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Figure 1: We introduce Lifting AutoEncoders, a deep generative model of 3D shape variability that is learned from an

unstructured photo collection without supervision. Having access to 3D allows us to disentangle the effects of viewpoint,

non-rigid shape (due to identity/expression), illumination and albedo and perform entirely controllable image synthesis.

Abstract

In this work we introduce Lifting Autoencoders, a gen-

erative 3D surface-based model of object categories. We

bring together ideas from non-rigid structure from motion,

image formation, and morphable models to learn a con-

trollable, geometric model of 3D categories in an entirely

unsupervised manner from an unstructured set of images.

We exploit the 3D geometric nature of our model and use

normal information to disentangle appearance into illumi-

nation, shading, and albedo. We further use weak supervi-

sion to disentangle the non-rigid shape variability of human

faces into identity and expression. We combine the 3D rep-

resentation with a differentiable renderer to generate RGB

* indicates equal contribution.

images and append an adversarially trained refinement net-

work to obtain sharp, photorealistic image reconstruction

results. The learned generative model can be controlled in

terms of interpretable geometry and appearance factors, al-

lowing us to perform photorealistic image manipulation of

identity, expression, 3D pose, and illumination properties.

1. Introduction

Computer vision can be understood as the task of inverse

graphics, namely the recovery of the scene that underlies

an observed image. The scene factors that govern image

formation primarily include surface geometry, camera po-

sition, material properties, and illumination. These are in-

dependent of each other but jointly determine the observed

image intensities.



In this work we incorporate these factors as disentan-

gled variables in a deep generative model of an object cat-

egory and tackle the problem of recovering all of them in

an entirely unsupervised manner. We integrate in our net-

work design ideas from classical computer vision, includ-

ing structure-from-motion, spherical harmonic models of

illumination and deformable models, and recover the three-

dimensional geometry of a deformable object category in an

entirely unsupervised manner from an unstructured collec-

tion of RGB images. We focus in particular on human faces

and show that we can learn a three-dimensional morphable

model of face geometry and appearance without access to

any 3D training data, or manual labels. We further show

that by using weak supervision we can further disentangle

identity and expression, leading to even more controllable

3D generative models.

We first introduce Lifting AutoEncoders (LAEs) to re-

cover, and then exploit the underlying 3D geometry of an

object category by interpreting the outputs of a Deforming

AutoEncoder (DAE) [36] in terms of a 3D representation.

For this, we train a network to minimize a non-rigid SfM

objective, which results is a low-dimensional morphable

model of 3D shape, coupled with an estimate of the cam-

era parameters. The resulting 3D reconstruction is coupled

with a differentiable renderer [21] that propagates informa-

tion from a 3D mesh to a 2D image, yielding a generative

model for images that can be used for both image recon-

struction and manipulation.

Our second contribution consists in exploiting the 3D na-

ture of our novel generative model to further disentangle

the image formation process. This is done in two com-

plementary ways. For illumination modeling we use the

3D model to render normal maps and then shading im-

ages, which are combined with albedo maps to synthesize

appearance. The resulting generative model incorporates

spherical-harmonics-based [54, 47, 48] modeling of image

formation, while still being end-to-end differentiable and

controllable. For shape modeling we use sources of weak

supervision to factor the shape variability into 3D pose,

and non-rigid identity and expression, allowing us to con-

trol the expression or identity of a face by working with

the appropriate latent variable code. Finally, we combine

our reconstruction-driven architecture with an adversarially

trained refinement network which allows us to generate

photo-realistic images as its output.

As a result of these advances, we have a deep genera-

tive model that uses 3D geometry to model shape variabil-

ity and provides us with a clearly disentangled representa-

tion of 3D shape in terms of identity, expression and cam-

era pose and appearance in terms of albedo and illumina-

tion/shading. We report quantitative results on a 3D land-

mark localization task and show multiple qualitative results

of controllable photorealistic image generation.

2. Previous work

The task of disentangling deep models can be under-

stood as splitting the latent space of a network into inde-

pendent sources of variation. In the case of learning genera-

tive models for computer vision, this amounts to uncovering

the independent factors that contribute to image formation.

This can both simplify learning, by injecting inductive bi-

ases about the data generation process, and can also lead

to interpretable models that can be controlled by humans

in terms of a limited number of degrees of freedom. This

would for instance allow computer graphics to benefit from

the advances in the learning of generative models.

Over the past few years rapid progress has been made

in the direction of disentangling the latent space of deep

models into dimensions that account for generic factors of

variation, such as identity and low-dimensional transforma-

tions [8, 52, 28, 51, 39], or even non-rigid, dense deforma-

tions from appearance [57, 12, 41, 36, 49]. Several of these

techniques have made it into some of the most compelling

photorealistic, controllable generative models of object cat-

egories [32, 20].

Despite these advances, the disentanglement of the three-

dimensional world geometry from the remaining aspects of

image formation still remains very recent in deep learning.

Effectively all works addressing aspects related to 3D ge-

ometry rely on paired data for training, e.g. multiple views

of the same object [45], videos [29] or some pre-existing

3D mesh representation that is the starting point for fur-

ther disentanglement [13, 35, 53, 40] or self-supervision

[56]. This, however, leaves open the question of how one

can learn about the three-dimensional world simply by ob-

serving a set of unstructured images. Very recently, a few

works have started tackling the problem of recovering the

three-dimensional geometry of objects from more limited

information—[18] use keypoints and masks to learn a 3D

deformable model of birds, [44] use keypoints and semi-

supervised pretraining using a 3DMM, while [50] use a 3D

geometry-based reprojection loss and correspondences of

object instances during training.

Even though these works present exciting progress in the

direction of deep 3D reconstruction, they fall short of pro-

viding us with a model that operates like a full-blown ren-

dering pipeline. By contrast in our work, we propose for

the first time a deep learning-based method that recovers

a three-dimensional, surface-based, deformable template of

an object category from an unorganized set of images, lead-

ing to controllable photorealistic image synthesis.

We do so by relying on Non-Rigid Structure from Mo-

tion (NRSfM). NRSfM, developed originally to establish a

3D model of a deformable object by observing its motion

[4], was developed to solve increasingly accurately the un-

derlying mathematical optimization problems [43, 30, 1, 9],

extending to dense reconstruction [11], lifting object cat-
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Figure 2: Lifting AutoEncoders (LAE) bring Non-Rigid

Structure from Motion (NRSfM) into the problem of learn-

ing disentangled generative models for object categories.

We start from a Deforming-AutoEncoder (DAE) that pro-

duces dense correspondences between an observed and

a template image, we train an LAE by minimising an

NRSfM-based reprojection objective.

egories from keypoints and masks [7, 18], incorporating

spatio-temporal priors [38] and illumination models [27],

while leading to impressively high-resolution 3D Recon-

struction results [14, 27, 16, 22, 24, 23]. In [25] it has re-

cently been proposed to represent non-rigid variability in

terms of a deep architecture - but still the work relies on

given point correspondences between instances of the same

category. We now show this is no longer necessary - we del-

egate the task of establishing correspondences across image

pixels of multiple images to a Deforming AutoEncoder [36]

and proceed to lifting images through an end-to-end train-

able deep network as we now describe.

3. Lifting AutoEncoders

We start by briefly describing Deforming AutoEncoders,

as these are the starting point of our work. We then turn to

our novel contributions of 3D lifting in Sec. 3.2 and shape

disentanglement in Sec. 4.2.

3.1. DAEs: from image collections to deformations

Deforming Autoencoders, introduced in [36], and shown

in Fig. 2, follow the deformable template paradigm and

model image generation through a combination of appear-

ance synthesis in a canonical coordinate system and a spa-

tial deformation that warps the appearance (or, ‘texture’) to

the observed image coordinates. The resulting model dis-

entangles shape and appearance in an entirely unsupervised

manner and also provides dense correspondes between im-

ages and the learnt template, while using solely an image

reconstruction loss for training. Further details for training

DAEs are provided in [36].

3.2. LAEs: 3D structure-from-deformations

We now turn to the problem of recovering the 3D geome-

try of an object category from an unstructured set of images.

For this, we rely on DAEs to identify corresponding points

across this image set and address our problem by training a

network to minimize an objective function that is inspired

from Non-Rigid Structure from Motion (NRSfM). Our cen-

tral observation is that DAEs provide us with an image rep-

resentation on which NRSfM optimization objectives can

be easily applied. In particular, disentangling appearance

and deformation labels all image positions that correspond

to a single template point with a common, discovered UV

value. LAEs take this a step further and interpret the DAE’s

UV decoding outputs as indicating the positions where an

underlying 3D object surface position projects to the image

plane. The task of an LAE is then to infer a 3D structure that

can successfully project to all of the observed 2D points.

Given that we want to handle a deformable, non-rigid

object category, we introduce a loss function that is inspired

from Non-Rigid Structure from Motion, and optimized with

respect to it. The variables involved in the optimization in-

clude (a) the statistical 3D shape representation, represented

in terms of a linear basis (b) the per-instance expansion co-

efficients on this basis and (c) the per-instance 3D camera

parameters. We note that in standard NRSfM all of the ob-

servations come from a common instance that is observed in

time - by constrast in our case every training sample stems

from a different instance of the same category, and it is only

thanks to the DAE-based preprocessing that these distinct

instances become commensurate.

3.3. 3D Lifting Objective

Our 3D structure inference task amounts to the recovery

of a surface model that maps an intrinsic coordinate space

(u, v) to 3D coordinates: S(u, v) → R
3. Even though the

underlying model is continuous, our implementation is dis-

crete: we consider a set of 2D points sampled uniformly on

a cartesian grid in intrinsic coordinates,

Si = S(ui, vi), (ui, vi) ∈ D ×D , (1)

with D =

{

0,
1

n
,
2

n
, . . . , 1

}

, i = 1, . . . , N = (n+ 1)2 ,

(2)

where n determines the spatial resolution at which we dis-

cretize the surface. We parameterize the three-dimensional

position of these vertices in terms of a low-dimensional lin-

ear model, that captures the dominant modes of variation

around a mean shape B
0,

Si = B
0 +

S
∑

s=1

ssB
s
i . (3)

In morphable models [46, 3] the mean shape and deforma-

tion basis elements are learned by PCA on a set of aligned

3D shapes, but in our case, we discover them from 2D by

solving an NRSfM minimization problem that involves the

projection to an unknown camera viewpoint.



In particular, we consider scaled orthographic projection

Π through a camera described by a rotation matrix R and

translation vector t. Under this assumption, the 3D surface

points project to the points xi, given by

xi = Π [RSi] + t , Π =

[

σ 0 0
0 σ 0

]

, (4)

where σ defines a global scaling.

We measure the quality of a 3D reconstruction in terms

of the Euclidean distance of the predicted projection of a

3D point and its actual position in the image. In our case

a 3D point Si is associated with surface coordinate (ui, vi),
we therefore penalize its distance from the image position

x̂i that the DAE’s deformation decoder labels as ui, vi—

x̂i = x̂ : argminx‖DAE(x)− (ui, vi)‖2 . (5)

In practice, we find x by warping (ui, vi) under the

DAE’s deformation grid, W , and locating the point in the

image coordinates that it warps to. If we can find no such

point in the image coordinates, we deem the point invisible,

setting a visibility variable νi to zero. We treat x̂ and ν as

data terms, which specify the constraints that our learned

3D model must meet: the 3D points Si must project to

points xi that lie close to their visible 2D counterparts, x̂i.

We express this reprojection objective in terms of the re-

maining variables,

L(R, t, σ, s,B) =
N
∑

i=1

νi‖x̂i − xi(R, t, σ,S, s)‖2 , (6)

where we have expressed xi as a differentiable function of

R, t,S, s through Eq. 4 and Eq. 3.

For a set of K images we have different camera and

shape parameters (Rk, tk), sk, k = 1, . . . ,K since we con-

sider a non-rigid object seen from different viewpoints. The

basis elements B are however considered to be common

across all images, since they describe the inherent shape

variability of the whole category. Our 3D non-rigid recon-

struction problem thus becomes

L3D =

K
∑

k=1

L(Rk, tk, σk, sk,B) . (7)

3.4. LAE learning via Deep NRSfM

Minimizing the objective of Eq. 7 amounts to the com-

mon Non-Rigid Structure-from-Motion objective [4, 43, 30,

1, 9]. Even though highly efficient and scalable algorithms

have been proposed for its minimization, we would only

consider them for initialization, since we want 3D Lifting

to be a component of a larger deep generative model of im-

ages. We do not use any such technique, in order to simplify

our model’s training, implementing it as a single deep net-

work training process.

The approach we take is to handle the shape basis B as

the parameters of a linear ‘morphable’ layer, tasked with

learning the shape model for our object category. We train

this layer in tandem with complementary, multi-layer net-

work branches that regress from the image to (a) the expan-

sion coefficients sk, (b) the Euler angles/rotation matrix Rk,

and (c) the displacement vector tk describing the camera po-

sition. These are components of a larger deep network that

can learn to reconstruct an image in 3D - a task we refer to

as Deep NRSfM.

If we only train a network to optimize this objective, we

obtain a network that can interpret a given image in terms

of its 3D geometry, as expressed by the 3D camera posi-

tion (rigid pose) and the instance-specific expansion coef-

ficients (non-rigid shape). Having established this, we can

conclude the task of image synthesis by projecting the 3D

surface back to 2D. For this, we combine the 3D lifting

network with a differentiable renderer [21], and bring the

synthesized texture image in correspondence with the im-

age coordinates. The resulting network is an end-to-end

trainable pipeline for image generation that passes through

a full-blown, 3D reconstruction process.

Having established a controllable, 3D-based rendering

pipeline, we turn to photorealistic synthesis. For this, we

further refine the rendered image by a U-Net [33] architec-

ture that takes as input the reconstructed image and aug-

ments the visual plausibility. This refinement module is

trained using two losses, firstly an L2 loss to reconstruct

the input image and secondly an adversarial loss to provide

photorealism. The results of this module are demonstrated

in Figure 5 - we see that while keeping intact the image

generation process, we achieve a substantially more realis-

tic synthesis.

4. Geometry-Based Disentanglement

In this section we show that having access to the underly-

ing 3D scene behind an image allows to further decompose

the image generation into distinct, controllable sub-models,

in the same way that one would do within a graphics engine.

We first describe in Sec. 4.1 how surface-based normal esti-

mation allows us to disentangle appearance into albedo and

shading using a physics-based model of illumination. In

Sec. 4.2 we then turn to learning a more fine-grained model

of 3D shape and use weak supervision to disentangle per-

instance non-rigid shape into expression and identity.

4.1. LAE-lux: Disentangling Shading and Albedo

As in several recent works [37, 35] we consider a Lam-

bertian reflectance model for human faces and adopt the

Spherical Harmonic model to model the effects of illumi-

nation on appearance [54, 47, 48]. We pursue the intrinsic



Figure 3: Texture decoder for LAE-lux: disentangling

albedo and illumination with 3D shape and Spherical Har-

monics representation for illumination.

decomposition [2] of the canonical texture T into albedo,

A and shading, S:

T = S ⊙A (8)

where ⊙ denotes Hadamard product, by constraining the

shading image to be connected to the normals delivered by

the LAE surface. In particular, denoting by L the repre-

sentation of the scene-specific spherical harmonic illumi-

nation vector, and by H(N(x)) the representation of the

local normal field N(x) on the first 9 spherical harmonic

coefficients, we consider that the local shading, S(x) is ex-

pressed as an inner product, S(x) = 〈L,H(N(x))〉. As

such the shading field can be obtained by a linear layer that

is driven by regressed illumination coefficients L and the

surface-based harmonic field, H(N(x)). Given S(x), the

texture can then be obtained from albedo and shading im-

ages according to Eq. 8.

In practice, the normal field we estimate is not as detailed

as would be needed, e.g. to capture sharp corners, while the

illumination coefficients can be inaccurate. To compensate

for this, we first render an estimate of the shading Srender

with spherical harmonics parameters L and normal maps

Nand then use a U-Net to refine it, obtaining Sadapted.

Given that the shading-albedo decomposition is an ill-

posed problem, we further use a combination of losses that

capture increasingly detailed prior knowledge about the de-

sired solution. First, as in [37] we employ intrinsic image-

based smoothness losses on albedo and shading, Lsmooth
shading =

λshade

∥

∥∇Sadapted
∥

∥

2
, and Lalbedo = λalbedo ‖∇A‖

1
, where

∇ represents the spatial gradient, which means that we al-

low the albedo to have sharp discontinuities, while the shad-

ing image should have mostly smooth variations [34]. In

our experiment, we set λshade = 1×10−4 and λalbedo =
2×10−6. Second, we compute a deterministic estimate L̂

of the illumination parameters and penalize its distance to

the regressed illumination values, LL =
∥

∥

∥
L− L̂

∥

∥

∥

2

. More

specifically, L̂ is based on the crude assumption that the

face’s albedo is constant, Â(x) = 0.5, where we treat

albedo as a grayscale. Even though clearly very rough, this

assumption captures the fact that a face is largely uniform,

and allows us to compute a proxy to the shading in terms

of Ŝ = T ⊘ Â where ⊘ denotes Hadamard division. We

subsequently compute the approximation L̂ from Ŝ and the

harmonic field H(N) using least squares. For face images,

similar to [37], L̂ serves as a reasonably rough approxima-

tion of the illumination coefficient and is used for weak su-

pervision via LL.

Finally, the shading consistency loss regularizes the U-

Net, and is designed to encourage the U-Net based adapted

shading Sadapted to be consistent with the shading rendered

from the spherical harmonics representation Srendered—

Lconsistency
shading = Huber(Sadapted, Srendered), (9)

where we use Huber loss for a robust regression since

Srendered can contain some outlier pixels due to an imperfect

3D shape.

4.2. Disentangling Expression, Identity and Pose

We consider that a face shape as observed in an image is

the composite effect of camera pose, identity, and expres-

sion. Without some guidance, the parameters controlling

shape can be mixed - for instance accounting for the effects

of camera rotation through non-rigid deformations of the

face.

For a given identity we can understand expression-based

shape variability in terms of deviation from a neutral pose.

We can consider that a reasonable approximation to this

consists in using a separate linear basis BI for identity and

another for expression B
E , which amounts to following

model—

Si(s
I , sE) = B

0
i +

I
∑

s=1

sIsB
I,s
i +

E
∑

s=1

sEs B
E,s
i . (10)

Even though the model is still linear and is at first sight

equivalent, clearly separating the two subspaces means that

we can control them through side information—for in-

stance, by imposing specific losses on these subspaces de-

pending on the property. Here we use the MultiPIE[15]

dataset to help disentangle the latent representation of a per-

son’s identity, facial expression, and pose (camera). Multi-

PIE is captured under a controlled environment and contains

image pairs acquired under identical conditions with differ-

ences only in (1) facial expression, (2) camera position, and

(3) illumination conditions.

We use facial expression disentangling as an example,

and follow a similar procedure for pose and camera disen-

tangling. Given an image Iexp with known expression exp,

we sample two more images from the dataset. The first, I+exp



has the same facial expression but different identity, pose,

and illumination conditions. The second, I−exp, has a differ-

ent facial expression but the same identity, pose and illumi-

nation condition as Iexp. We use siamese training to encour-

age Iexp and I+exp to have similar latent representations for

facial expression, and a triplet loss to ensure that Iexp and

I+exp are closer in expression space than Iexp and I−exp:

Lexpression = Lsimilarity
expression + Ltriplet

expression,where (11)

Lsimilarity
expression =

∥

∥fexp(Iexp)− fexp(I
+
exp)

∥

∥

2
, (12)

Ltriplet
expression = max(0, 1 +

∥

∥fexp(Iexp)− fexp(I
+
exp)

∥

∥

2

−
∥

∥fexp(Iexp)− fexp(I
−

exp)
∥

∥

2
). (13)

Following a similar collection of triplets for the remain-

ing sources of variability, we disentangle the latent code

for shape in terms of camera pose, identity, and expres-

sion. With MultiPIE, the overall disentanglement objective

for shape is hence

Ldisentangle = Lexpression + Lidentity + Lpose, (14)

where Lidentity and Lpose are defined similarly to Lexpression.

In our experiments, we used the scaling parameter for this

loss, λdisentangle = 1.

4.3. Complete Objective

We further control the model learning with a regulariza-

tion loss given by

Lreg = λscale

K
∑

k=1

‖σk‖2 + λshape

K
∑

k=1

∥

∥

∥

∥

∥

S
∑

s=1

sksB
s

∥

∥

∥

∥

∥

2

, (15)

where σk is the scaling parameter in Eq. 4 and
∑S

s=1
ssB

s
i

is the non-rigid deviation from the mean shape, B0. We use

λscale = 0.01, and λshape = 0.1 in all our experiments.

Combining this with the reprojection loss, L3D, defined

in Eq. 7, we can write the complete objective function,

which is trained end-to-end:

Ltotal = λ3D · L3D + λdisentangle · Ldisentangle +

λscale · Lscale + λshape · Lshape.
(16)

In our experiments, we used the scaling factor for the 3D re-

projection loss, λ3D = 50. This relatively high scaling fac-

tor was chosen so that the reprojection loss is not overpow-

ered by other losses at later training iterations. A similar

hyperparameter setting was also used by the authors of [18].

For training the LAE-Lux, we also add the albedo-

shading disentanglement losses, summarised by

Llux = Lsmooth
shading + Lconsistensy

shading + Lalbedo + LL. (17)

Figure 4: Visualizations from various yaw angles of the

learned 3D shapes without weak supervision. Our recon-

structions respect prominent face features, such as the nose,

forehead and checks, allowing us to rotate an object recon-

struction in 3D.

Figure 5: Reconstruction from learnt shape trained with

weak supervision and photorealistic refinement. Starting

from an image reconstruction by an LAE (centre), weak su-

pervision learns a much better shape, and an adversarially-

trained refinement network adds details to increase the pho-

torealism of a face (right).

5. Experiments

5.1. Architectural Choices

Our encoder and decoder architectures are similar to

the ones employed in [36], but working on images of size

128 × 128 pixels instead of 64 × 64. We use convolu-

tional neural networks with five stridedConv-batchNorm-

leakyReLU layers in image encoders, which regress the ex-

pansion coefficients ss. Image decoders consist similarly of

five stridedDeconv-batchNorm-ReLU layers.

5.2. Datasets

We now note the face datasets that we used for our ex-

periments. Certain among them contain side information,

for instance, multiple views of the same person, or videos

of the same person. This side information was used for



expression-identity disentanglement experiments, but not

for the 3D lifting part. For the reconstruction results, our

algorithms were only provided with unstructured datasets

unless otherwise noted.

1. CelebA [26]: This dataset contains about 200,000 in-

the-wild images, and is one of the datasets we use to

train our DAE. A subset of this dataset, MAFL [55],

was also released which contains annotations for five

facial landmarks. We use the training set of MAFL

in our evaluation experiments, and report results on

the test set. Further, as MAFL is a subset of CelebA,

we removed the images in the MAFL test set from the

CelebA training set before training the DAE.

2. Multi-PIE [15]: Multi-PIE contains images of 337

subjects of 7 facial expressions, each of which is cap-

tured under 15 viewpoints and 19 illumination condi-

tions simultaneously.

3. AFLW2000-3D [58]: This dataset consists of 3D fitted

faces for the first 2000 images of the AFLW dataset. In

this paper, we employ it for evaluation of our learned

shapes using 3D landmark localization errors.

5.3. Qualitative Results

We show examples of the learned 3D shapes in Figure 4.

The figure also visualises reconstructed faces from various

yaw angles using a model that was trained only on CelebA

images. We see that the model learns a shape that expresses

the input well, as well as captures prominent facial features.

The reconstructions are, however, weak for side poses. This

is further refined using weak supervision from the Multi-

PIE dataset.

Figure 6: Changing Pose with LAE. Given input face image

(a), LAE learns to recover the 3D shape (c), with which we

can manipulate the pose of the faces (b). With the additional

refinement network, we can enhance the manipulated face

image by adding facial details (d) that better preserve the

characteristic features of the input faces.

5.4. Face manipulation results

In this section, we show some results of manipulating

the expression and pose latent spaces. In Figure 6 (b), we

Figure 7: Changing expression with LAE. We interpolate

between source (a) and target (c) images and show results

of synthesizing new faces (b). We also show the result of

extrapolation.

Figure 8: Lighting manipulation using LAE-lux. We

demonstrate the result of synthesizing new images by mov-

ing the lighting direction.

visualize the decoded 3D shape from input images in 6 (a)

from various camera angles. Furthermore, in Figure 6 (d),

we show results after passing the visualizations in Figure 6

(b) through the refinement network.

Similarly, in Figure 7, we interpolate over the expression

latent space from each of the images in (a) to the image

in (c) and visualize the shape at each intermediate step in

Figure (b).

Method NME

Thewlis et al. (2017) [42] 6.67
Thewlis et al. (2018) [41] 5.83
Jakub et al. (2018) [17] 2.54

Shu et al. (2018), DAE, no regressor [36] 7.54
Shu et al. (2018), DAE, with regressor [36] 5.45

LAE, CelebA (no regressor) 7.96
LAE, CelebA (with regressor) 6.01

Table 1: 2D landmark localization results for the proposed

LAEs compared with other state-of-the-art approaches. All

numbers signify the average error per landmark normalized

by the inter-ocular distance, over the entire dataset.

5.5. Quantitative Analysis: Landmark Localization

We evaluate our approach quantitatively in terms of

landmark localization. Specifically, we evaluate on two

datasets—the MAFL test set for 2D landmarks, and the

AFLW2000-3D for 3D shape. In both cases, as we do not

train with ground-truth landmarks, we manually annotate,



Method Rotation
Yaw angle

[0, 30] (30, 60] (60, 90] All

3DDFA [58]

(supervised)
Y 4.25±0.95 4.34±1.04 4.39±1.35 4.28±1.03
N 12.51±6.40 23.20±5.92 32.55±3.85 17.31±9.30

PRNet [10]

(supervised)
Y 4.88±1.24 6.94±2.83 10.51±5.31 6.01±3.08
N 7.17±3.45 10.96±5.00 16.34±8.91 9.11±5.66

3D-FAN [6]

(supervised)
Y 2.73±1.38 2.48±2.24 3.74±2.95 2.84±1.92
N 7.51±2.21 7.06±3.94 8.75±4.53 7.61±3.10

LAE (64) CelebA
Y 6.86±1.07 9.01±1.07 10.91±1.37 7.89±1.89
N 9.29±4.90 20.98±7.74 37.62±7.50 15.85±11.89

LAE (128) CelebA
Y 6.02±1.04 7.91±1.04 9.58±1.32 6.92±1.73
N 8.41±4.96 19.56±7.97 36.31±7.78 14.80±11.80

LAE (128) MultiPIE
Y 6.85±0.85 7.94±0.97 9.02±1.26 7.39±1.25
N 9.80±4.88 13.87±6.51 24.19±8.72 12.78±7.83

LAE (128)

CelebA+MultiPIE

Y 6.83±0.96 8.41±1.15 9.83±1.65 7.59±1.60
N 9.11±4.54 13.60±6.08 24.62±8.37 12.33±7.84

Table 2: Mean 3D landmark localization errors, after Procrustes analysis, normalized by bounding box size and averaged

over the entire AFLW2000-3D test set. The number in brackets for the LAEs refers to the dimension of the latent space for

the rigid and non-rigid components of the deformable model. The second column specifies whether rotation is included in

the Procrustes analysis. We also note the training dataset used for training each LAE.

only once, the necessary landmarks on the base shape as

linear combinations of one or more mesh vertices. That is

to say, each landmark location corresponds to a linear com-

bination of the locations of several vertices.

We use five landmarks for the MAFL test set, namely

the two eyes, the tip of the nose, and the ends of the mouth.

Similarly to [42, 41, 36], we evaluate the extent to which

landmarks are captured by our 3D shape model by training

a linear regressor to predict them given the locations of the

mesh vertices in 3D.

We observe from Table 1 that our system is able to per-

form at-par with the DAE, which is our starting model -

and as such serves as the upper bound on the performance

that we can attain. This shows that while being able to suc-

cessfully perform the lifting operation, we do not sacrifice

localization accuracy. The small increase in error can be at-

tributed to the fact that perfect reconstruction of a system

is nearly impossible with a low-dimensional shape model.

Furthermore we use a feedforward, single-shot camera and

shape regression network, while in principle this is a prob-

lem that could require iterative model fitting techniques to

align a 3D deformable model to 2D landmarks [31].

We report localization results in 3D on 21 landmarks that

feature in the AFLW2000-3D dataset. As our unsupervised

system is often unable to locate human ears, the learned face

model does not account for them in the UV space. This

makes it impossible to evaluate landmark localization for

points that lie on or near the ears, which is the case for two

of these landmarks. Hence, for the AFLW2000-3D dataset,

we report localization accuracies only for 19 landmarks.

Furthermore, as an evaluation of the discovered shape, we

also show landmark localization results after rigid align-

ment (without reflection) of the predicted landmarks with

the ground truth. We perform Procrustes analysis, with and

without adding rotation to the alignment, the latter giving

us an evaluation of the accuracy of pose estimation as well.

Table 2 also demonstrates the gain achieved by adding

weak supervision via the Multi-PIE dataset. We see that the

mean NMEs for LAEs trained with and without the Multi-

PIE dataset increase as the yaw angle increases. This is also

visible in our qualitative results shown in Fig. 5, where we

visualize the discovered shapes for both of these cases.

6. Conclusion

In this work we have introduced an unsupervised method

for lifting an object category into a 3D representation, al-

lowing us to learn a 3D morphable model of faces from an

unorganized photo collection. We have shown that we can

use the resulting model for controllable manipulation and

editing of observed images.

Deep image-based generative models have shown the

ability to deliver photorealistic synthesis results with sub-

stantially more diverse categories than faces [5, 19] - we

anticipate that their combination with 3D representations

like LAEs will further unleash their potential for control-

lable image synthesis.
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