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Abstract

Unsupervised clustering is a very relevant open area of

research in machine learning with many applications in the

real world. Learning the manifold in which images lie and

measuring the proximity distance of the sample points to

the clusters in their latent space is non-trivial. Recent deep

learning methods have proposed the use of autoencoders for

manifold learning and dimensionality reduction in an effort

to better cluster image samples. However, offline training

of autoencoders is cumbersome and rather tedious to up-

date. Moreover, trained autoencoders tend to be biased

towards the training set and are impractical for perform-

ing data augmentation. In this paper, we introduce a novel

method that uses a triplet network architecture in order to

avoid the need of pre-trained autoencoders. Because our

framework can be trained online, we can train our network

with data augmented pairs which allows us to build a more

robust encoder and improve accuracy. In contrast to other

clustering methods that require nearest neighbor compar-

isons at every step, our method introduces a novel approach

for selecting random training samples pairs with an adap-

tive metric distance which we call Random Triplet Mining.

Our method remains competitive compared with other cur-

rent methods while we obtain state of the art results on the

Fashion-MNIST dataset.1

1. Introduction

Unsupervised clustering (UC) can be defined as a per-

class assembling of groups or clusters of unlabeled data.

UC is an essential problem in machine learning and artifi-

cial intelligence due to large amounts of labeled data that a

supervised method otherwise would require for generaliza-

tion over the entire training data.

Recent UC approaches avoid the need of labeled train-

1Our code is available at https://github.com/mood2jam/
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Figure 1: Outline of our method which consists of a triplet

network. The first two streams take a positive or similar pair

of images and the last takes a negative pair found through

random triplet mining (RTM). L represents the loss of the

system. The learned embeddings then can be clustered us-

ing any traditional clustering method.

ing data while attempting to learn the manifold of the space

where the data lies and produce feature embeddings through

dimensionality reduction. There are different ways in which

such non-linear dimensionality reduction is obtained, and

more recent methods apply deep learning frameworks to

train autoencoders as a pre-process step in order to approx-

imate the manifold of the data [34, 40, 12, 19, 13].

In general, autoencoders provide an approximation of

the manifold and provide feature embeddings that could

be used as starting point for measuring distances between

training samples. Despite the moderate success of autoen-

coders, because they are separately trained in a pre-process

step, they carry an inherent bias towards the data used dur-

ing their training. The pre-training step of an autoencoder

is also cumbersome and makes the pipeline difficult to train

in an end-to-end way.



In order to improve upon the drawbacks of current UC

methods, in this paper we introduce a novel method that

employs a triplet network without the need to pre-train an

autoencoder as an additional step. Because our method does

not need a pre-trained autoencoder, we can train our method

as a whole system in an end-to-end fashion. Furthermore,

because we remove the need to pre-train autoencoders of-

fline, our method allows us to perform data augmentation

more succinctly which helps improve our results.

In order to choose the best pairs to train our triplet net-

work at each iteration, we introduce a novel matching pair

function. This function considers the euclidean distances of

the pairs on latent space and selects the pairs with statisti-

cal significance that are difficult to find and important for

the model to see repeatedly. We call this process Random

Triplet Mining (RTM), and we show that RTM can help im-

prove online training of our triplet network significantly.

Our method yields competitive and significant improve-

ments over current methods, particularly on the Fashion-

MNIST dataset where we achieve state of the art results.

2. Background

Unsupervised clustering via manifold learning has

achieved significant progress in recent years. There are in

the literature different types of approaches for clustering

that range from non-linear dimensionality reduction tech-

niques to more complex manifold learning techniques em-

ploying autoencoders and deep learning.

Earlier approaches on non-linear dimensionality reduc-

tion include [32] which uses a the kernel trick for principal

component analysis of high dimensional data. Isomap [36]

is another non-linear dimensionality reduction technique

that attempts to preserve the intrinsic geometry of the data

by using geodesic manifold distances. Local Linear Em-

bedding (LLE) [31] exploits the local symmetries of lin-

ear reconstruction to learn the structure of non-linear man-

ifolds. In [2], the data manifold is approximated by the ad-

jacency graph obtained from the data points and the embed-

ding maps of the data is approximated by the eigenmaps of

the Laplacian of the graph. Diffusion maps [9] use eigen-

functions of Markov matrices that represent complex geo-

metric structures of data sets.

Recently deep learning and neural networks have proven

to have potential to perform dimensionality reduction [8].

Some more recent methods have used neural networks and

more particularly, convolutional neural networks (CNN) to

create an affinity matrix of the data. For instance, [3] uti-

lizes CNNs to create hierarchical clustering and a Laplacian

graph. Another use of CNNs is through a siamese network

where a CNN with the same weights is run with two dif-

ferent inputs. For example, [21] employs a siamese net that

is trained on augmented data in a supervised manner and

reused for one-shot learning. A triplet network [16] is a

variation of a Siamese net that has three instances of the

same network instead of two. The network calculates dis-

tances for both a similar image and a different image and

uses these to learn the dataset.

Other methods use autoencoders to perform dimension-

ality reduction such as [27], where diffusion map encod-

ings are stacked in between neural networks to help train

the networks. This allows the autoencoder to perform out

of sample extension while also being robust to noise. To

increase performance in higher dimensions, [25] utilized

siamese nets to determine a distance metric that could be fed

to a traditional nearest neighbors algorithm. Deep nets [7]

use a deep learning algorithm to determine a local co-

ordinate system for an unknown manifold without eigen-

decomposition. In [30] a convolutional Generative Adver-

sarial Network (GAN) is developed in order to establish a

more stable training architecture for unsupervised learning.

In order to more effectively generalize CNNs to graphs, [10]

combines CNNs with spectral graph theory. Then using

the Graph Laplacian, spectral filters can be determined for

the CNN instead of regular filters. Deep Isometric Mani-

fold Learning (DIMAL) [29] is an unsupervised deep learn-

ing approach for computing distance-preserving maps. A

siamese net is used to learn the geodesic distance between

landmark points which, in theory, should be uniformly dis-

tributed on the manifold. In [40], a dual autoencoder is com-

bined with mutual information estimation to increase dis-

crimination before spectral clustering. This method’s dis-

crimination and robustness to noise allow it to achieve near

state-of-the-art results for unsupervised clustering.

By using dimensionality reduction techniques, unsuper-

vised and semi-supervised clustering is performed. Joint

Unsupervised Learning [39] is a popular unsupervised clus-

tering method that creates a CNN framework that utilizes

the clustering algorithm in the forward pass and represen-

tation learning in the backward pass. The two processes

benefit from being incorporated together allowing for more

accurate clustering and better representations. In [20], the

adjacency matrix is put in the loss function to generalize

unseen points. Information Maximizing Self-Augmented

Training (IMSAT) [17] employs data augmentation, deep

neural nets, and stochastic gradient descent to achieve near

state-of-the-art results in clustering and unsupervised hash

learning. Deep Adaptive Image Clustering (DAC) [5] pro-

poses a semi-supervised approach to image clustering that

employs a CNN to generate label features that are then uti-

lized in a pairwise constraint to determine if the images be-

long in the same cluster. Deep learning is applied to semi-

supervised clustering in [41]. This method also experi-

ments with different constraints, such as triplet constraints.

In [12], an unsupervised clustering method called DEeP

embedded regularIzed ClusTering (DEPICT) is proposed,

incorporating a soft-max layer on top of convolutional au-



toencoder through a joint learning framework. Overcluster-

ing is prevented by reconstruction loss functions. Another

recent method for unsupervised learning, called Spectral-

Net [34], utilizes spectral clustering approximated by deep

learning. This method is useful because of its ability to scale

to large data-sets, out-of-sample extension, and adept han-

dling of non-convex clusters. The best results are achieved

through the use of a siamese net and autoencoders to encode

input data. In [11], a semi-supervised method is adapted

from the mean teacher variant to work in a domain adapta-

tion scenario.

Additionally, General Adversarial Networks (GAN)

have been used in a wide variety of applications since their

introduction in 2014, including with unsupervised cluster-

ing. For example, in [15] a GAN is combined with a con-

volutional encoder and discriminator network for unsuper-

vised clustering. The encoder approximates the inverse of

the GAN and learns disentangled images with useful unique

characteristics. GANs are also utilized by [28] for unsu-

pervised clustering by implementing an inverse network

trained alongside sampled latent variables making cluster-

ing in the GAN’s latent space possible. In [37], a con-

volutional siamese network is employed to extract vector

features from image data. Invariant Information Clustering

(IIC) [18] is an unsupervised clustering method that utilizes

CNNs and fully connected layers to maximize informa-

tion between unlabeled paired data. The method’s entropy

maximization component of mutual information makes the

framework robust to degeneration while an auxiliary over-

clustering layer eliminates noisy data. The current state of

the art unsupervised clustering method for MNIST is As-

sociative Deep Clustering (ADC) [14]. It is a direct unsu-

pervised clustering algorithm that employs a convolutional

neural network and centroid variables (embedding-like vari-

ables that are part of the model) that are trained alongside

the weights through a cost function.

There are also some survey papers on clustering methods

such as [1] and [26] that the reader might find instructive.

3. Method

In this section we explain the main contributions of our

method. In Section 3.1, we explain our triplet network and

loss for training random image pairs. Section 3.2 explains

our data augmentation step, and finally in Section 3.3, we

discuss our random triplet mining (RTM) algorithm.

3.1. Triplet Network Encoder

In contrast to current methods where autoencoders are

trained in order to approximate the weights of the encoder,

our model is trained as a whole and from the ground up

without the need of a pre-training step.

Our triplet network consists of three encoder streams

with shared weights. Each stream takes as input a sam-

ple image. We define this sample image as either the an-

chor (α), positive (β) or negative (γ) image. The anchor

and positive images correspond to different augmentations

of an original image from our dataset. A negative image is

selected in a particular way in order to maximize the likeli-

hood that a chosen image belongs to a different class. We

explain more about this procedure in Section 3.3.

Formally, given a training sample x, we define δβ as the

�2-norm (euclidean distance) between the anchor and pos-

itive embeddings and δγ the anchor and negative sample

distance. We calculate the distance from each stream as:

δ
β
i = ‖f(xα

i )− f(xβ
i )‖

2
2, (1)

δ
γ
i = ‖f(xα

i )− f(xγ
i )‖

2
2, (2)

∀(f(xα
i ), f(x

β
i ), f(x

γ
i )) ∈ T where T is the set of all pos-

sible triplets i. Note that in practice we do not train on all

possible triplets but rather on a subset of T (Section 3.3).

Usually in the context of triplet networks [33], a loss func-

tion is defined as:

L =

N
∑

i

max(δβi − δ
γ
i +m, 0) (3)

where m is a parameter chosen during training.

One of the drawbacks of Eq. 3 is when |δβi +m| < δ
γ
i ,

in such instance there is information loss because the max
function will clip negative values as the whole term goes to

zero.

To avoid any value clipping and to prevent such informa-

tion loss, we modify the loss function of our triple network

in the following way:

L =
1

N

N
∑

i

δ
β
i + (m−

√

δ
γ
i )

2 (4)

3.2. Online Data Augmentation

In the literature, some methods make use of data aug-

mentation for unsupervised clustering such as in [13]. How-

ever, [13] still requires a denoising autoencoder and a pre-

process training step to learn the weights of the encoder and

decoder. In contrast, our method does not require an au-

toencoder and can be trained end-to-end. Furthermore, our

method makes use of a triplet network to replace the pre-

trained encoder of an autoencoder-based unsupervised clus-

tering paradigm. Because we do not require offline training

of the autoencoder, we can speed up training time by fo-

cusing entirely on our triplet encoder training with our data

augmentation step.

Traditionally, deep learning methods use data augmen-

tation to create and increase the number of labeled training

samples. In contrast, our method employs data augmenta-

tion to create triplet samples to train our model. Thus, our
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Figure 2: Diagram of Random Triplet Mining process. Cn

corresponds to the number of classes or clusters to be con-

sidered. d defines the index of the ‘closest’ different image

to the anchor image to be chosen to train at the next itera-

tion.

framework heavily depends on our data augmentation pro-

cess to provide the samples to input into our network. In

this way, we select an anchor image and a negative image

via Random Triplet Mining (Section 3.3) and perform data

augmentation on the anchor and negative image which then

become the positive and negative images respectively on the

given triplet. This data augmentation process is performed

online which avoids the need of storing any extra images.

The augmentations performed include different image

transformations such as: scaling, shearing, rotation, color

adjustments (brightness, saturation, hue, contrast), horizon-

tal and vertical flips, and random crops. We choose the aug-

mentations depending on each dataset. At each iteration, the

network learns from new augmentations which create di-

verse samples while avoiding the intrinsic bias of the train-

ing dataset. This process also helps the model learn from

samples not present in the original dataset which then trans-

lates into improved clustering accuracy and delayed overfit-

ting of the model.

3.3. Random Triplet Mining

Because the anchor and positive images are generated

from the same image via data augmentation, it is paramount

to always choose the correct negative image, which is de-

fined in this context as an image of a different class out of

the set of possible classes C. By choosing the hard sam-

ples to train at every iteration, we not only accelerate the

learning process of the model but also improve its accuracy

(see Figure 3). We call this process of selecting negative

pair images, random triplet mining (RTM). Although a non-

random form of triplet mining has been used before for su-

pervised learning [33], our RTM method has been modified

to be applied in a fully unsupervised way.

Concretely, RTM selects a negative image to train the en-

coder to distinguish between the positive and negative im-

ages. For each anchor image in the dataset, we select p com-

parison images randomly from the dataset. We then look at

the pairwise euclidean distance between the anchor image

and each of the comparison images and sort these pairwise
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Figure 3: Comparison of our method with RTM and with-

out RTM. Figures (a) and (b) show bi-modal distributions

of pair distances of positive and negative pairs during train-

ing through time (after 20 epochs). Figure (c) shows the

accuracy per epoch. Notice our RTM version (Blue) out-

performs the non-RTM version by about 20 percent.

distances. To choose negative samples γ, we pick the index

d that represents the d-th position in this sorted list. This

index is chosen as a parameter based on the dataset. We

can calculate the probability that γ will be a different pair

and corresponds to an image in our original training set, and

ideally we want this probability to greater than .9.

When calculating the probability our negative image is

of a different class we make two important assumptions:

1) we assume that our network is producing embeddings

whose distances can be correctly sorted in euclidean space

(i.e. similar images from the same class are closer to the

anchor image) and 2) we assume that each of the classes

contain the same number of training samples. Hence, the

approximate probability P that the d-th image is from a dif-

ferent class is given by the following formula:

P =

d
∑

i=0

(

c
i

)(

c·(n−1)
p−i

)

(

n·c
p

) (5)

where c corresponds to the data points per class, d repre-

sents the index of the negative pair γ, n is the number of

classes, p is the number of pairs. Given Eq. 5, the goal is to

select an index d for the negative pair with high confidence.

In our experiments we found P ≈ .97 to be a good target

probability. Figure 3 shows an overlay of the distribution

of distances between anchor and positive images (similar

pairs) along with the anchor and negative images (different

pairs). Note that without RTM the distribution of similar

pair distances remains close to the distribution of different
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Figure 4: Comparison of the separations of similar and different pair distance distributions based on selecting different d

index values. In this case d = 3 is the optimal separation because the two distributions are not overlapping or too spread out.

pair distances. As we apply RTM at every iteration, the two

distributions start separating which indicates that the model

is learning to better discriminate between similar and dif-

ferent pairs. Figure 4 shows how the change of index d af-

fects in different ways the separability of positive and neg-

ative pair distances’ distributions. This shows that mining

or choosing the correct negative image index significantly

helps the model to learn more representative embeddings.

Finally, we use the embeddings obtained from our triplet

network to perform clustering on our dataset. In our exper-

iments we utilized the K-means clustering algorithm.

4. Results

In this section we describe the datasets we used in our

experiments and give an overview of our results and a com-

parison with other state of the art methods.

We ran our method on four different image datasets:

MNIST, Fashion-MNIST, CIFAR-10, and xView-10. When

applicable, we utilized the full dataset (training and test).

The MNIST dataset [24] consists of 70,000 gray-scale im-

ages of handwritten digits: zero through nine. The Fashion-

MNIST dataset [38] is composed of 70,000 gray-scale im-

ages of apparel and accessories. The CIFAR-10 dataset [22]

is made up of 60,000 color images that fall into one of ten

categories, including airplanes, cars, dogs, and cats. The

xView-10 dataset consists of color satellite images derived

from the xView dataset [23]. The images are cropped from

the existing bounding boxes to be 32x32, and the ten largest

classes are combined and balanced to form a set of 60,000

images.

Figure 5: Confusion matrix after applying our method on

Fashion-MNIST.

In order to measure the success of our method, we make

use of the following metrics: accuracy (ACC) [34], Nor-

malized Mutual Information (NMI) [4], and Adjusted Rand

Index (ARI). All of these metric values lie between 0 and 1

where a higher number is better.

Table 2 shows the results of our method on the MNIST

dataset. Our method shows competitive results against cur-



Table 1: Dataset Descriptions

Dataset Size Classes Color Description Dimensions Measure

MNIST [24] 70000 10 BW Handwritten Numbers (28x28) EO

Fashion-MNIST [38] 70000 10 BW Clothing/Shoes (28x28) EO

CIFAR-10 [22] 60000 10 RGB Vehicles/Animals (32x32) EO

rent state of the art methods on unsupervised clustering on

this dataset.

Table 3 shows a comparison of our method with other

current methods on Fashion-MNIST. Our method shows

significant improvements over the state of the art and a 4

percent improvement over the best performing method on

this dataset [40]. Figure 5 shows the confusion matrix over

the 10 classes of Fashion-MNIST.

Table 4 shows the results of our method on CIFAR-10.

Notice that in this table our results over-perform other meth-

ods that are fully unsupervised. The only method in this ta-

ble that is better than ours is [17]. However, this method

is pre-training their model with ImageNet and thus their re-

sults are much better. In contrast, in our method we do not

pre-train our model with any other dataset.

Table 2: Unsupervised Clustering Method Comparison for

MNIST

Model ACC NMI ARI

ADC 2018 [14] 98.7 - -

DEC-DA [13] 98.6 96.2 -

IMSAT [17] 98.4 - -

DAE Network [40] 97.8 94 -

SpectralNet [34] 97.1 92.4 -

BD InfoGAN [15] 96.6 - -

DEPICT [12] 96.5 92 -

JULE [39] 96.4 91 93

CatGAN [35] 95.7 - -

InfoGAN [6] 95.0 - -

ClusterGAN [28] 95.0 89 89

VaDE [19] 94.5 - -

Our Model 96.8 93.3 93.2
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Table 3: Fashion-MNIST dataset. Unsupervised Clustering

Method Comparison.

Model ACC NMI ARI

DAE Network [40] 66.2 64.5 -

ClusterGAN [28] 63.0 64.0 50

InfoGAN [6, 40] 61.0 59.0 -

DEC-DA [13] 58.0 65.2 -

VaDE [19, 40] 57.8 63.0 -

JULE [39, 40] 56.3 60.8 -

SpectralNet [34] 53.3* 55.2* -

DEPICT [12, 40] 39.2 39.2 -

Our Model 70.98 68.5 57.8

(*) The autoencoder was pre-trained on the same dataset.

Table 4: CIFAR-10 dataset. Unsupervised Clustering

Method Comparison.

Model ACC NMI ARI

IMSAT (Pre-trained) [17] 45.6 - -

JULE [39, 18] 27.2 - -

ADC 2018 [14] 26.7 - -

SpectralNet [34] 21.8* - -

Our Model 30.9 19.7 11.5

(*) The autoencoder was pre-trained on the same dataset.
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tific Research. The documentation has been approved for
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6. Conclusion

In this paper, we have presented a novel method for un-

supervised clustering. Our method makes use of a triplet

network trained on data augmented pairs chosen in a special

and particular order by our Random Triplet Mining method

to avoid overfitting the model.

Our method avoids the need for a separate autoencoder

being trained offline. Our method allows us to train our

model end-to-end to learn the manifold of the data and pro-

duce superior embeddings. Our method shows competitive-

ness by yielding state of the art results on Fashion-MNIST.
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