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Abstract

Hand pose estimation from monocular 2D image is chal-

lenging due to the variation in lighting, appearance, and

background. While some success has been achieved us-

ing deep neural networks, they typically require collecting

a large dataset that adequately samples all the axes of vari-

ation of hand images. It would therefore be useful to find a

representation of hand pose which is independent of the im-

age appearance (like hand texture, lighting, background),

so that we can synthesize unseen images by mixing pose-

appearance combinations. In this paper, we present a novel

technique that disentangles the representation of pose from

a complementary appearance factor in 2D monochrome im-

ages. We supervise this disentanglement process using a

network that learns to generate images of hand using spec-

ified pose+appearance features. Unlike previous work, we

do not require image pairs with a matching pose; instead,

we use the pose annotations already available and intro-

duce a novel use of cycle consistency to ensure orthogonal-

ity between the factors. Experimental results show that our

self-disentanglement scheme successfully decomposes the

hand image into pose and its complementary appearance

features of comparable quality as the method using paired

data. Additionally, training the model with extra synthe-

sized images with unseen hand-appearance combinations

by re-mixing pose and appearance factors from different im-

ages can improve the 2D pose estimation performance.

1. Introduction

Hand pose estimation is an important topic in com-

puter vision with many practical applications including

virtual/augmented reality (AR/VR) [22, 41] and human-

computer interaction [46, 31]. A large body of work has

shown robust hand pose estimation using RGB-D cam-

eras [11, 47, 17, 50] or stereo cameras [56, 48] that provides

3D information about hands. With the recent advance of

deep learning techniques [19, 27, 25, 24, 26], researchers
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(a) Variation in Hand Pose (b) Variation in Appearance

(c) Generated Images with Specified Pose and Appearance

Figure 1. Robust hand pose detection requires handling the large

variation in (a) hand pose, and, (b) Image appearance, e.g. dif-

ferent backgrounds, lighting conditions, camera exposures, hand

textures, etc. (c) Image generated with pose from the first row and

appearance from the second row.

have begun exploring the use of monocular 2D cameras

[59, 34], which are cheap and ubiquitous thanks to their use

in consumer devices like smart-phones and laptops.

Despite recent success of applying deep learning in hand

pose estimation from monocular 2D images, there is still a

substantial quality gap when comparing with depth-based

approaches. We believe that the culprit is the variability in

hand appearance caused by differences in lighting, back-

grounds, and skin tones or textures. The same hand pose

can appear quite differently in daylight than fluorescent

lighting, and both harsh shadows and cluttered backgrounds

tend to confuse neural networks. To ensure the robustness

of neural networks, large amount of training data is typi-

cally required in order to adequately samples all the axes of

variation.

In this work, we aim to improve the robustness of hand

pose estimation from monocular 2D images by finding a

representation of hand pose that is independent of its ap-



pearance. We propose to train a neural network that learns

to “disentangle” a hand image into two sets of features: the

first captures the hand pose, while the second captures the

hand’s appearance. Pose features refer to the informative

factors used to reconstruct the actual hand pose (e.g. the lo-

cations of the hand joints), while the appearance feature de-

note the complementary “inessential” factors of the image,

such as the background, lighting conditions, hand textures,

etc. We refer to this decomposition as Factor Disentangle-

ment.

Existing approaches to factor disentanglement generally

require pairs of annotated data [33, 9], where the pairs share

some features (e.g. object class) but vary in others (e.g.

background). These pairs supervise the disentanglement

process, demonstrating how different parts of the feature

vector contribute to the composition of the image. While it

is relatively easy to find multiple images that share the same

object class, finding pairs of images with identical hand but

different appearance is considerably more challenging. In-

stead, we propose to learn to disentangle the images using

the supervision we do have: labeled poses for each training

image.

To do this, we start with the following principles:

1. We should be able to predict the (labeled) hand pose

using only the pose feature.

2. We should be able to reconstruct the original image us-

ing the combination of pose plus appearance features.

However, this is not sufficient, because there is nothing

that ensures that the pose and appearance features are or-

thogonal, that is, they represent different factors of the im-

age. The network can simply make the “appearance” fea-

ture effectively encode both pose and appearance, and re-

construct the image while ignoring the separate pose com-

ponent. Therefore:

3. We should be able to combine the pose feature from

one image with the appearance feature from another to

get a novel image whose pose matches the first image

and whose appearance matches the second.

Because we have no way to know a priori what this novel

image should look like, we can not supervise it with an

image reconstruction loss. Instead, we use cycle consis-

tency [58]: if we disentangle this novel image, it should

decompose back into the original pose and appearance fea-

tures. This will ensure that the network does not learn to

encode the pose into the appearance feature. We apply these

three principles during our training process shown in Fig. 2.

The proposed self-disentanglement framework is applied

on a dataset of monochrome hand images. We show that

learning to disentangle hand pose and appearance features

greatly improves the performance of hand pose estimation

module in two ways: 1. the pose estimation module can

learn a better pose feature representation when the factor

disentanglement is learned jointly as an auxiliary task. 2.

the dataset can be augmented by generating new images

with different pose-appearance combinations during the

process. Both methods lead to improvement over baseline

on our hand pose dataset. In addition, we also show com-

parable results to a factor disentanglement network trained

with the supervision of paired images. Due to the challenge

of capturing perfect paired data, we resort to a synthetic

dataset for this comparison, where a pair of hand images are

rendered using path tracing [42] with identical hand pose

but different background, lighting, and hand textures. Al-

though our experiments are done using monochrome im-

ages, this framework can be easily extended for the case of

RGB images.

The main contribution of this paper is as follows:

• A self-distanglement network to disentangle the hand

pose features from its complementary appearance fea-

tures in monochrome images, without paired training

data of identical poses.

• The proposed framework improves the robustness of

supervised pose estimation to appearance variations,

without use of additional data or labels.

2. Related Work

Hand Tracking: Due to the large pose space, occlu-

sions, and appearance variation such as lighting and skin

tone, hand tracking from images is a challenging problem.

Methods that use multiple views [56, 38, 4] can deal with

occlusions but are more difficult to set up. A large body

of work [11, 47, 35, 50, 50] has demonstrated high-quality

tracking use depth/RGBD cameras. While powerful, these

sensors are still not largely available in consumer products.

More recently, there has been work on tracking hands from

monocular RGB camera [59, 34] using deep learning tech-

niques. In this work, we will focus on monochrome cam-

eras due to their increased sensitivity to low light, but the

methods should generalize to RGB camera case as well.

Encoder-Decoder Structure and Autoencoder: Our

base architecture is built on two encoder-decoder struc-

tures (also termed as contracting-expanding structures) [37,

1], which are neural networks with an encoder (contracting

part) and a decoder (expanding part). The encoder is de-

signed to extract a feature representation of the input (im-

age) and the decoder translates the feature back to the in-

put (autoencoder [7, 14]) or the desired output space. This

structure is widely used in image restoration [6, 30, 55], im-

age transformation [13, 9], pose estimation [36] or semantic

segmentation [37, 1]. In addition, it has also been utilized

for unsupervised feature learning [39] and factor disentan-

gling [33, 49, 15]. In our framework, this architecture is

adopted for both the image reconstruction module and the
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Figure 2. The overview of the self-disentanglement training process. (a) Input images I(x) and I
(y) are encoded into Pose and Appearance

factors, which contains the hand joint locations and its complementary image appearance information (e.g. background, lighting, hand

texture, etc.) respectively. Ep and EI are encoders for the pose and appearance factors respectively. Image decoder DI is used to reconstruct

the original images using the pose and appearance factors. (b) We combine the pose factor from I
(x) and appearance factor from I

(y) to

construct a “mix-reconstructed” hand image with expected pose and appearance. (c) The mix-reconstructed image is decomposed back

to the pose and appearance factors, and the resulting pose (appearance) feature is combined with the original appearance (pose) feature

to generate a new decoded image, which should be similar to the original image. (d) The pose factors are trained to predict the pose

heatmap with the pose decoder Dp. The dashed arrow indicates that we don’t allow the gradients from the image reconstruction loss to

back-propagate through the pose factors. The dashed-outlined modules mean they just work as an estimator to provide the gradients to the

early stage.

hand joint localization module, while we propose a novel

unsupervised training method to ensure the separation of

factors generated by the encoders.

Learning Disentangled Representations. Disentan-

gling the factors of variation is a desirable property of

learned representations [5], which has been investigated

for a long time [51, 52, 13, 15].In [13], an autoencoder

is trained to separate a translation invariant representation

from a code that is used to recover the translation infor-

mation. In [43], the learned disentangled representations is

applied to the task of emotion recognition. Mathieu et al.

combine a Variational Autoencoder (VAE) with a GAN to

disentangle representations depending on what is specified

(i.e. labeled in the dataset) and the remaining unspecified

factors of variation [33].

Recently, factor disentanglement has also been used

to improve visual quality of synthesized/reconstructed im-

ages and/or to improve recognition accuracy for research

problems such as pose-invariant face recognition [54,

40], identity-preserving image editing [16, 21, 23], and

hand/body pose estimation [29, 3]. However, these fac-

tor disentanglement methods usually either require paired

data or explicit attribute supervision to encode the expected

attribute. Two recent techniques, β-VAE [12] and DIP-

VAE [20], build on variational autoencoders (VAEs) to dis-

entangle interpretable factors in an unsupervised way. How-

ever, they learn it by matching to an isotropic Gaussian

prior, while our method learns disentanglement using a

novel cycle-consistency loss. [2] improves the robustness

of pose estimation methods by synthesizing more images

from the augmented skeletons, which is achieved by obtain-

ing more unseen skeletons instead of leveraging the unseen

combinations of the specified factor (pose) and unspecified

factors (background) in the existing dataset like ours. The

most related work is [57], which proposes an disentangled

VAE to learn the specified (pose) and additional (appear-

ance) factors. However, our method explicitly makes the ap-

pearance factor orthogonal to the pose during training pro-

cess, while [2] only guarantees that the pose factor does not

contain information about the image contents.

3. Learning Self-Disentanglement

In this section, we present our self-disentanglement

framework. An overview of the framework can be found

in Fig. 2. Our framework encodes a monochrome hand im-

age into two orthogonal latent features: the pose feature p

and the appearance feature a using pose encoder Ep and ap-

pearance encoder EI . Without explicit supervision on how

these two features disentangle, we introduce the following

consistency criteria for self supervision.

3.1. Pose Estimation Loss

To encode the pose feature, we use a model similar to the

contracting-expanding structure of UNet [44]. As shown in

the top of Fig. 3, we use down-sampling layers (the pose

encoder Ep) to encode the image I(x) into a latent pose fea-



Input Image

Shared base-CNN

Image Reconstruction

Appearance

Hand Joint Localization

Reconstructed 

Image

Pose

Encoder Decoder

Figure 3. The structure of the hand joint localization module (pose)

and the image reconstruction module. Both modules share some

early-stage convolutional layers of the encoder. Image decoder

utilizes both the pose and appearance factors to reconstruct the

image, but the gradients back-propagated from the image recon-

struction branch does not go backward to the pose factor learning.

ture p
(x). The up-sampling layers (the pose decoder Dp

)

then decode p
(x) into a set of hand joint heatmaps P̂ (x).

Each heatmap P (x) is a Gaussian centered at a single hand

joint location [53]. An L1 loss penalizes differences be-

tween the predicted heatmaps P̂ (x) and the ground truth

heatmaps P (x):

L(x)
p = E

[∥

∥

∥
P̂ (x)

− P (x)
∥

∥

∥

1

]

(1)

Note that while skip connections are commonly used to

preserve details in the output [44], we avoid these connec-

tions here, as they allow the network to bypass the latent

pose feature, thus preventing proper disentanglement.

3.2. Image Reconstruction Loss

To generate the appearance feature a
(x), we use another

encoder-decoder network EI with the same contracting-

expanding structure (lower part of Fig. 3). This encoder

shares the early-stage layers with the pose module Ep as

shown in Fig. 3. To ensure that the two latent factors contain

the information we expect, an image reconstruction loss is

introduced in the framework. The decoder network DI now

takes both the pose feature p
(x) and the appearance feature

a
(x) to reconstruct the original image as Î(x). Supervision

is provided by a reconstruction loss: we penalize the dif-

ference between the decoded image Î(x) and the original

image I(x) using an L1 loss:

L
(x)
I = E

[
∥

∥

∥
Î(x) − I(x)

∥

∥

∥

1

]

(2)

In addition, a GAN loss [10] is used to encourage the

reconstructed image to be indistinguishable from the real

hand images. The discriminator and generator losses are

defined as follows:

L
(x)
D = E

[

log
(

D(I(x))
)]

+ E

[

log
(

1−D(Î(x))
)]

L
(x)
G = E

[

log
(

D(Î(x))
)] (3)

where LD and LG denote the losses for discriminator and

generator respectively.

One risk when using a reconstruction loss is that the

network can “hide” appearance information in the encoded

pose feature in order to improve the quality of the recon-

struction. This is contrary to our goal that the pose fea-

ture should solely encode an abstract representation of the

pose alone. To prevent this, during training, we block the

gradients from the image reconstruction loss from back-

propagating to the pose feature (Fig. 3); as a result, the

pose encoder is not supervised by the image reconstruction

loss, and thus has no incentive to encode appearance-related

features.

3.3. Learning Orthogonal Factors with Mix-
Reconstruction

Ideally, the extracted pose and appearance factor should

be orthogonal to each other, that is, a and p should encode

different aspects of the image. This would allow combining

any arbitrary pose/appearance pair to generate a valid im-

age. However, the autoencoder in Sec. 3.2 has no incentive

to keep the appearance factor separate from the pose factor;

the image reconstruction step works even if the appearance

factor also encodes the pose.

Previous work on factor disentanglement [9, 33, 40, 28]

uses image pairs as supervision. If we have two images that

vary in appearance but have the same object category, then

we could use this to help the network learn what “appear-

ance” means. Nevertheless, in our case, we do not have

such data pairs: images that have identical pose but differ-

ent lighting are difficult to obtain. Hence, factor disentan-

glement should be done without any knowledge of the data

except the hand joint locations.

As shown in Fig. 2, we appeal to a randomly sampled in-

stance, I(y), which has no relation to I(x) in either pose or

appearance (different pose icons and background patterns

denote the different pose and appearance). We can extract

the pose feature and appearance feature p
y and a

y from

the random instance I(y). Then we concatenate p
(x) and

a
(y), and use the decoder DI to generate a novel “mix-

reconstructed” image Î(xy), which ideally combines the

pose from I(x) and appearance from I(y). Î(xy) is expected

to have I(x)’s pose and I(y)’s appearance, but there exists

no image in our training set that embodies this particular

combination of pose and appearance. We cannot supervise

the reconstruction of Î(xy) directly. Consequently, we rely

on cycle consistency to provide indirect supervision.

3.4. Cycle Consistency Loss

To tackle the problem mentioned above, we further de-

code Î(xy) back to p̂
(x) and â

(y) using the pose and ap-

pearance encoder as Sec. 3.1 and 3.2. As shown in Fig. 2

(c), we re-combine the reconstructed factors p̂
(x) and â

(y)

with a
(x) and p

(y) respectively to synthesize the original



image as Ĩ(x) and Ĩ(y). Now we build a disentangle-mix-

disentangle-reconstruct cycle to generate back to the origi-

nal input (denoted as the self-disentanglement), and we use

the following cycle consistency losses during training:

L
(x)
cycle−img = E

[∥

∥

∥
Ĩ(x) − I(x)

∥

∥

∥

1

]

L
(y)
cycle−img = E

[∥

∥

∥
Ĩ(y) − I(y)

∥

∥

∥

1

]

(4)

The reconstructed pose factors p̂(x) and â
(y) should also

match the p
(x) and a

(y). An additional dual feature loss

is also added as an auxiliary supervision to enforce the

feature-level consistency:

L
(x)
dual−pose = E

[∥

∥

∥
p̂
(x)

− p
(x)

∥

∥

∥

1

]

L
(y)
dual−img = E

[
∥

∥

∥
â
(y)

− a
(y)

∥

∥

∥

1

]

(5)

where p(x) and a
(y) here only serve as fixed training tar-

gets, and the gradients are not back-propagated through to

Ep and EI .

In addition, the mix-reconstructed image Î(xy) is also ex-

pected to output the pose from Ix. Therefore, as shown in

Fig. 2 (d) the reconstructed pose code p̂
(x) is decoded with

the pose decoder Dp to the hand joint heatmap P̃ (x), which

should match the original heatmap P (x):

L
(x)
cycle−pose = E

[∥

∥

∥
P̃ (x)

− P (x)
∥

∥

∥

1

]

(6)

3.5. End-to-end Training

The model is trained end-to-end with randomly sampled

pairs I(x) and I(y):

Loss =Lp + α1LI + α2LD + α3LG

+ α4Lcycle−img + α7Lcycle−pose

+ α6Ldual−img + α5Ldual−pose

(7)

where L(·) denotes the sum of the corresponding losses for

the pairs L
(x)
(·) and L

(y)
(·) .

When evaluating cycle consistency, the pose decoder Dp

and the image decoder DI serve as an evaluator to estimate

whether the mix-reconstructed image Î(xy) can output the

correct hand joint heatmap and can be encoded into ex-

pected features. We don’t necessarily want to train them

based on the mix-reconstructed image because it may be

poor in quality, especially during the early stage of train-

ing. Therefore we fix the parameters in these two decoders

in Fig. 2 (c-d) (shown with dash outline). They are sim-

ply a copy of the modules in Sec. 3.1 and Sec. 3.2, but do

not accumulate gradients in back-propagation. This simple

strategy greatly stablilizes training.

Dataset Train (#frames) Testing (#frames)

Real 123,034 13,416

Synthetic 123,034 × 2 13,416 × 2

Table 1. Statistics of the real and synthetic hand image datasets.

The synthetic dataset is made up of pairs of images, which share

the pose but differ in backgrounds, lighting conditions and the

hand textures.

4. Experiments

4.1. Data Preparation

We collect a dataset of monochrome hand images cap-

tured by headset-mounted monochrome cameras in a vari-

ety of environments and lighting conditions. To obtain high

quality ground truth labels of 3D joint locations, we rigidly

attach the monochrome camera to a depth camera, then ap-

ply [53] on the depth image to obtain 3D key points on the

hand. With careful camera calibration, we transform the 3D

key points to the monochrome camera space as ground truth

labels. The training images are then generated as a 64x64

crop around the hand.

In addition, we render a synthetic dataset of hand images

using the same hand poses from the monochrome dataset.

Each pose is rendered into a pair of images with different

environment maps, lighting parameters and hand textures.

This synthetic dataset offers perfectly paired data of the

same pose with different appearances. Tab 1 shows statis-

tics of the two datasets.

4.2. Implementation Details

We use an encoder-decoder architechure following

UNet [44] without skip-connections as the base model. The

encoder is shared between the pose feature EI and the ap-

pearance feature Ep before the last downsampling layer.

Two different decoders are used in the Hand Joint Localiza-

tion branch and the Image Reconstruction branch respec-

tively, where the image reconstruction branch decodes from

both the pose feature and the appearance feature (Fig 3).

Both the encoder and the two decoders have a depth of 4.

Each block in the encoder consists of repeated application

of two 3x3 convolutions, each followed by a rectified linear

unit (ReLU) and a 2x2 max pooling operation with stride 2

for down-sampling. The pose decoder Dp employs a 2x2

deconvolution layer in each block for up-sampling, while

the image decoder DI uses nearest-neighbor upsampling

followed by a 3x3 convolution instead to avoid the checker-

board artifact [8]. Fig. 3 illustrates the detailed model struc-

ture. At training time, we initialize all parameters randomly,

and use the Adam [18] optimizer with a fixed learning rate

0.001. A total of 75 epochs is run with a batch size of 128.
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Figure 4. Self-disentanglement on Real (left) and Synthetic (right) data. The image on the top row provide the “pose” while the image

on the left-most column offers the “appearance”. The images in the middle matrix are generated with our proposed method using the

corresponding pose and the row-wise appearance.

4.3. Orthogonal Feature Space From Self-
Disentanglement

We visually validate the orthogonality of the two feature

spaces by reconstructing novel images using the pose fea-

ture from one image and the appearance feature from an-

other. Fig. 4 shows a matrix of generated results on both the

captured dataset and the synthetic dataset. We can success-

fully reconstruct the desired hand pose under different light-

ing and background. For instance, the hands in the first two

rows of Fig. 4 (a) are lit by light source from the left, consis-

tent in appearance with the source images. Even though the

network cannot reproduce all the details in the background,

it generates similar statistics. We refer readers to the sup-

plementary video for more results.

There are still noticeable artifacts in the generated im-

ages, especially when the pose estimator does a poor job

either in the appearance image (row 2 in Fig. 4(b)) or in the

pose image (column 3 in Fig. 4(a)). Interestingly, because

we don’t have any key points on the arm, it is encoded into

the appearance feature by our network (row 6 in Fig. 4(a)).

4.4. Comparison to Supervised Disentanglement

To prove the effectiveness of our proposed self-

disentanglement, we compare our method with two base-

lines: (1) the Auto-Encoder [32] with the structure shown in

Sec. 3.2; (2) the factor disentanglement [9] using the paired

data that have identical pose but different appearance. De-

tailed experimental results are shown in Tab. 2.

We can see that the images from the Appearance Factor

(pose)

(appearance)

(appearance)

(pose)

Figure 5. Factor Disentanglement with paired data [9]. The two

inputs share the pose but differ in image appearance.

row and the Autoencoder results row in Tab. 2, are nearly

the same. It shows that, without supervision on orthogonal-

ity, the Auto-Encoder model encodes the entire input image

into the appearance feature, and discards the pose feature in

decoding. Therefore, the pose and appearance factors are

not fully disentangled. Checking the results of disentan-

glement with paired data [9] and our self-disentanglement,

both methods are able to combine pose feature and appear-

ance feature from two different source images to construct a

novel image with specified pose and appearance. Our model

generates visually similar images to the model trained with

paired data.

Furthermore, we randomly swap the hand and appear-

ance factors of the held-out set to generate a new set of im-



Appearance

Factor

Pose

Factor

AutoEncoder [32]

Paired Data [9]

Ours

Appearance

Factor

Pose

Factor

AutoEncoder [32]

Paired Data [9]

Ours

Table 2. Comparison with the existing methods on the paired synthetic data. Top part: fixed appearance factors with varying the pose

ones. Bottom Part: varying pose factors with fixed appearance ones. Appearance Factor shows the images providing the appearance

factors. Pose Factor shows the images providing the appearance factors. AutoEncoder denotes the image reconstruction along with

the pose module shown in Sec. 3.2. Paired Data denotes the factor disentanglement using paired data [9]. Ours is our proposed self-

disentanglement without leveraging the paired data.

Dataset Paired Data [9] Ours

I.S. [45] 4.96 ± 0.11 5.10 ± 0.10

Preference 51.66% (529 / 1024) 48.33% (495 / 1024)

Table 3. Quantative Comparison of the factor disentanglement us-

ing Paired Data [9] and our proposed self-disentanglement, includ-

ing Inception Scores [45] (I.S.) and User Study.

ages, and then calculate the inception scores [45] and per-

form a user study on the preference of between our method

and [9] in Tab. 3. The comparable results validate our

claims.

4.5. Improve Pose Estimation with Disentanglement

An important application of our disentanglement model

is to improve the robustness of the pose estimation mod-

ule. We examine how each criterion in the disentanglement

process affect the pose estimator step by step.

We fit the predicted heatmap of every joint to a gaussian

distribution, and use the mean value as the predicted loca-

tions of the joints. Tab. 4 shows quantitative results, where

the MSE denotes the mean square error of the predictions

in pixels. The baseline pose estimator is trained with su-

pervised learning (Sec 3.1). When we add the image recon-

struction loss (Sec 3.2, the accuracy is already improved

by 4.60%. It suggests that the image reconstruction task

encourages the shared base layers (Fig. 3) to extract more

meaningful low level features for pose estimation. Adding

the cycle consistency loss (Sec 3.4) further boosts the per-

formance by 6.02%.

In Sec 3.5, we employe a strategy to stabilize training by

disabling back-propagation to the pose feature (Pose De-

tach) as well as the back-propagation to the pose estimator

parameters (Pose Estimator Detach). This is useful because

the most reliable supervision is from the joint location la-

bels, and we don’t want to distract the pose estimator by

auxiliary tasks that are more ambiguous in the early stage.

However, once we have a reasonable disentanglement net-

work, the additional supervision from image reconstruction

and cycle consistency may help the pose estimator to better

differentiate a pose from its appearance. We conduct two

additional experiments using warm start from Model 3 to

test this hypothesis. The new baseline trains our network

as described in Sec 3.5 for another 75 epochs (Model 4).

The first experiment allows back-propagation to the pose

feature (Model 5), and the second experiment allows back-

propagation to both the pose feature and the pose estimator



ID Model Epochs MSE (in pixels) Improvements

1 Baseline Pose Estimator 75 4.174 -

2 Pose Estimator + Image Reconstruction 75 3.982 4.60%

3 Our proposed Self-Disentanglement 75 3.923 6.02%

4 Our proposed Self-Disentanglement + Resume (**) 150 3.864 7.44%

5 (**) + No Pose Estimator Detach 150 3.756 10.02%

6 (**) + No Pose Estimator Detach + no Pose Detach 150 3.735 10.53%

Table 4. Ablation Study of the influence brought by Self-Disentanglement training on Hand Joints Localization. Mean Square Error (MSE)

between the predicted location and the ground-truth is used to evaluate the accuracy, which is the lower the better. All models use the

same model structure. Resume denotes resuming the training for another 75 epochs. No Pose Estimator Detach means when resuming

training, the pose estimator will get trained on the mix-reconstructed images. No Pose Detach means when resuming training, the loss

back-propagated from the image generation branch will go backward to the pose estimator through the pose factor.

Query 

(a) Retrieve with Pose

Query 

(b) Retrieve with Appearance

Figure 6. Image retrieval with disentangled factors.

parameters (Model 6). Both models are trained from Model

3 for 75 epochs. While the pose estimator benefits from

warm start and the additional epochs, we can observe even

greater improvements in accuracy when back-propagation

is enabled. These two experiments demonstrate the effec-

tiveness of self-disentanglement in improving the robust-

ness of pose estimation to make it more resilient to envi-

ronment variations.

4.6. Image Retrieval using Disentangled Factors

We can examine the feature spaces by looking at images

with similar features. For instance, if we query images with

similar pose features, we will get images of similar hand

poses under different environment variations. Likewise, if

we query images with similar appearance features, we will

get images in a similar environment but with different hand

poses. Fig. 6 shows the top-20 nearest images from the

monochrome dataset of the same query image in the pose

space and the appearance space respectively. The query re-

sults further confirm the success of our method to disentan-

gle the two factors.

5. Discussion

While we believe our method successfully disentangles

pose features, we can only indirectly validate the result by

reconstructing novel images from random pose-appearance

feature pairs using a GAN framework. The reconstruction

captures the desired hand pose with consistent shading and

background with the environment, but not without artifacts.

The most severe issues are usually around the wrist and arm

region, where the pose key points are sparse. Since key

points are the only direct supervision, the model needs to

differentiate hand pixels from background pixels based on

the key points, and will make mistake where the connec-

tion is weak. Incorporation of pixel label masks or dense

annotations as supervision to pose estimation and image re-

construction can potentially improve the image quality. An-

other interesting failure case is when the pose estimation

makes a mistake, and the reconstruction image shows the

wrongly estimated pose rather than the original input pose.

It shows that while we are successful in disentanglement,

there are other factors contributing to the robustness of pose

estimation. In the future, we would like to investigate a

more direct and quantitative measure of the effectiveness of

disentanglement, and to improve the quality of image re-

construction to enrich any existing training dataset with a

wide range of appearance variations.

6. Conclusion

In this paper, we present a self-disentanglement method

to decompose a monochrome hand image into representa-

tive features of the hand pose and its complementary fea-

tures of the image appearance. Without the supervision of

paired images, we show that our method with cycle consis-

tency principle is sufficient to ensure orthogonality of the

pose feature and the appearance feature. Such flexibility

makes our method applicable to any existing deep learning

based pose estimation framework without requiring addi-

tional data or labels. When tested with a captured dataset of

monochrome images, we demonstrate significant improve-

ment in the robustness of the pose estimator to environment

variations, comparing to a conventional supervised pose es-

timation baseline. Additionally, compared to a disentangle-

ment model learned from paired training data, our model

also performs similarly in terms of synthesized image qual-

ity proofing the success of self-disentanglement.
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[49] A. Szabó, Q. Hu, T. Portenier, M. Zwicker, and P. Favaro.

Challenges in disentangling independent factors of variation.

arXiv preprint arXiv:1711.02245, 2017. 2

[50] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz,
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