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Abstract

Fusion of 2D images and 3D point clouds is important

because information from dense images can enhance sparse

point clouds. However, fusion is challenging because 2D

and 3D data live in different spaces. In this work, we pro-

pose MVPNet (Multi-View PointNet), where we aggregate

2D multi-view image features into 3D point clouds, and then

use a point based network to fuse the features in 3D canon-

ical space to predict 3D semantic labels. To this end, we

introduce view selection along with a 2D-3D feature ag-

gregation module. Extensive experiments show the benefit

of leveraging features from dense images and reveal supe-

rior robustness to varying point cloud density compared to

3D-only methods. On the ScanNetV2 [4] benchmark, our

MVPNet significantly outperforms prior point cloud based

approaches on the task of 3D Semantic Segmentation. It is

much faster to train than the large networks of the sparse

voxel approach [6]. We provide solid ablation studies to

ease the future design of 2D-3D fusion methods and their

extension to other tasks, as we showcase for 3D instance

segmentation.

1. Introduction

The field of 3D perception is evolving at a fast pace, with

recent major improvements on tasks such as semantic seg-

mentation and object detection. This is crucial to applica-

tions in robotics and AR/VR, where 3D data are typically

captured as depth maps or point clouds, along with 2D im-

ages from RGB cameras. A central problem of those ap-

plications is how we can efficiently fuse data from the 2D

and 3D domains. This is quite challenging, because there

usually is no one-to-one mapping between 2D and 3D data,

and also the neighborhood definitions in 2D and 3D are dif-

ferent for convolution. More critically, while neighboring

pixels are defined by the discrete grid, 3D points are defined

at non-uniform continuous locations. Additionally, 3D sen-

sors mostly deliver a much lower resolution than 2D cam-

1Research done while visiting UC San Diego.

point cloud
semantic label

prediction

MVPNet+

multi-view images

Figure 1: Our MVPNet (Multi-View PoinNet) takes dense

multi-view images and a sparse point cloud as input and

fuses them to predict the semantic labels for each point.

eras. For example, when the point cloud from a Velodyne

HDL-64 Lidar is projected into the camera image, it covers

only 5.9% of the pixels [10].

Point cloud based neural networks have been shown

to generate powerful geometry cues for 3D scene under-

standing. However, not all objects can be distinguished

by their shape, especially when they have flat surfaces

such as doors, refrigerators and curtains. Therefore, ad-

ditional color information should be leveraged, but re-

cent results [26] have shown that naively feeding colored

point cloud (XYZRGB) to point cloud based networks does

only marginally improve the performance over simple point

cloud input (XYZ).

We argue that, because RGB cameras have much higher

spatial resolution than 3D sensors in most realistic settings,

it is better to compute image features in 2D first before

lifting the 2D information to 3D. Like so, it is possible to

gather additional information from higher resolution im-

ages and it is also natural from a sensor fusion perspective,

to push modality centric features from different sources to

3D for their combination.

As different representations in 3D exist (voxel, point-

cloud, multi-view, etc.), their respective scene understand-

ing methods evolve in parallel. For voxel-based methods,

there have been works on how to fuse geometry and image

data coherently. However, for the point cloud domain, the

common practice is to sparsely copy RGB information to

points and there lacks a systematic exploration of how to

conduct the fusion more effectively. In order to address this



significant drawback of point cloud based methods, we pro-

pose MVPNet (Multi-View PointNet), where we first com-

pute 2D image features on multiple, heuristically selected

frames, then lift those features to 3D and adaptively ag-

gregate them into the original point cloud (XYZ). Finally,

the multi-view augmented point cloud is fed into Point-

Net++ [19] for semantic segmentation.

There are several advantages: First, the lifted 2D fea-

tures contain contextual information thanks to the receptive

field of the 2D network. Second, the complementary RGB

and geometry features are jointly processed in canonical 3D

space. And third, our flexible approach can be added to any

3D network.

In this paper, we focus on exploring the 2D-3D fusion

problem, a key component for 3D scene parsing. The

method has the potential to improve other tasks and may

be further extended with other innovations in pipeline de-

sign, e.g. processing the whole point cloud at once, instead

of doing it in a sliding window fashion. While the key mes-

sage of our exploration can be concisely summarized as do-

ing early feature fusion is better, the significant performance

improvement from baselines is in fact obtained through ex-

tensive trials. In the experiment section, we made a rich

set of ablation studies so as to compare design choices and

inform our discoveries to the vision community.

In summary, the key contributions are as follows:

• We propose a simple and fast framework that takes 3D

point cloud and 2D RGB-D frames as input and fuses

complementary features in the canonical point cloud

space for the task of 3D semantic segmentation.

• Our method outperforms previously published point

cloud based networks by using additional dense image

information while handling occlusions.

• We provide insights to the design choices in

dense-2D/sparse-3D point cloud fusion based on ex-

tensive experiments, and showcase its excellent robust-

ness to very sparse point clouds.

2. Related Work

2D to 3D Lifting Several works have shown that lifting

2D features to 3D leads to better performance than just lift-

ing RGB values. In [5], multiple 2D image feature maps are

unprojected to 3D, voxel-volumes are created, combined

by max-pooling and then fed into a 3D CNN. In [14], 2D

image features are gathered at nearest neighbor locations

defined by a lidar point cloud to build a dense bird view

map. These approaches use pixel-level 2D-3D correspon-

dences to lift low-level features as opposed to [17] where

only high-level 2D object proposals are lifted to 3D frus-

tums. In this work, we establish pixel-to-point correspon-

dences to lift 2D features to the canonical 3D point cloud

space instead of voxel [5] or birdview [14]. The advan-

tage is that once all modalities are represented in a 3D point

cloud, correspondence between two data points is precisely

defined by distance in the continuous domain without dis-

cretization errors.

3D Networks CNNs are the state-of-the-art on 2D RGB

images, but competing network families exist for 3D data:

3D CNNs [16, 11] make use of the voxel representation

where the raw point cloud data is transformed into a dis-

crete grid of cells and in practice most of the cells are

empty and only voxels that lie on the object surface are

occupied. On the other hand, point cloud based net-

works [18, 12, 25, 13, 26, 27] can directly take point clouds

as input. In our work, we use point cloud based networks,

because of their inherent sparsity as compared to voxel-

based methods.

3D Semantic Segmentation The aim of 3D semantic seg-

mentation is to predict a label for every point in a 3D point

cloud. PointNet [18] leverages shared Multi Layer Per-

ceptrons (MLPs) to compute point-wise features and uses

max-pooling to obtain features for the global point cloud.

This works very well for single objects in the ShapeNet

dataset [2] for the task of part segmentation. For whole

scene analysis, PointNet++ [19] is more suited, because it

has set abstraction layers to create a hierarchical network

structure akin to CNNs which scales much better to larger

point sets. Voxel-based methods include SegCloud [23],

3DMV [5] and Submanifold Sparse Convolution [6]. The

latter defines a very efficient way to deal with sparsely

populated voxels by restricting computations to active vox-

els. Different from 3DMV [5], we exploit the fusion of

multi-view and geometry information in point cloud space

and achieve much better performance. In addition, we re-

port mIoU for all the ablation studies instead of accuracy.

SPLATNet [22] takes point clouds and images as input and

projects them on a permutohedral lattice for convolution

and 2D-3D fusion. In our approach, we focus on fusing

multi-view features with an aggregation module directly in

the canonical point cloud space and achieve higher mIoU

(64.1) than SPLATNet (39.3) on the ScanNet benchmark.

3D Instance Segmentation The task of 3D instance seg-

mentation is more precise than 3D object detection: Instead

of regressing boxes, point masks which describe the ex-

act shape of each object are predicted. Proposal based ap-

proaches like Mask R-CNN[7] are the state-of-the-art in 2D

and have been extended to 3D by leveraging voxels and 3D

box-proposals [9]. Alternatively to proposing boxes, point

clouds can be generated as proposals [28]. Another strategy

is clustering based on predicted semantic labels or a sim-



ilarity matrix [24] which can be learned [15]. We extend

MVPNet to instance segmentation using R-PointNet [28].

3. MVPNet

Our MVPNet is designed to effectively fuse complemen-

tary information from multiple RGB-D frames and 3D point

cloud in order to achieve better 3D scene understanding on

real-world data, like ScanNetV2 [4]. The primary task is

3D semantic segmentation, where the goal is to predict a

semantic label for each point in the input point cloud. Our

pipeline is illustrated in Fig. 2. We also showcase an exten-

sion to 3D instance segmentation in Sec. 4.5.

3.1. Overview

The data of each scene consists of a sequence of RGB-D

frames and a point cloud. The input point cloud, denoted

as Ssparse, is sparse compared with the resolution of images.

This can be seen in Fig. 3 by comparing the density of the

sparse point cloud with the unprojected views. Following

PointNet++ [19], we divide the whole scene into chunks

(around 90 chunks for an average scene). For each chunk,

the most M informative views (RGB-D frames) are selected

to maximize the coverage of the input point cloud (Sec. 3.2).

Those views (RGB) are then fed into a 2D encoder-decoder

network in order to compute M feature maps (Sec. 3.3).

To augment the sparse input point cloud Ssparse, pixels with

valid depth in each 2D feature map are first lifted to a 3D

point cloud and then a dense point cloud Sdense is obtained

by concatenating all the M unprojected point clouds. Given

the image features associated with Sdense, our feature aggre-

gation module samples the k nearest neighboring points in

Sdense and adaptively combines them to form the new fea-

ture for the point in Ssparse (Sec. 3.4). Finally, we leverage

PointNet++ to process the multi-view feature augmented

point cloud from a 3D geometric perspective.

3.2. View Selection

In ScanNetV2 [4], the RGB-D frames come as video

stream with strong overlap between consecutive frames. It

would be redundant and computationally expensive to pro-

cess them all. Therefore, we make a selection of 1 to 5

views, which maximize contained information, to fuse with

the point cloud of the scene.

In the preprocessing step, the overlaps between the scene

point cloud and all the unprojected RGB-D frames of the

video stream are computed. To reduce computation, we

downsample the point cloud (red points in Fig. 3). Dur-

ing training we use the overlap information to select the

RGB-D frames on-the-fly with a greedy algorithm. The

image which overlaps with the most yet uncovered points

is selected. We found that this straightforward but effi-

cient method can achieve very high coverage even with few

frames, leading to better results with same computation.

3.3. 2D Encoder-Decoder Network

We feed the selected RGB images into a 2D encoder-

decoder network based on U-Net [20] to compute image

feature maps. In our implementation, the size of the in-

put image is equal to that of the output feature map, and

fixed to 160 × 120. With the relatively low resolution,

we found UNet to be better suited in terms of memory,

speed, and performance than other 2D semantic segmen-

tation architectures such as DeepLabv3 [3], PSPNet [29],

optimized for a much higher resolution. We pretrain the 2D

encoder-decoder network on the task of 2D segmentation on

ScanNetV2 in order to bootstrap the training of the whole

pipeline. More details can be found in Sec. 4.2.

3.4. 2D-3D Feature Lifting Module

In order to obtain the 3D coordinates for the feature maps

that have been computed with the RGB images and the 2D

encoder-decoder network, we unproject the corresponding

depth maps using the camera instrinsics and poses. Con-

sider M 2D feature maps of size H ×W ×Cfeat, then each

one is lifted to a point cloud of size NRGB × Cfeat, where

NRGB < HW is a hyperparameter that corresponds to the

number of unprojected pixels in each RGB image. By con-

catenating all the M unprojected points together, we yield a

dense point cloud Sdense of size MNRGB × Cfeat.

For semantic segmentation, the labels have to be pre-

dicted for the input point cloud Ssparse. Thus, we have to

transfer the features from the unprojected point cloud Sdense

to Ssparse. Therefore, we use our feature aggregation mod-

ule which includes a shared MLP inspired by [14] in order

to distill a new feature for each point in Ssparse from its k

nearest neighbors in Sdense

hi =
∑

j∈Nk(i)

MLP(concat [fj , fdist (xi, xj)] (1)

where hi is the distilled feature at point xi in Ssparse, fj the

semantic feature at one of the k nearest neighbors points xj
in Sdense, and fdist(xi, xj) the distance feature between the

two points which we define as

fdist (xi, xj) = concat [xi − xj , ‖xi − xj‖
2
]. (2)

We define multi-view feature augmented point cloud as the

resulting features associated with 3D coordinates. Note that

the whole 2D-3D feature lifting module is differentiable,

which enables end-to-end training of our MVPNet.

3.5. 3D Fusion Network

To fuse multi-view image features and geometry infor-

mation, we employ PointNet++ [19] as backbone. The orig-

inal PointNet++ consumes both the coordinates and its cor-

responding features, such as normal or color. For 3D se-

mantic segmentation, it encodes the input point cloud with
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Figure 2: Pipeline overview. First, a fixed number of 2D views are selected so that the whole 3D scene is maximally covered.

Then, the respective RGB images are fed into a 2D encoder-decoder to obtain feature maps of same size as the input images.

Those feature maps are unprojected and concatenated to form a dense point cloud. Then, the dense unprojected feature point

cloud is aggregated into the sparse input point cloud to augment each point with 2D image features. Complementary 3D

geometry and 2D image features are fused in 3D canonical space using PointNet++ which predicts the final semantic labels.

(a) sparse PC (b) 1st view (c) 2nd view (d) 3rd view

Figure 3: View selection: 3a visualizes the input point cloud

of a chunk and its coarse version (red points) used to com-

pute the overlap with the RGB-D frames. 3b, 3c and 3d

show the 1st, 2nd and 3rd greedily selected view.
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Figure 4: Fusion architectures based on PointNet++. We

adopt early fusion, where the geometry (XYZ) and image

features are concatenated at the input layer. The network

fuses them which leads to mixed features for the remaining

network. Other strategies are described in Sec. 3.5.

set abstraction layers hierarchically, and decodes the out-

put semantic prediction through feature propagation layers.

The 3D coordinates of input points are concatenated to the

output features of each set abstraction layer.

We adopt early fusion, where the image features are con-

catenated to the geometry (XYZ) and then given as input to

PointNet++. Thus, the network is able to fully exploit the

image features from a geometric perspective. We also inves-

tigated intermediate fusion and late fusion. In late fusion,

the image features are concatenated after the final feature

propagation layer in PointNet++, right before the segmen-

tation head. In intermediate fusion, we introduce separate

encoder branches for geometry and image features whose

outputs are then concatenated and fed into the decoder. Ad-

ditionally, the decoder leverages the intermediate outputs of

two encoder branches through skip connections. The differ-

ent fusion strategies are illustrated in Fig. 4.

4. Experiments

In this section we cover experiments on the Scan-

NetV2 [4] dataset, but additional results on S3DIS [1] can

be found in the supplementary where we improve over pre-

vious methods by 4.16 mIoU.

4.1. ScanNetV2 Dataset

The ScanNetV2 dataset [4] features indoor scenes like

offices and living rooms for which a total of 2.5M frames

were captured with the internal camera of an IPad and an

additionally mounted depth camera. The data for each scan

consists of an RGB-D sequence with associated poses, a

whole scene mesh, as well as semantic and instance labels.

There are 1201 training and 312 validation scans that were

taken in 706 different scenes, thus each scene was captured

about 1 to 3 times. The test set contains 100 scans with

hidden ground truth, used for the benchmark.

4.2. Implementation Details

For the task of 3D semantic segmentation, we follow

the same chunk-wise pipeline as PointNet++ [19]. During

training, one chunk (1.5m × 1.5m in xy-plane, parallel to

ground surface) is randomly selected from the whole scene

if it contains more than 30% annotated points. Random ro-

tation along the up-axis is applied for data augmentation.

During testing, the network predicts all the chunks with a

stride of 0.5m in a sliding-window fashion through the xy-

plane. A majority vote is conducted for the points that have

predictions from multiple chunks.

We downsample the images and depth maps to a reso-

lution of 160 × 120. Random horizontal flip is applied to



augment images during training. We fix the number of un-

projected points per RGB-D frame to 8192 of a total 19200

pixels for a resolution of 160× 120. Note that even though

many pixels are not lifted to 3D, they are still essential for

the 2D feature computation as they lie in the receptive field

of unprojected pixels.

The backbone of the 2D Encoder network is an

ImageNet-pretrained VGG16 [21] with batch normalization

and dropout. For ablation studies and submissions, we also

experiment with VGG19 [21] and ResNet34 [8]. The cus-

tom 2D Decoder network is a lightweight variant of U-

Net [20]. Batch normalization and ReLU are added after

each convolution layer in the decoder.

For each chunk, 8192 points are sampled from the in-

put point cloud and augmented by the views selected by the

method described in Sec. 3.2. For the feature aggregation

module, we use a two-layer MLP with 128 and 64 chan-

nels. To predict the semantic labels for the multi-view fea-

ture augmented point cloud, we use PointNet++ with single-

scale grouping (SSG) as our 3D backbone. However, note

that our MVPNet can adapt to any 3D network.

Each epoch consists of 20000 randomly sampled chunks,

and the batch size of chunks is 6. The network is trained

with the SGD optimizer for 100 epochs. We use a weight

decay of 0.0001 and a momentum of 0.9. The learning rate

is 0.01 for the first 60 epochs, and then divided by 10 every

20 epochs. MVPNet is trained on a single GTX 1080Ti.

4.3. Results for 3D Semantic Segmentation

We evaluate our MVPNet on the ScanNetV2 3D seman-

tic label benchmark. The evaluation metric is the average

IoU (mIoU) over 20 classes. For submission, we ensemble

4 models of MVPNet, which consumes 5 views and uses

ResNet34 as 2D backbone.

Tab. 1 shows our performance compared to the pub-

lished state-of-the-art point cloud based methods on the test

set. Our MVPNet outperforms all the published point cloud

based methods, like PointConv [26] and PointCNN [13], by

a large margin. This confirms the effectiveness of our ap-

proach of elevating 2D image features to 3D for geometric

fusion, especially for classes with flat shapes, i.e. refriger-

ator, picture, curtain and the like, which lack discriminative

geometric cues for point cloud based networks. Qualitative

results are shown in Fig. 6 and a failure case in Fig. 7.

Tab. 2 shows our performance compared to the pub-

lished state-of-the-art voxel based methods on the test set.

3DMV [5] is a joint 2D-3D network similar to ours, but

in the voxel-based domain, and does not match our perfor-

mance and inference time (500 s/scene vs. 3.35 s/scene).

Although there exists a gap between our result and

SCN [6], our MVPNet is much more robust to low resolu-

tion point clouds as detailed in Sec. 4.4. This is relevant to

robotic applications where, due to sensor limitations, point

Figure 5: Robustness to input point cloud density of our

method compared to SparseConvNet [6]. The x-axis shows

the ratio of points that are kept and the y-axis shows the

mIoU on the validation set of ScanNetV2.

clouds are always much sparser than images. Furthermore,

we compare with SCN in terms training/inference time and

number of parameters in Tab. 3. It shows that MVPNet is

comparable with highly engineered SCN. However, MVP-

Net is able to converge in 20 hours on a GTX 1080Ti (incl.

pretrain of 2D encoder-decoder), while it takes 12 days for

heavyweight SCN for the same GPU model, or 4 days even

with a V100.

4.4. Robustness to Varying Point Cloud Density

Real-world 3D sensors such as lidars and depth cam-

eras have much lower resolution than 2D RGB cameras and

point cloud density also varies with view point angle, light-

ing conditions, object-to-sensor distance and object surface

reflectivity. Thus, it is important for algorithms to be robust

to varying point cloud density at test time, because train-

ing data can hardly cover all cases. To examine robustness

to sparsity, we uniformly subsample the whole scene point

cloud and feed it to the networks that were trained on full

resolution. We report the results in Fig. 5. While our MVP-

Net is hardly affected at lower resolutions, the performance

of SparseConvNet (SCN) [6] suffers severely.

We attribute the performance difference mainly to two

factors. First, the quality of our image features is not de-

teriorated when the point cloud is downsampled, because

they are computed in the original dense 2D image. Dur-

ing 2D-3D lifting, even if few unprojected image pixels are

finally used at coarse point cloud resolution, the image fea-

tures can maintain their quality thanks to the receptive field

of the 2D encoder-decoder. This is not the case for SCN

where only the sparse RGB information at each 3D point is

used. The second factor is related to the different neighbor-

hood definition in voxel grids and point clouds. Voxel-based

methods such as SCN have fixed neighbors defined by the

discrete grid. Point-based methods on the other hand, use

continuous locations and in each network layer, neighbors

are sampled, e.g. with ball query, that adapt to the local

point distribution and thus to varying point cloud density.



Method mIoU bath bed bkshf cab chair cntr curt desk door floor other pic fridge shower sink sofa table toilet wall window

PointNet++[19] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2

Re-impl. PointNet++* 44.2 54.8 54.8 59.7 36.3 62.8 30.0 29.2 37.4 30.7 88.1 26.8 18.6 23.8 20.4 40.7 50.6 44.9 66.7 62.0 46.2

PointCNN[13] 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5

PointConv[26] 55.6 63.6 64.0 57.4 47.2 73.9 43.0 43.3 41.8 44.5 94.4 37.2 18.5 46.4 57.5 54.0 63.9 50.5 82.7 76.2 51.5

Ours 64.1 83.1 71.5 67.1 59.0 78.1 39.4 67.9 64.2 55.3 93.7 46.2 25.6 64.9 40.6 62.6 69.1 66.6 87.7 79.2 60.8

* Anonymous third-party submission. Included for fair comparison because the original PointNet++ results seem very low and are inconsistent with our experiments.

Table 1: Comparison with the state-of-art point cloud based methods on ScanNetV2 3D Semantic label benchmark.

Method mIoU

SparseConvNet[6] 72.5

3DMV[5] 48.4

Ours 64.1

Table 2: Comparison with voxel based methods on the

ScanNetV2 3D Semantic label benchmark.

Method mIoU batch size train time forward time/scene* #parameters

SCN (light) 57.5 32 18h 0.194s 2.7M

SCN (heavy) 68.2 4 >12d 2.21s 30.1M

ResNet (2D) - 32 8h - 23M

MVPNet (3-view) 65.9 32 12h 2.22s 0.98M

MVPNet (5-view) 67.3 32 18h 3.35s 0.98M

* Preprocessing time not included.

Table 3: Runtime comparison with SCN on a GTX 1080Ti.

4.5. Extension to 3D Instance Segmentation

We extend MVPNet to the task 3D Instance Segmen-

tation on ScanNetV2. We use a trained model of MVP-

Net for semantic segmentation to predict all scenes of the

train/val/test set and save the features of the last layer before

the segmentation head to disk. We modify R-PointNet [28]

in order to take the semantic features from MVPNet as input

and yield a significant improvement from 38.8 to 47.1 mAP

on the validation set which demonstrates the versatility of

MVPNet.

5. Ablation Studies

To analyze our design choices and provide more insights,

we conduct ablation studies on the validation set of Scan-

NetV2. The 2D encoder-decoder network is frozen in or-

der to accelerate training, since we observe no significant

improvement with end-to-end training. Unless stated other-

wise, our 2D backbone is VGG16 [21] and our 3D backbone

contains 4 set abstraction and 4 feature propagation layers.

The numbers of centroids are 1024, 256, 64, 16 respectively.

5.1. Number of Views

We define coverage as the ratio of points in the input

point cloud that have at least one unprojected neighbor point

with image features at a distance less then 0.1m. Tab. 4

Number of frames 1 3 5

Average coverage 68.1 92.9 97.4

mIoU 62.8 64.5 64.8

Table 4: Average coverage and mIoU as a function of the

number of unprojected views. Results on validation set of

ScanNetV2.

Number of views k-nn MLP Aggregation mIoU

1 1 w/o none 61.7

1 3 w/o sum 62.8

1 3 w/ sum 62.5

3 1 w/o none 64.5

3 3 w/o sum 64.5

3 3 w/ sum 65.0

3 3 w/ max 64.7

Table 5: Effect of feature aggregation. Results on validation

set of ScanNetV2.

shows how the number of views affects coverage and mIoU.

We removed the feature aggregation module for this ex-

periment. With 1 view the coverage reaches 68.1%, and

with 3 frames already exceeds 90%. More views lead to

higher mIoU, but introduce more computation. We choose

3 frames as default in this trade-off.

5.2. Feature Aggregation Module

In the following we study the parameters of our Feature

Aggregation Module, defined in eq. 1, which distills fea-

tures from the unprojected point cloud Sdense, obtained from

multiple views, into the input point cloud Ssparse. We report

our results in Tab. 5 for 1 and 3 views, 1 or 3 nearest neigh-

bors feature sampling, with or without MLP, and we also try

maximum instead of sum as feature pooling function.

For the 1-view case, using 3 nearest neighbors instead

of only 1 increases the performance by at least 0.8 mIoU.

Due to the limited coverage of a single view, far-away im-

age features are sampled for uncovered points and multiple

neighbors might alleviate this problem by analyzing feature

consistency between them. For the 3-view case, we find

that the number of nearest neighbors does not affect perfor-

mance. This might be because coverage is already very high

(92.9%) and as opposed to the 1-view case, features can al-



Method mIoU

PointNet++ (XYZ) [baseline] 54.5

PointNet++ (XYZRGB) [baseline] 57.8

2D CNN 57.2

Ours (late fusion) 58.4

Ours (intermediate fusion) 64.8

Ours (early fusion) 65.0

Ours (w/o xyz) 62.8

Table 6: Effect of multiple modalities and different strate-

gies of fusion. Results on validation set of ScanNetV2.

ways be sampled from close-by. We also try sum instead of

maximum to pool the features which does not significantly

change the results. Using an MLP can slightly improve,

maybe because it can transform 2D image features to an

embedding space more consistent with the 3D representa-

tion. Our final choice for all other experiments is 3 nearest

neighbors with MLP and sum aggregation.

5.3. Fusion

In this section we want to answer the question how to

best fuse geometry and image features with point cloud

based networks and give an insight about the strength of

each modality. In Tab. 6 we report our quantitative results

on the validation set. Our PointNet++ baseline yields 54.5

mIoU with XYZ only and 57.8 mIoU with additional color

information.

In order to assess the strength of multi-view vs. geome-

try features, we conduct an experiment with 3 views where

we unproject the output semantic labels of the pretrained

2D encoder-decoder to 3D and attribute the nearest neigh-

bor 2D label to each 3D point in the input point cloud. This

multi-view 2D CNN approach can already achieve similar

performance as PointNet++ on colored point clouds, which

confirms the benefit of features computed on dense 2D im-

ages before 2D-3D lifting.

Next, we study three fusion strategies introduced in

Sec. 3.5. We could yield slightly better performance with

the late fusion approach (+1.2 mIoU) than with the 2D CNN

baseline. Intermediate fusion leads to much better results

(+7.6 mIoU) than late fusion. Early fusion can reach the

best score (+7.8 mIoU), and uses less parameters and com-

putation compared to intermediate fusion. The observation

is different from the voxel-based method 3DMV[5], where

geometric features and image features are concatenated late,

at roughly 2/3 in the network.

Moreover, we investigate whether it is necessary to add

geometric features (XYZ coordinates) in the early fusion

approach or if the image features are sufficient. In fact,

PointNet++ already induces a geometric hierarchy and the

dimension of the XYZ coordinates is much smaller com-

pared to that of the image features (3 vs. 64). Nonethe-

less, the obtained result (-2.2 mIoU without XYZ) proves

Method mIoU

2D CNN (VGG16) 57.2

2D CNN (VGG19) 58.3

2D CNN (ResNet34) 59.6

2D CNN (VGG16) + PointNet++(SSG) 65.0

2D CNN (VGG19) + PointNet++(SSG) 65.5

2D CNN (ResNet34) + PointNet++(SSG) 65.9

2D CNN (VGG16) + PointNet++(MSG) 65.0

2D CNN (VGG16) + PointNet++(SSG, more centroids) 66.4

Table 7: 2D CNN baselines and our MVPNet with different

backbones. Results on validation set of ScanNetV2.

the contrary and indicates that MVPNet actually benefits

from geometric features as complementary information to

images.

5.4. Stronger backbone

To investigate the effect of stronger 2D backbones, we

replace VGG16 with VGG19 and ResNet34. Tab. 7 shows

the results of 2D CNN baselines and our MVPNet with dif-

ferent backbones on the validation set. Intuitively, stronger

backbones lead to higher mIoU, and ResNet34 performs

best. Due to runtime performance we choose VGG16 as

backbone for ablation experiments and ResNet34 for best

performance.

As to the stronger 3D backbone, we double the num-

bers of sampled centroids to (2048, 512, 128, 32), which

increases the mIoU by 1.4. We also try to replace single-

scale with multi-scale grouping (MSG) in PointNet++, but

observe no improvement. As the image features already

contain contextual information, it might not be necessary

to process multiple scales explicitly with the MSG version.

6. Conclusion

While we can outperform state-of-the-art point based ap-

proaches by a significant margin using sliding window pro-

cessing, methods that take the whole scene as input, e.g. the

very well implemented SCN [6], have a clear advantage.

We have proposed a framework to fuse 2D multi-view

images and 3D point clouds in an effective way by comput-

ing image features in 2D first, lifting them to 3D, and then

fuse complementary geometry and image information in

canonical 3D space. Comprehensive experiments are con-

ducted on the ScanNetV2 Semantic Segmentation bench-

mark, which prove the advantage of calculating image fea-

tures from multi-view images, and verify the superior ro-

bustness of our approach against voxel-based methods.
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Figure 6: Qualitative results of 3D semantic segmentation. A common error mode of PointNet++ is to misclassify similarly

shaped objects (shower curtain, refrigerator, etc.) as the most prevalent door category while our method succeeds.

Ground Truth PointNet++ XYZRGB Ours (2D) Ours (2D + 3D) color mesh (no input)

Figure 7: Failure case of our method for 3D semantic segmentation. On the right hand side in the image is an open door next

to a bookshelf. Both have very similar ”wooden” appearance and are spatially close which leads our method – which also

relies on appearance information – to misclassify the bookshelf as door.
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