in geometry images. Our exper-

iments demonstrate that the proposed network learns de-

tailed features and is able to reconstruct geometrically ac-

curate shapes from single image. Our code is available at

https://github.com/hrdkjain/LearningSymmetricShapes.

1. Introduction

With the advent of deep convolutional neural network

in computer vision performing various image-based tasks,

researchers have been exploring its application in 3D do-

main. In order to handle 3D models in form of voxels or

point cloud, simple deep networks were extended with an

extra dimension. The additional dimension enabled to solve

various 3D problems in classification, reconstruction and

segmentation. However, the increased computational over-

head, restricted the resolution of 3D models that could be

handled by such deep learning architectures.

In this work, we try to learn 3D surfaces for the task

of 3D object shape reconstruction, taking into account that

3D objects are often perceived as a surface in 3D, e.g. of a

genus-zero shape, circumferencing an empty or unknown

while irrelevant volume. Representing 3D shapes in the

form suitable for deep convolutional network is a difficult

task. Because of the non-Euclidean nature of geometric ob-

jects, the handling of 3D surface meshes is not evident as

a 2D image. We reduce the 3D problem to a 2D vision

task by producing a regularized representation of 3D shape.

First, geometry-image-based representation of object shape

is generated and then a deep neural network is trained to

learn this representation from object image.

Figure 1. 3D reconstruction from single RGB image using our ge-

ometry image based deep neural network.

For this, our direct planar parameterization approach re-

quires a manifold mesh in topology of disk. However, large

3D shape databases usually consist of non-manifold mod-

els, such as those handled by CAD databases. We adopt

a heuristic approach to convert the non-manifold model to

manifold mesh, preserving edges and sharp features of the

model. To ensure consistent learning, the representations of

different shapes need to be in correspondence. We achieve

this by slicing the symmetric manifold surface at the plane

of symmetry to obtain a consistent border for all hetero-

geneous shapes of same category.1 Slicing the mesh into

symmetric halves removes redundant information and pro-

vides a mesh in topology of a disk. The sliced mesh is then

parameterized along its border in two stages. Initially, the

3D border is mapped to square planar border and then the

inner vertices are parameterized. We adopt an iterative ap-

1Surprisingly many technical as well as natural objects have at least one

symmetry plane.



proach while minimizing area distortion in the planar rep-

resentation. The parameterized mesh is then encoded with

3D vertex location on a uniform grid of the geometry image.

This encoded image is regarded as the 2D representation of

the 3D object. Then, a deep residual network with encoder-

decoder structure is trained on a larger number of object

images in order to minimize the loss w.r.t. the geometry

image.

Rest of the paper is arranged as follows, section 2 dis-

cusses the work related to 3D reconstruction and mentions

how our method is different than the existing works. In sec-

tion 3, we discuss the procedure involved in our method,

including the iterative parameterization and deep network

architecture. Results of various experiments are mentioned

in section 4. We present our conclusions in section 5.

2. Related Work and Our Approach

Reconstructing 3D shape from images goes back to very

beginning of the computer vision. Traditional methods try

to reconstruct 3D surface from multiple images by estab-

lishing feature correspondence and solving epipolar geom-

etry. Learning based methods gained attention in the last

decade, where the task of 3D reconstruction was dealt as

supervised problem of mapping images to 2.5D maps [23].

With the advent of deep learning, prior knowledge in the

form of trained networks became popular. Ability of convo-

lutional neural network to perform tasks like classification

and generating images, motivated the extension of these

techniques to 3D.

Modern approaches exploit the deep network for 3D

shapes by adding an extra dimension to the network.

Some of the pioneer works include 3D ShapeNets [27],

VoxNet [17], which try to use deep network architecture for

3D shape recognition and completion. OctNet [21] enabled

higher resolution handling of data by proposing an octree

based network, they utilized this model for task of 3D object

classification, orientation estimation and point cloud label-

ing. 3D recurrent neural network was utilized by Choy et

al. [3] to generate 3D shapes from single or multiple im-

ages. Girdhar et al. [8] learned a vector representation for

3D objects from images using TL embedding network. This

learned representation was used to generate voxel from in-

put CAD object image. However addition of an extra di-

mension in the deep network, restricted the resolution of

the voxel occupancy grid that could be processed. Simi-

lar work involves using a deep hierarchical feature learning

on point sets [20]. Despite the improved performance such

representation fails to capture fine-grained geometry.

Unlike the other 3D network based methods, Wang et

al. [26] used a graph-based CNN and progressively de-

formed an ellipsoid to obtain 3D shape from image.

Pontes et al. [18] used graph embedding, to reconstruct the

3D model from single image. AtlasNet [10] learned to gen-

erate surface of 3D shapes represented as collection of para-

metric surface elements. Other single image based shape re-

construction methods includes, [15] which used a category

specific deformable model. Their method used 2D key-

point annotations, without requiring the ground-truth 3D.

2D perception was also used in Mesh R-CNN [9], to in-

fer 3D shape. Where, firstly a coarse voxel is estimated,

followed by mesh refining using a sequence of graph con-

volution layers.

Similar to our approach, Sinha et al. [25] tried to learn

the 3D surface from geometry images. Their method re-

quired generating spherical parameterization on genus zero

surfaces, which was then cut to obtain a planar represen-

tation. To enable consistent learning of geometry images,

they performed parameterization of single shape in a class

and established correspondence of all other shapes to this

base shape. However this approach tend to smoothen the

sharp features of object, there by giving good base shape

but without having sufficient representation of areas of large

Gaussian curvature.

We try to solve the two problems of consistent param-

eterization and correspondence of geometry images differ-

ently in our work. First problem of consistent parameteriza-

tion is resolved by slicing the mesh and the second problem

is addressed by using weighted mask for learning geometry

images (section 4). In this method, we circumvent the prob-

lem of correspondence by utilizing the underlying property

of symmetric objects by slicing the object mesh along the

most symmetric plane2 thereby removing redundant infor-

mation and obtaining a consistent border for all objects of

the same category. Then, after slicing, the border becomes

a key to correspondence between different meshes of same

object class.

Planar parameterization of surface mesh inevitably in-

troduces distortion [13, 24], various methods try to reduce

area [4], angular [5, 7] or length [22] distortion in the pa-

rameterized representation. In this work, the main mo-

tivation for parameterization is to obtain a trainable rep-

resentation of 3D shapes, so we restricted the border of

the parameterized surface to a square. Fixed border pa-

rameterization have linear complexity and generally em-

ploy discrete solvers. However, discrete methods fail to re-

duce the parameterized distortion of surface mesh with large

Gaussian curvature. Spherical parameterization [19] is an-

other approach to address parameterization. However this

method requires identifying a seam along which the sphere

is cut to obtain a square border parameterization. [28] pro-

posed a square border stretch-minimizing parameterization.

They improve the parameterization gradually by minimiz-

ing weighted quadratic energy.

Our area-distortion minimizing approach is motivated

2The problem how to find the symmetry plane is assumed to be solved

in this investigation.



by [28], where we iteratively try to reduce the overall area

distortion by spreading the stretch iteratively. Distortion

minimized square border parameterized surface is encoded

with surface information to generate geometry image [11].

It, being in 2D allows to apply standard neural network ar-

chitectures to learn shape representation of an object image.

3. Procedure

To reiterate, our deep network relies on the regular grid

2D representation (akin to image) of the 3D surface mesh.

In this section, we discuss the heuristic approach of gener-

ating manifold surface, followed by iterative parameteriza-

tion, and finally the deep architecture used in our method.

3.1. Dataset Creation

For a surface mesh M, represented by V, F, E which

are set of vertex coordinates, faces, and edges respectively.

Genus m of the surface mesh is given by Euler characteris-

tics:

2− 2m = |V | − |E|+ |F | (1)

where |x| denotes the cardinality of x. Meshes not follow-

ing Equation 1 are often referred to as non-manifold. These

meshes have non-manifoldness in at least one of the ver-

tices or edges. Almost all the models of large 3D shape

datasets like ShapeNet [2] and ModelNet [27] don’t follow

Euler characteristics.

Our method requires a manifold mesh as the input, but

there exists no direct conversion from CAD model to mani-

fold surface mesh. As this conversion is not the central topic

of the work, we adopt a two stage heuristic pre-processing

for non-manifold CAD models. First, a dense voxel point

cloud is obtained for the 3D model. High density voxeliza-

tion, helps retain detailed features of the model. Poisson

surface is reconstructed from these voxel point cloud, where

the vertex normal's information is taken from the 3D alpha

shape [6]. This pre-processing is essential to generate input

suitable for the planar parameterization and is applied on all

the 3D models. For the sake of simplicity we removed all

non-zero genus models.

3.2. Area Distortion Minimizing Mesh Parameteri-
zation

The objective of mesh parameterization in this work is

to obtain a consistent parameterized representation for dif-

ferent meshes of same class. Performing parameterization

requires identifying a seam on the mesh surface. For any

parameterization method, a mesh can have different param-

eterizations based on the choice of seam. For examples we

refer the readers to supplementary material. To establish

consistency in parameterization, correspondence between

seams of different meshes needs to be established. How-

ever establishing this correspondence could be difficult for

heterogeneous shapes of a class. Instead of relying on the

dense point-to-point correspondence to mark seam, we ob-

tain consistent seam on border by slicing the mesh along the

most symmetric plane.

For objects like airplane, car, chair, tables etc, this plane

divides the mesh in two equal halves. Along with an obvi-

ous border, slicing also removes the redundant information

which can be easily obtained from duplicating the sliced

mesh. Slicing modifies the topology of the model to the

topological disk, suitable for direct planar parameterization.

With the border of mesh identified, we now discuss the pa-

rameterization of the sliced mesh along its border.

Aim of mesh parameterization is to obtain a bijective

mapping between triangular mesh ST ∈ R
3 which is of

disk topology, and a planar triangulation Ω ∈ R
2. Let us

denote the vertices in ST by x = (x, y, z)T and points in Ω
by u = (u, v)T. VB and VI denotes the set of b boundary

vertices and n inner vertices of ST , corresponding points in

Ω is denoted by UB and UI respectively.

Direct planar parameterization can be divided into two

stages. The first stage performs boundary parameterization.

The set of border vertices VB is mapped to the square planar

boundary UB based on edge length in ST . With the bound-

ary parameterization fixed, the positions of inner points UI

are obtained by solving Equation 2 for u and v separately.

For detailed explanation we refer the readers to the sur-

veys [13, 24] and supplementary material.

MUI = 0 (2)

where M = (mij)i,j=1,...,n is the n× n matrix defined for

inner vertices of ST . Elements of M are given by

mij =

⎧

⎨

⎩

−wij if j ∈ Ni,
∑

k∈Ni
mik if i = j,

0 otherwise

where wij are referred to as the weight of the edge joining

vertices xi and xj , and Ni denote all the neighboring ver-

tices of xi. The most widely known cotangent weights [5]

are used for initialization of matrix M .

As the distortion in planar parameterization is inevitable,

we try to iteratively reduce it by minimizing overall area

distortion of the parameterized mesh. Area distortion is cal-

culated from Equation 3, where T and τ denote all triangu-

lar faces of ST and Ω, respectively. A(Ti) and a(ti) denote

the area of ith triangle in ST and its corresponding triangle

in Ω.

EA(U) =
∑

Ti∈T , ti∈τ

∣

∣

∣

∣

∣

A(Ti)
∑

Ti∈T

A(Ti)
−

a(ti)
∑

ti∈τ

a(ti)

∣

∣

∣

∣

∣

(3)

To reduce the parametric distortion in regions of high cur-

vature, we redistribute the local L2 stretch [22]. Weights of



Figure 2. Deep neural network structure used for learning geometry image from the RGB image.

the (k + 1)
th

iteration wk+1
ij are modified according to the

Equation 4 by the edge stretch σk
ij of the kth iteration.

wk+1
ij = wk

ij/σ
k
ij (4)

Equation 2 is then re-solved for the weights of (k+1)th

iteration to obtain new parametric positions Uk+1
I for inner

points. We iteratively improve weights, until the area dis-

tortion over the parameterized surfaces mesh is minimum.

Please check supplementary material for pseudo code of the

algorithm.

Obtained planar parameterization is an area distortion

minimized representation of surface mesh. However the

planar mesh is still irregular, so it is projected to a uniform

grid and encoded with vertex locations to obtain geometry

image [11]. Vertex position encoded geometry image holds

the geometry of 3D mesh in a 2D representation.

3.3. Deep Network Architecture

In a vertex encoded geometry image representation, edge

information is inherent. A pixel in geometry image corre-

sponds to a vertex in the 3D shape, the neighbouring ver-

tices of which are the four adjacent pixels in the geometry

image. Learning the correct geometry image pixel value

would automatically provide the edge information from the

neighbouring pixels. So we focus our network to learn the

pixel value correctly without the need to learn the edge con-

nectivity explicitly. This reduces the problem to learning an

image from other image using a simple mean square loss

applied on the geometry image.

We used an auto-encoder like network structure moti-

vated by [25], to learn geometry images from RGB im-

ages (see Figure 2). As in [25] we used residual down-

sampling and up-sampling blocks [12] using 62 convolu-

tional layers (plus 22 1 × 1 convolutional layers for pro-

jection) framed by one input and one output convolutional

layer. Each down-sampling and up-sampling block contains

three residual blocks. The first residual block of each ap-

plying the down/up-sampling using projection connections.

We trained the model using Adam optimizer [16]. Our

source code based on TensorFlow [1] is available online and

includes all architectural details and parameter choices.

To enable learning of sharp geometry features, we mod-

ified the network loss function to accommodate weighted

curvature mask C. Equation 5 shows the modified loss

function, where f is the network response to the input RGB

image Ii(θ), with sample number i and viewpoint denoted

by θ. Gi
V denotes the corresponding vertex encoded geom-

etry image for sample i.

min
∑

(i,θ)

||Ci.(f(Ii(θ))−Gi
V )||

2
2 (5)

Weighted curvature mask C is calculated from vertex

normal encoded geometry image, GN . Pixels of GN con-

tains vertex normal information, variation in angles of these

normals in local neighborhood gives the curvature informa-

tion. The single channel weighted mask C contains the av-

erage angle computed from the 8-connected pixels of GN .

Such a mask, captures region of large Gaussian curvature

thereby enforcing the network to learn these regions.

We obtain a single geometry image and curvature mask

for a 3D shape and train it against all the different views of

the object shape. Therefore the Gi
V and Ci has no influ-

ence of viewpoint. This way, we are able to learn viewpoint

independent geometry of the shape from image, which is

required for generalization.

4. Experiment

For evaluation of our method, we used airplane and car

models from ShapeNet [2] database and compare against

geometry images based method of [25] and graph CNN

based method of [26]. We initially selected 1930 airplane

models and 2160 car models, however for fair comparison

we restricted the size of our database to the models pro-

cessed by [25]. We randomly separated these models into

train-validation-test splits of 80-10-10%. To generate RGB

images, the 3D models were rendered from different view-

points with black background. Using Mitsuba renderer [14]



each model was rendered for four elevation angles (0°, 15°,

30°, 45°) and 24 azimuth angles equally spaced in 360°.

4.1. Parameterization Analysis

Input Mesh [25] [28] Ours

Figure 3. Comparison of different parameterization techniques

based on output point cloud (obtained from geometry image),

shown from two different viewpoints.

As mentioned previously our iterative parameterization

scheme tries to minimize area distortion, thereby 3D mesh

triangles are not significantly distorted in 2D parameter-

ized representation. To compare different parameterization

methods, the input shape is parameterized and encoded with

vertices from 3D shape to obtain geometry image. Pixel of

this image holds vertex location information and the same

is shown in Figure 3 for different parameterization meth-

ods. Output is shown as point cloud to illustrate the dis-

tribution of vertices in re-meshed shape. Spherical param-

eterization of [25] distributes the vertices more uniformly

however lacks to capture the sharp features. Stretch mini-

mization approach [28], stuck in local minima and fails to

parameterize the corners of the shape. Unlike the other two

approaches, our proposed parameterization method tries to

distribute the vertices more uniformly while covering the

regions of large Gaussian curvature.

Method
RMS distance

Airplane Car

Spherical parameterization [25] 0.011± 0.008 0.009± 0.004
Stretch minimization [28] 0.043± 0.021 0.004± 0.002

Proposed approach 0.005± 0.006 0.004± 0.002

Table 1. Average RMS distance measured from input mesh to point

cloud obtained from geometry image.

Metric comparison between the three parameterization

methods is also performed (Table 1) by computing RMS

distance between the input ground truth mesh and the re-

mesh obtained from geometry image. Proposed parameteri-

zation outperforms other methods specially for object class

airplane which has more curvature compared to car.

Input

Image

Ground

Truth
GI of [25] P2M [26] Ours

Figure 4. 3D shape reconstruction from RGB image on test data



4.2. 3D Surface Reconstruction from Single Image

We train our networks with all the 96 views of training

dataset and perform evaluations on test models not used in

training. For comparison we also train our network with

geometry images (GI) of [25] using mask proposed in their

approach. Output of our deep network is geometry im-

age, pixel value of which holds the 3D shape of the model.

Point cloud output of the network is meshed for visualiza-

tion. Comparison is also performed with recent single im-

age based approach of [26]. For fair comparison, all the

models are trained with same data for 50 epochs. To avoid

over-fitting early stopping was used.

First evaluation is performed on images of test models

rendered from the viewpoints which are used in training.

Figure 4 shows the response of these networks. In this test

scenario, our approach as well as Pixel2Mesh approach are

able to perform detailed reconstruction. Unlike [25] and our

approach, which uses surface representation to learn shapes,

Pixel2Mesh uses sampled point cloud as the ground truth

reference. In case of cars, this point cloud contains inner ge-

ometry information (seats) which is not visible in the image,

but is used for learning shapes. Pixel2Mesh approach tries

to deform an ellipse while maintaining the genus zero sur-

face, which we believe is the reason behind high Gaussian

surface bend on one side of the reconstructed surface. The

output mesh is still genus zero however it also tries to in-

corporate the inner (not visible) geometry of the shape. We

couldn’t find any pre/post-processing applied in their orig-

inal method to overcome this problem. Similar response

could be observed in airplanes near the connection between

wings and body.

To evaluate the generalization ability of the trained net-

works, we tested the networks on images of test models ren-

dered from 24 additional view points not used in training.

These viewpoints were equally spaced in azimuth at an ele-

vation angle of 22.5°. Figure 5 and 6 shows the reconstruc-

tion on some example images. It can be observed that net-

work trained on our geometry images are correctly able to

retrieve geometric information like the size of the airplane

body, tilt of the wings, bends on the car surface. Unlike

GI of [25], our network is able to map sharp features from

the input image like the tail and the engine of the model to

the geometry image. We believe that the use of weighted

curvature mask in training the network, helped the network

learn regions of large Gaussian curvature. Geometry im-

ages of [25] generate an overall airplane shape but lacks to

map detailed features from the input image. Pixel2Mesh

approach holds generalization ability to an extend however

fails in some airplane models (example 3 and 4 of Figure 5).

Quantitative evaluation of shape reconstruction was per-

formed in terms of RMS distance between reconstructed

point cloud and ground truth mesh. Average of this mea-

sure is shown in Table 2 for the three methods. On the

trained viewpoints Pixel2Mesh outperforms our approach

(in case of airplanes) but is not able to generalize for new

viewpoints.

Input

Image

Ground

Truth
GI of [25] P2M [26] Ours

Figure 5. 3D shape reconstruction from RGB image rendered from

untrained viewpoints for airplanes.

Input

Image

Ground

Truth
GI of [25] P2M [26] Ours

Figure 6. 3D shape reconstruction from RGB image rendered from

untrained viewpoints for cars.

Our method is able to learn meaningful shape recon-

struction from images. To illustrate this we perform shape

reconstruction for images downloaded from internet (Fig-

ure 7). These images were cropped to match the input

size. As the networks were trained on images with no back-

ground, we segmented out the background from these im-



Method
RMS Distance

Airplane Car

Trained viewpoints New viewpoints Trained viewpoints New viewpoints

GI of [25] 0.0382± 0.0205 0.0580± 0.0323 0.0361± 0.0347 0.0369± 0.0423
P2M [26] 0.0112± 0.0064 0.0412± 0.0118 0.0247± 0.0065 0.0323± 0.0088

Ours 0.0221± 0.0122 0.0239± 0.0108 0.0185± 0.0058 0.0186± 0.0059

Table 2. Average RMS distance from ground truth mesh to reconstruction performed on single image of test models.
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Figure 7. 3D shape reconstruction from images downloaded over the internet.

ages before feeding to the network. No additional fine-

tuning was performed. GI of [25] generates the mean-shape

without sharp features for airplane model and fails to recon-

struct some cars correctly. Pixel2Mesh approach is not able

to learn object specific information and generates shapes

which look good enough only from viewpoint of the im-

age. Same models when shown from alternate viewpoint,

illustrates the non-symmetry in their reconstruction. Self

occlusion in the RGB images restricts this approach from

reconstructing the region not visible in the image. Using

symmetry information in our approach helps retrieve shape

information even though it is not completely visible in the

input RGB images. Unlike the approach of [25] and [26]

which uses view point specific ground truth for training the

model, our method uses model specific ground truth geom-

etry image. This way we believe that we avoid learning a

viewpoint specific lookup table, which fails to deliver when

shown images from viewpoints not used in training.

5. Conclusion

In this work, we try to reconstruct 3D shape surface from

single image using deep residual network. Our method re-

lies on the symmetry of an object to establish correspon-

dence and obtain border for parameterization. The proposed

network tries to learn meaningful representation from in-

put images and preserves sharp features. Along with un-

seen images from trained viewpoints, we also tested our

network for unseen viewpoints. Experiments conducted on

random images collected from internet shows robustness of

our method. In future works, efforts would be made to over-

come the restriction of symmetry in the model by estab-

lishing surface correspondence. Another possible direction



would be developing neural networks that could learn mul-

tiple shape categories simultaneously.
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