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Abstract

We propose a deep learning method for reconstructing a

textureless deformable 3D surface from a single RGB im-

age, under various lighting conditions. One of the chal-

lenges when training a neural network to predict the shape

of a deformable object is that the object exhibits such a

great deal of shape variation that it is essentially imprac-

tical to have a training set consisting of all possible defor-

mations the object may realize. However, different areas

of the deformable object may exhibit similar types of de-

formations, e.g. similar wrinkles might appear in different

areas on the surface of a cloth. Motivated by this, we pro-

pose learning local models of shape variation from image

patches that we then combine into a global reconstruction

of the observed object. Initially, we divide the input im-

age into overlapping patches and a zero-mean depth map

as well as a normal map are estimated for each patch using

deep learning. Stitching of depth maps is performed by find-

ing the optimal translation of each patch depth map along

the viewing direction of the camera and averaging the depth

predictions of neighboring patches at their overlapping ar-

eas. Stitching of normal maps is performed by normaliz-

ing and averaging the normals predictions of neighboring

patches at their overlapping areas. Finally, bilateral filter-

ing is performed on the stitched depth and normal maps in

order to perform fine-scale smoothing at the regions around

patch boundaries. We show increased accuracy compared

to previous work even in the presence of limited training

data and more effective generalization to unseen objects.

1. Introduction

Reconstructing objects in 3D from visual data has been

a long standing problem in computer vision. We are partic-

ularly interested in reconstructing deformable objects that

exhibit complex deformations, as this may have a num-

ber of potential applications in virtual reality and computer

graphics. Deep learning approaches have shown impres-

sive performance in a great range of computer vision tasks

such as semantic segmentation, 3D object pose estimation,

3D scene reconstruction and more. Recently, deep learning

has also been applied to reconstructing deformable objects

from a single RGB image with promising results, both for

textured [24, 9] as well as for textureless objects [6, 3].

A key attribute of deep learning methods is that their per-

formance is strongly correlated with the amount of available

training data. For instance, in order to predict the shape of a

deformable object, the dataset used for training should ide-

ally capture all possible variations in shape across the sur-

face of the object. Modeling all possible deformations at

every single area of the object’s surface considering all ar-

eas simultaneously is impractical. However, there are many

cases where objects exhibit similar deformations at different

areas of their surface. For instance, a wrinkle at the bottom

of a T-shirt may look similar to a wrinkle in the middle of a

T-shirt. We pose that taking into account variations in local

shape regardless of the location on the object’s surface is

an effective solution for dealing with the high-dimensional

deformation space of deformable objects.

In this paper, we are inspired by previous work on build-

ing local deformation models [29], patch-based 3D re-

construction [8] and 3D reconstruction of textureless de-

formable objects from a single image [3] in order to pro-

vide accurate patch-based 3D reconstruction of a texture-

less 3D surface under various lighting conditions from a

single RGB image. More specifically, we use deep learning

to learn models of local 3D shape variation given an image

patch, fit these local models on overlapping patches of the

input image and stitch the resulting local geometries into a

continuous deformable surface after estimating the relative

translation among the depth maps using non-linear least-

squares optimization. Learning local deformation models

has multiple benefits. First, we utilize the data in our train-

ing set more effectively, thus, we need less training data for

a desired level of reconstruction accuracy. Second, learning

a local deformation model amounts to learning a simpler

function than learning a global deformation model. Third,

we are able to generalize more effectively to reconstruct-



Figure 1: Patch-based 3D reconstruction from a single image. The input image is split into overlapping patches and predic-

tion of depth and normal maps per patch is performed using Patch-Net. Patch depth maps are stitched by translating each

depth map along the camera viewing direction in order to minimize the relative depth difference at overlapping regions and

averaging the depth at overlapping regions. Patch normal maps are stitched by normalizing and averaging the predictions at

overlapping regions. Both the stitched depth and normal maps are refined using bilateral filtering at the patch boundaries.

The final depth map is estimated after normals integration with a depth scale factor inferred by the stitched depth map.

ing objects that are not in the training set, which is a very

common case in real-life scenarios.

To the best of our knowledge, we present the first patch-

based method for reconstructing deformable 3D surfaces

employing deformation models for the patches that were

generated using deep learning. Our proposed approach in-

herits all the benefits of patch-based methods such as in-

creased accuracy even in the presence of limited data and

more effective generalization to unseen objects.

2. Previous work

We review patch-based deep learning methods and rele-

vant work on 3D reconstruction of deformable objects.

Deep learning using image patches: Although there has

been limited work on patch-based deep learning methods,

image or feature patches have been used successfully in the

context of neural networks for tasks such as high-resolution

image classification [12], texture synthesis [20] and image-

to-image translation [13]. Hou et al. [12] use patch-level

convolutional neural networks to identify cancerous tissues

and train a decision fusion model to aggregate patch-level

predictions. Isola et al. [13] and Li et al. [20] use a gener-

ative adversarial network with a patch-based discriminator

network that distinguishes real from fake patches consider-

ing image and feature patches, respectively. They also show

that best accuracy is achieved with medium-sized patches.

In our work, we perform pixel-level predictions per patch

and subsequently fuse the predictions from different patches

using a non-linear optimization framework.

Deformable object reconstruction from a single image:

Reconstruction of a deformable 3D object from a single im-

age has been performed using Shape-from-Template (SfT)

methods. SfT methods reconstruct the 3D shape of an ob-

ject from a single RGB image given a reference 3D object

template. Reconstruction is performed by leveraging im-

age correspondences between the observed image and the

object’s texture and employing a proper deformation model

as a prior. Previous work has shown highly accurate recon-

struction for various types of objects such as isometric [4] or

elastic surfaces [11], deformable 3D objects [23] as well as

poorly textured objects [32]. Lately, an SfT method based

on deep learning, DeepSfT [15], was proposed. A neural

network with an auto-encoder is trained to predict a normal-

ized depth map of the object of interest and an image warp

between the observed image relative to the reference image.

A second auto-encoder refines these predictions generating

the output depth map. DeepSfT is tailored to a specific ob-

ject and, thus, it requires an extensive synthetic dataset with

the deformations of each object of interest.

Deep learning-based methods for reconstructing de-

formable 3D objects from a single image have only recently

being proposed. They reconstruct an object with predefined

mesh topology [24] or number of vertices [9, 6] relying

mostly on synthetic data. Pumarola et al. [24] predicts a

rectangular 3D mesh of fixed topology from an image that

is geometrically consistent up to Procrustes alignment with

3D ground truth data. Thus, the detail of the predicted

deformations is inevitably limited by the resolution of the

3D mesh used for training, a 9 × 9 rectangular mesh. In

Golyanik et al. [9], a 3D point cloud of fixed size is directly

regressed from image data using an auto-encoder architec-



ture. Training and evaluation is performed only with syn-

thetic data. DeepGarment [6] relies on Convolutional Neu-

ral Networks to learn the mapping from rendered garment

images to 3D vertex displacements from a template mesh

representing the underlying 3D garment model. Although

the results are promising, the predicted 3D meshes exhibit

rather coarse deformations.

Ground truth data from both synthetic and real sequences

in the form of 3D meshes is hard to acquire. We bypass that

by training directly on real data that can be easily captured

using a commodity depth camera. Moreover, we are able to

reconstruct objects with very different shape from the shape

of objects used for training by learning local shape models.

Patch-based 3D reconstruction: Patch-based approaches

for 3D reconstruction have been a long standing trend in

the computer vision community as it has been shown that

they provide more effective generalization to previously un-

known objects and greater robustness to noise, object ar-

ticulation and limited training sets compared to global ap-

proaches. In Shape-from-Template, local surface deforma-

tion models based on nonlinear Gaussian Process Latent

Variable Models [29] as well as simpler linear models in

conjunction with inextensibility constraints [28] are used

for 3D surface reconstruction from a single image. In Struc-

ture from Motion (SfM), Fayad et al. [8] reconstruct a sur-

face given a monocular video sequence by dividing the sur-

face into overlapping patches, reconstructing each of these

patches independently using a quadratic deformation model

and finally registering them by constraining points shared

by patches to be at the same 3D location. Russell et al. [27]

segment the scene into a constellation of object parts, rec-

ognize parts that are likely to constitute objects and subse-

quently join them to reconstruct the scene. Haene et al. [10]

present an energy formulation for depth map recovery from

image data utilizing a patch-based prior and apply the pro-

posed framework to depth map fusion and computational

stereo. Kozlov et al. [19] propose an approach for 3D re-

construction and tracking of dynamic surfaces using a sin-

gle depth sensor. Each input depth image is subdivided

into non-rigidly connected surface patches, it is deformed

towards the canonical pose by estimating a rigid transfor-

mation for each patch and then a surfel-based technique is

employed for fusing the 3D reconstructions of the patches.

Shape-from-Shading: Shape-from-Shading is an inher-

ently under-constrained problem and various assumptions

about the lighting and the shape of the scene have been

made in order to solve it. Durou et al. [7] present an ex-

tensive overview on early work on Shape-from-Shading.

Latest approaches tend to infer jointly two or more modal-

ities that contribute to the image formation process, such

as albedo, depth, normals, reflectance and lighting pa-

rameters in an optimization-based [35, 2, 5] or learning-

based [26, 14, 31, 30] manner.

Our approach is mostly related to the work presented in

[3] and [34]. In [34], the authors assume diffuse Lamber-

tian shading and infer from each image patch the distribu-

tion of quadratic surfaces that are likely to have produced

it. We instead learn a mapping from an image patch to the

corresponding 3D shape expressed as a depth map while

being robust to illumination variation by training on data

with various types of lighting. Similar to [3], we predict

a depth map and a normal map from a single RGB image

adopting an auto-encoder architecture using a shared en-

coder for depth and normals prediction. However, we em-

ploy a patch-based formulation for solving the same prob-

lem leading to increased reconstruction accuracy and gen-

eralization ability.

3. Method

3.1. Problem formulation

We aim at reconstructing a textureless deformable sur-

face from a single RGB image. Let I ∈ R
H×W×3 be an

RGB image of size W ×H and M ∈ R
H×W a binary mask

that highlights the foreground region at I. Our goal is, given

the input image I, to predict a depth map D ∈ R
H×W cor-

responding to the 3D reconstruction of the observed fore-

ground object inside the mask M and the corresponding

normal map N ∈ R
H×W×3.

Our approach consists of three steps. Initially, we de-

fine a set of overlapping patches Pi ∈ R
Hp×Wp×3, i =

1, . . . ,P of size Hp×Wp on the input image I and estimate

a depth map Di and normal map Ni for each image patch

via deep learning (Section 3.2). We, subsequently, stitch the

predicted depth maps Di into a single depth map D′ and

normal map N ′ considering the overlapping pixels among

patches (Section 3.3). Finally, we refine D′, N ′ via bilateral

filtering on the areas around patch boundaries. The result is

the output depth map D denoting the 3D reconstruction of

the observed foreground object and the corresponding nor-

mal map N (Section 3.4).

3.2. Patch shape prediction from RGB

To reconstruct the shape per patch, we follow the latest

practices [3, 31] of predicting disentangled representations.

More specifically, we use a neural network that we term

Patch-Net, which is illustrated in Figure 2, where given an

input image patch we predict the relative depth map and the

normal map associated with that patch. Patch-Net is an au-

toencoder network with a single encoder branch and two

decoder branches for depth and normals prediction. We use

a 3 × 3 kernel in all 2D convolutional layers and stride of

1. The channels per layer vary from 64 to 512 as shown

in Figure 2. In essence, Patch-Net is a simplified SegNet-

style architecture where compared to previous work [1, 3]

we drop the skip connections between encoder and decoder
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Figure 2: The Patch-Net architecture. An image patch is fed into an auto-encoder network that outputs the depth and normal

map corresponding to the input patch. Depth and normals are predicted jointly using a shared encoder.

at the max unpooling layers and perform single stage train-

ing for estimating depth and normals. We also introduce

an additional 1 × 1 convolutional layer for depth and nor-

mals prediction at the end of the decoder, use ReLU instead

of linear activations and more importantly, we predict rela-

tive depth in the scene based on the mean depth per patch

instead of absolute depth measurements taken directly from

the captured RGB-D data [3], or depth normalized in [−1, 1]
[15]. That makes our predictions invariant to the location of

the object in the scene while retaining the units of the object

dimensions in the captured 3D scene.

To train our neural network, we define P patches of

size Hp × Wp per input image in our training set spread

uniformly across each image. That leads to a training

set of patches where each sample (Ps,Ms,Ds,Ns), s =
1, . . . , S contains a patch Ps of an input RGB image, the

foreground mask Ms corresponding to the patch, the rela-

tive ground truth depth map Ds and the ground truth normal

map Ns of the patch. Let Qs be the depth map recorded

with an RGB-D sensor corresponding to patch Ps. In or-

der to be invariant to the absolute position of the object in

our training data, we use the relative depth Ds per patch by

subtracting the mean depth of the foreground pixels p of the

patch:

Ds = Qs/Z, (1)

where

Z =
∑

p

Ms
pQ

s
p/
∑

p

Ms
p. (2)

Let ΦD : RHp×Wp×3 → R
Hp×Wp be the function that pre-

dicts the depth map of a patch given an input image patch in

Patch-Net and ΦN : RHp×Wp×3 → R
Hp×Wp×3 the func-

tion that predicts the normal map of the input image patch

in Patch-Net. We train Patch-Net using standard losses for

depth and normals prediction [3, 33, 18].

Depth loss: Training for depth prediction is performed by

penalizing the absolute difference of the predicted depth

map ΦD(Ps) for a patch from the ground truth depth map

Ds of the same patch. Note that only the pixels p that cor-

respond to the foreground, i.e. non-zero Ms
p, actually con-

tribute to the loss.

LD =
1

S

S
∑

s=1

∑

p

|Ds − ΦD(Ps)|Ms
p

∑

p

Ms
p

. (3)

Normals loss: Let N̂s
i = ΦN (Ps) be the predicted patch

normals. Training for normals prediction is performed via

loss LN using a linearized version of the cosine similarity

[33] (loss La) while favoring unit length normals (loss Ll).

LN =
1

S

S
∑

s=1

∑

p

(κLa(N
s
i , N̂

s
i ) + Ll(N̂

s
i ))M

s
p

∑

p

Ms
p

(4)

where

La(N
s
i , N̂

s
i ) = arccos

(

Ns
i N̂

s
i

||Ns
i ||||N̂

s
i ||+ ǫ

)

1

π
, (5)

Ll(N̂
s
i )) = (||N̂s

i || − 1)2. (6)

We use ǫ = 10−6 to prohibit division by zero and κ = 10
as the relative weight between the two terms La,Ll that

constrain the prediction of normals.

Total loss: We train Patch-Net by weighing equally the

depth and normals losses:

L = LD + LN . (7)



3.3. Patch stitching

Given a test image I, we predict a depth map Di =
ΦD(Pi) and a normal map Ni = ΦN (Pi), i = 1, . . . ,P
per patch on image I. Then, we stitch the depth maps and

normal maps of all patches into a single depth map and a

single normal map at the resolution of the test image, re-

spectively.

3.3.1 Stitching depth maps of patches

In order to stitch the predicted relative depth map patches

Di into a unified depth map, we translate each reconstructed

patch along the viewing direction of the camera so that over-

lapping areas between neighboring patches correspond to

the same 3D points in the scene. More specifically, let Qij

be the overlapping image region, expressed in terms of pixel

indices ki for depth map Di and pixel indices kj for depth

map Dj , between two neighboring patches Pi,Pj . We ap-

ply a translation offset ti at each patch depth map so that

the distance between translated neighboring patches is min-

imized over their overlapping region:

t′i = argmin
ti

P
∑

i=1

P
∑

j=1

∑

ki,kj∈Qij

||Di[ki]+ti−Dj [kj ]−tj ||
2

2
.

(8)

After estimating the optimal translations t′i along depth,

the translated depth map per patch is D′
i = Di + t′i. To

constrain the solution of the nonlinear optimization system

above to a single solution, we set t1 = 0 and optimize for

the rest of the translations. Optimization is performed using

the Levenberg Marquardt algorithm [21] as implemented in

Python 1. Finally, we stitch the translated patch depth maps

D′
i into a single depth map D′ corresponding to a recon-

struction of the object in the original image I by averaging

at each pixel location the depth predictions from the patches

containing that pixel.

3.3.2 Stitching surface normal maps of patches

We stitch the normal maps Ni, i = 1, . . . ,P predicted by

Patch-Net into a single normal map N ′ by normalizing and

then averaging at each pixel location the predictions of nor-

mals from the patches containing that pixel.

3.4. Refinement of depth and normal maps

Bilateral filtering has been successfully used in the past

for denoising depth maps while preserving object bound-

aries [22]. We apply bilateral filtering on D′ at the re-

gions around patch boundaries in order to smooth out small-

scale discontinuities in depth and normals that were poten-

tially not fully resolved during patch stitching while, at the

1Function scipy.optimize.leastsq.

same time, preventing foreground pixels close to the ob-

ject’s boundary from being influenced by background pix-

els. We do the same for N ′. The outcome of this step is a

refined depth map D and normal map N that correspond to

the reconstruction of the deformable object from the input

image I.

4. Experimental results

4.1. Overview

Evaluation datasets: We evaluate our method using var-

ious configurations of the dataset introduced in [3]. This

dataset was obtained using a Kinect 1 depth sensor and con-

tains RGB images, depth maps, normals maps and fore-

ground masks of resolution 224 × 224 for 5 types of tex-

tureless deformable objects (cloth, T-shirt, sweater, hoody,

paper) undergoing various types of deformations in various

illumination settings with various light sources casting light

from various locations and directions relative to the object.

Because of the variability of the training dataset in illumi-

nation conditions, our proposed method does not require

explicit modeling of lighting/shading. In total, the dataset

contains 18 sequences of 15799 samples for cloth, 12 se-

quences of 6739 samples for T-shirt, 4 sequences of 2203

samples for sweater, 1 sequence of 517 samples for hoody

and 3 sequences of 1187 samples for paper.

Evaluation metrics: We evaluate our method considering

two types of errors; i.e, depth-based error (ED) and angular

error (EA). The angular error EA between predicted and

ground truth normals is calculated using Eq. 5 and averaged

for all foreground points. The depth-based error is calcu-

lated as the mean Euclidean distance between the 3D points

of a pointcloud generated from a predicted depth map and

the corresponding ground truth 3D points after Procrustes

alignment [16], as in [24, 3]. We compare three ways of

generating the predicted depth map, leading to the follow-

ing variants of the depth-based error metric.

Et
D : Depth map generation via patch depth maps stitch-

ing. We follow the approach described in Section 3.3.1 to

get a stitched depth map D. However, because Patch-Net

was trained with relative depths within a patch, D is located

close to the origin. Thus, in order to calculate the depth-

based error, we translate D along the viewing direction of

the camera based on the difference between the mean pre-

dicted depth and the mean ground truth depth of the fore-

ground object. Dt denotes the translated depth map.

EN
D : Depth map generation via patch normal maps stitch-

ing and normals integration. It is known [25] that integrat-

ing normals under the assumption of perspective camera

projection generates a depth map that is computable up to

a multiplicative constant, i.e., up to scaling along the depth

dimension. We examine the case of estimating the multi-



Experiment Error 64 96 128 160 192 224

1. cloth-cloth

Et
D[mm]

EN
D [mm]

ENs
D [mm]

EA[
o]

21.76± 6.64
21.97± 6.83
17.6± 4.92
19.37± 3.35

17.25± 5.15
17.53± 5.22
13.30± 4.78
15.98± 4.51

15.12± 4.73
14.74± 4.75
12.80± 4.45
14.72± 3.39

13.56± 5.30
13.42± 5.30
12.92± 5.47
15.63± 4.18

11.95± 4.41
11.53± 4.06
10.89± 3.85
14.50± 3.34

12.61± 4.45
12.11± 4.36
11.57± 4.30
15.05± 3.89

2. tshirt-tshirt

Et
D[mm]

EN
D [mm]

ENs
D [mm]

EA[
o]

19.82± 5.10
19.93± 5.30
15.76± 3.88
20.08± 3.84

15.77± 3.92
15.94± 4.10
13.61± 3.66
18.67± 4.12

14.83± 3.47
14.76± 3.76
13.70± 3.83
18.63± 4.43

14.54± 4.22
14.39± 4.23
14.06± 4.24
20.15± 4.48

13.80± 3.86
12.94± 3.69
12.54± 3.74
19.41± 4.45

13.91± 3.80
13.38± 3.37
13.06± 3.39
19.51± 4.37

3. cloth-tshirt

Et
D[mm]

EN
D [mm]

ENs
D [mm]

EA[
o]

25.97± 6.55
25.86± 6.87
23.35± 6.76
25.85± 3.38

24.04± 6.08
24.14± 6.36
22.97± 6.42
24.83± 3.34

24.03± 7.09
23.32± 6.71
22.74± 7.20
24.29± 3.80

22.23± 6.12
22.08± 6.47
22.03± 6.92
25.09± 3.64

24.77± 7.00
23.98± 6.67
23.49± 7.25
26.15± 4.07

23.37± 5.91
23.19± 5.98
22.56± 6.76
25.94± 3.80

4. cloth-sweater

Et
D[mm]

EN
D [mm]

ENs
D [mm]

EA[
o]

37.28± 8.96
36.62± 8.84
33.27± 8.40
30.19± 3.34

32.22± 8.93
32.59± 8.62
30.08± 8.00
27.74± 3.74

33.11± 9.45
32.45± 9.35
30.10± 10.00
27.94± 4.79

31.04± 8.16
28.63± 7.33
28.19± 7.17
29.59± 4.56

33.45± 9.90
32.60± 9.75
31.80± 9.44
30.96± 4.79

39.61± 10.01
37.13± 9.80
35.89± 9.76
33.57± 5.61

5. cloth-hoody

Et
D[mm]

EN
D [mm]

ENs
D [mm]

EA[
o]

37.17± 8.47
36.87± 8.69
36.58± 8.68
34.40± 2.85

32.21± 7.18
32.26± 7.16
31.48± 7.03
32.98± 2.61

30.72± 7.72
31.12± 8.29
31.09± 8.73
29.73± 2.52

31.47± 9.35
30.98± 8.06
30.24± 8.16
31.34± 3.05

33.48± 8.64
32.77± 8.11
32.59± 8.21
32.02± 3.08

38.50± 10.33
37.91± 9.77
36.22± 9.34
33.49± 3.16

6. cloth-paper

Et
D[mm]

EN
D [mm]

ENs
D [mm]

EA[
o]

17.98± 5.42
15.77± 4.89
15.55± 5.14
25.67± 5.80

18.24± 4.83
15.98± 4.69
15.46± 4.86
26.35± 5.59

16.45± 4.75
15.10± 4.44
14.53± 4.48
24.52± 5.96

23.06± 5.89
20.41± 6.15
16.63± 5.06
31.22± 6.51

21.95± 5.62
20.46± 5.81
17.12± 5.08
31.21± 5.58

29.08± 5.70
27.00± 6.71
18.14± 5.30
40.45± 7.40

Table 1: Accuracy of the proposed method in reconstructing depth and normals considering various patch sizes (64 − 224).

Et
D, EN

D , ENs
D correspond to the errors of different depth maps; each depth map was generated in a different way (see text).

plicative constant considering the depth map Dt generated

using patch stitching and translation close to ground truth.

ENs
D : Depth map generation via patch normal maps stitch-

ing and normals integration with known depth scaling. Pre-

vious work [3] inferred depth scaling comparing the depth

map computed based on normals integration, to the ground

truth depth map. Extracting this information from ground

truth improves the results, but also constitutes a limiting as-

sumption. Our method does not require this assumption.

However, for facilitating the comparison to [25], we show

the increase in performance that this assumption would

yield.

Evaluated methods: We evaluate our method against state-

of-art on 3D reconstruction of textureless deformable ob-

jects from a single image [3]. Given that shading is an im-

portant cue for shape reconstruction, especially when the

object of interest is textureless, we also compare against

previous work on simultaneous inference of shape, illumi-

nation, and reflectance from shading [2] (SIRFS). To com-

pare against [3], we used the implementation that is publicly

available online2. To compare against [2], we use the error

values reported in [3].

Implementation details: We have implemented our

method in Keras using a Tensorflow backend. From each

image in a training set, we have considered patches with

2https://github.com/bednarikjan/texless_defsurf_recon

Figure 3: Aggregate error on depth prediction per patch size

over all six experiments in [3]. Et
D, EN

D , ENs
D correspond

to different depth maps, generated in different ways (see

text). The blue line on top denotes the aggregate error of [3].

overlap equal to half the patch size. In all experiments,

training has been performed using an Adam optimizer [17]

with a fixed learning rate of 0.001. We use a bilateral fil-

ter with kernel size 3 × 3 and σ = 10cm for interpolat-

ing among the various depth values inside the kernel and

σ = 0.3 for the normal maps.



Experiment SIRFS (ENs
D ) Bednarik et al. [3] (ENs

D ) Ours (EN
D ) OURS (ENs

D ) SIRFS (EA) Bednarik et al. [3] (EA) Ours (EA)

1. cloth-cloth 31.55± 10.93 17.53± 5.50 14.74 ± 4.75 12.80± 4.45 37.98± 23.18 17.37± 12.51 14.72± 3.39

2. tshirt-tshirt 31.09± 15.03 17.18± 18.58 14.76 ± 3.76 13.70± 3.83 30.17± 20.26 18.07± 12.71 18.63± 4.43

3. cloth-tshirt 30.29± 10.42 26.26± 7.72 23.32 ± 6.71 22.74± 7.20 30.08± 19.43 25.74± 15.81 24.29± 3.80

4. cloth-sweater 39.51± 14.96 38.93± 10.36 32.45 ± 9.35 30.10± 10.00 33.25± 21.60 31.52± 19.07 27.94± 4.79

5. cloth-hoody 43.51± 13.79 43.22± 24.81 31.12 ± 8.29 31.09± 8.73 36.84± 23.14 32.54± 21.15 29.73± 2.52

6. cloth-paper 49.35± 18.51 24.16± 7.15 15.10 ± 4.44 14.53± 4.48 56.69± 27.09 35.53± 22.16 24.52± 5.96

Table 2: Comparison with previous work on the datasets sets used in [3]. We report the error values for our method for patch

size 128× 128. Errors on depth (ENs
D , EN

D ) are expressed in mm and angular errors (EA) in degrees.

4.2. Ablation study

Varying the patch size: We examine rectangular patches

of width 64, 96, 128, 160, 196, 224 pixels (full image size)

and evaluate our performance based on the six main exper-

iments performed in [3]. We followed exactly the same ex-

perimental protocols regarding the definition of the training

and test sets. Table 1 shows the reconstruction accuracy for

each patch size as measured by the error metrics defined

previously. We denote each experiment as X-Y where X is

the object used for training and Y the object used for test-

ing. For each experiment, we show in bold the result for the

optimal patch size per error metric.

Considering the depth-based errors, when the training

and testing objects are the same (experiments 1 and 2), the

optimal patch size is relatively close to the full resolution

of the image. Note, though, that in both experiments 1 and

2, testing is performed considering different directions of

light compared to the training settings rather than different

types of object deformations. For the rest of the experi-

ments, we observe that performance increases while reduc-

ing the patch size, but up to a point. There seems to be

a sweet spot around patch width equal to 128 upon which

further decrease of the patch size actually leads to increased

error as very small patches are not informative any more.

In the last experiment, we observe that the error remains

low for patches equal or smaller than 128 × 128. We be-

lieve that small patch sizes are favored because in this ex-

periment training was performed on cloth deformations and

testing on paper deformations that are way more coarse than

the cloth deformations.

Figure 3 shows the aggregate error per patch size over

all experiments for all depth-based error metrics. We re-

mind that ENs
D denotes the idealized scenario employed

in [3] where depth is predicted by integrating normals and

using a depth scaling inferred from the ground truth. Et
D

and EN
D show the error using the depth map generated via

patch depth maps stitching and the error when integrating

the stitched normals to generate a depth map inferring the

depth scaling factor from the stitched depth map. As a ref-

erence, the blue line corresponds to the average error of the

work in [3]. Regardless of the metric and the patch size,

Figure 4: Prediction errors on a sample image in the sweater

dataset after training on the cloth dataset. Left column: the

predicted depth and normals with our method. Top row, last

two columns: The error of the predicted depth in mm for

our method and the method in [3]. Bottom row, last two

columns: the error on the predicted normals in degrees for

our method and [3].

the proposed method outperforms [3] considerably. Based

on Table 1, the angular error exhibits a similar behavior.

Considering jointly the depth-based and angular errors, we

deem the optimal patch size to be 128× 128.

Varying the overlap between neighboring patches: In-

creasing the overlap among neighboring image patches on

the training images has the potential to increase the diver-

sity of the considered patches. We claim that conceptually,

this is similar to increasing the amount of training data. We

refer the reader to the experiments provided in Section 4.3

with subsets of the original training sets of varying size.

4.3. Comparison with state-of-art

Evaluation on state-of-art datasets: In Table 2, we show

the performance of our method with the selected optimal

patch size 128× 128 compared to SIRFS [2] and Bednarik

et al. [3]. The results for SIRFS were obtained from [3].

The lowest error over all three methods is shown in bold.

Note that the results of previous work are shown after

normals integration with depth scaling inferred from ground



Figure 5: Performance of our method compared to [3] for

training sets of size 1%, 5%, 10%, 50%, 100% relative to

the size of the original training sets. We report the average

depth prediction error over all six experiments in [3].

truth (ENs
D ). We stress that even if we get rid of this lim-

iting assumption (EN
D ), our method is still more accurate

than previous work. The gain in performance using our

patch-based method is most prominent when the training

and testing objects vary greatly (experiments 4-6) show-

casing the enhanced generalization ability of our proposed

patch-based method. Figure 4 shows an example of the per-

formance of our method and the method in [3] for the case

of training on cloth deformations and testing on sweater de-

formations. The angular error is also overall lower in our

proposed method.

Evaluation on varying training set size: We explore the

reconstruction accuracy of our method for various training

sets sizes compared to [3]. More specifically, we repeat the

experiments performed in Section 4.3 taking into account

random subsets of the initial training set of size 1%, 5%,

10% and 50%. We have generated 10 random subsets of

size 1%, 8 subsets of size 5%, 5 subsets of size 10% and

2 subsets of size 50%. In Figure 5, we report the average

error on depth prediction for each training set size consider-

ing all random subsets for the specific size and all six exper-

iments. We observe that small training sets lead to less ac-

curate predictions than large training sets for both methods,

as expected. However, the proposed patch-based method

leverages more effectively the available data as the size of

the training set increases, thus, decreasing the reconstruc-

tion error at a faster rate than the global method in [3].

4.4. Qualitative results on high-resolution data

Currently, training deep learning architectures with

high-resolution input images is computationally infeasible.

Patch-based approaches like the proposed one, can work

around this limitation by making predictions considering

image patches and subsequently fusing the predictions per

patch into a single prediction for the input high-res im-

age [12]. We showcase the ability of our method to work

Figure 6: Example frames of a synthetic dataset with high-

resolution images of a waving flag (top) and heatmaps of

our error on depth reconstruction (bottom).

with high-resolution input data within reasonable error lim-

its using a synthetic sequence of resolution 1344× 896 de-

picting a waving flag deformed by wind forces that vary in

strength and direction over time (see Figure 6). The patch

size was set to 224 × 224. We used 800 frames for train-

ing and 100 frames for testing with average error on depth

0.28 units for a flag of width equal to 4.9 units (error equals

5.7% of the flag’s width) and angular error 16.02 degrees.

Although we cannot directly compare the error on depth

among experiments on synthetic and real data, the angular

error is similar to the angular error in earlier experiments

when training and testing on the same object. Qualitatively,

we can observe that the wrinkles at the error plots at the

bottom row have noticeably smaller size than the ones of

the object at the top row.

5. Conclusions

We presented a patch-based method for 3D reconstruc-

tion of textureless deformable surfaces from a single RGB

image. No explicit assumptions about the shape of the ob-

served object are made. Instead, we learn the mapping from

image patches to their corresponding geometries from real-

life data via deep learning. We show that, compared to

previous global methods for 3D reconstruction, our method

leads to more accurate 3D reconstruction, more effective

generalization to unseen objects and more efficient exploita-

tion of the available training data. We also show qualita-

tively the ability of our method to handle high-resolution in-

put data. Potential directions for future work include learn-

ing how to stitch the predicted patches, predicting the opti-

mal patch size from the observed data as well as investigat-

ing scenarios involving textured deformable objects.
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