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Abstract

In this paper, we mainly consider using 3D point sets
as input to deal with the task of 3D hand pose estimation.
We make some improvements to PointNet++ structure, in-
cluding proposing adaptive pooling which introduces the
self-attention mechanism to make the network could select
features itself, and putting forward an ensemble strategy
to fully utilize hand features. These improvements can en-
hance the expressive ability of features and make full use of
the information contained in features. In addition, we pro-
pose a data augmentation method for point net, which di-
rectly transforms the original point cloud data without the
aid of simulation models. Experiments results on three hand
pose datasets demonstrate that our method can achieve
comparable performance with state-of-the-arts.

1. Introduction

3D hand pose estimation has attracted the attention of
many scholars for its role in the field of computer vision,
virtual reality and robotics. It has made rapid progress in
recent years, benefiting from the development of deep learn-
ing and advances of depth cameras. Nevertheless, due to the
gesture diversity, finger self-similarity and self-occlusion,
there are still many challenges to reach the practical require-
ments.

Most of the current depth-based hand pose estimation
methods use convolutional neural network (CNN) directly
for depth image and improve the test accuracy by design-
ing unique network structure. For example, Oberweger et
al. [15,17] enforce the constraints of hand pose by learning
a prior model. Chen et al. [3, 10, 18] force the network to
learn more effective features for hand joints by guiding the
network to focus on local areas. However, mapping from
depth image to 3D coordinate of hand joints is highly non-
linear and brings challenges to achieve high prediction ac-
curacy [31]. Hence, there are some attempts to use different
forms of input recently. For example, Moon et al. [8, 13]
use 3D voxels to make full use of 3D information. Ge et

al. [6,9] successfully use PointNet++ [20,21] in hand pose
estimation, achieve directly mapping from point cloud to
hand joints. Because point cloud can represent the structure
of hand surface with less data than voxel, we use the point
cloud as network input in this paper. Different from [6],
who directly uses the PointNet++ structure [20,21] as the
backbone of the network. We make some improvements
to PointNet++ structure [20, 21]: the max-pooling oper-
ations are all replaced by the proposed adaptive pooling,
as shown in Figure 2, which introduces the self-attention
mechanism [33] and make the network has the ability to
select features, thus greatly reducing the waste of features
brought by the max-pooling. We call the advanced Point-
Net++ structure “A-PointNet++".

By use “A-PointNet++" structure, we can get many local
features, which we call them “Coarse features”, as shown in
Figure 1. Unlike Ge et al. [6], they directly pool all features
into one feature by max-pooling to directly regress all hand
joints. In our opinion, those local features are certainly in-
dependent of each other, but the max-pooling operation will
ignore this independence and result in the inability to ac-
quire feature that can express the whole hand. Inspired by
ensemble learning, we want to use more local features to
predict hand pose and integrate those results by learning to
get a more accurate result. In this way, we can bridge the
gap caused by max-pooling, and make use of every local
features.

In addition, this paper adopts a new method to augment
dataset for point net, which can effectively improve the net-
work performance by processing the original data directly.
We first divide the hand into 16 parts according to Euler
distance, where the centroids are calculated by the joints in
label. Then we bend fingers according to kinematics to get
new gesture. The new data not only enrich the diversity of
gesture, but also can assist the network to improve the per-
formance in original data. Because, for point net, the new
data are also part of surface of the whole hand, which help
the point net learn the relationship more clearly between
joints and points of the hand surface.

Our main contributions are summarized as follows:
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Figure 1: The framework of our proposed network structure.
e We propose an adaptive pooling method based on self- Ca | | Sharedkc

attention mechanism [33], which reduces the informa-
tion loss of feature caused by max-pooling in Point-
Net++ structure.

e Inspired by ensemble learning, we fully utilize all local
features and integrate all results by learning to obtain
more accurate prediction result.

e We propose a data augmentation method for point net,
by segmenting hand with joints in label and then rotat-
ing each part according to the hand kinematics to add
gestures. These new data can improve the performance
of network in original data significantly.

2. Related work

Hand pose estimation methods can be classified into
three categories: generative methods, discriminative
methods and hybrid methods, and have achieved great
progress [5,23,26,28,38]. Our method belongs to the dis-
criminative methods, relying on a large amount of data to
predict 3D hand joints with deep learning. Specifically, we
use hand point cloud as the input of our model, so we mainly
focus on those methods, which regress hand joints coordi-
nation with the 3D form input.

3D learning for hand pose estimation: Most of the re-
cently proposed 3D hand pose estimation methods [2,11,14,
19,24,32,37,39-41] are based on 2D CNN, where they use
RGB images or depth images directly as the input of the net-
work to predict the coordinates of hand joints. However, it
is difficult to make full use of the 3D information contained
in RGB or depth images. To tackle this problem, Ge et
al. [7] project the depth image to three viewpoints and input
them together to the network for improving the performance
in original data. Nevertheless, predicting 3D joints pose di-
rectly from the RGB image and depth map is highly non-
linear, which hinders the extraction of three-dimensional in-
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Figure 2: Adaptive pooling.

formation. Hence, Ge et al. [8] further propose to transform
the depth image into voxel representation as the network
input and use 3D CNN to generate volumetric heat-maps,
which is a natural and effective method to make full use of
3D information. Similarly, Moon et al. [13] prove that the
use of voxel can significantly improve the prediction accu-
racy compared with the direct use of depth image. How-
ever, those methods are computationally inefficient because
of the huge consumption of computing resources. With the
development of point cloud processing network in recent
years, Ge et al. [6,9] attempt to use the point cloud as the
network input. Compared to voxel representation, both of
them intuitively express the three-dimensional information
of data, but point clouds can be obtained directly from depth
sensors, and data preprocessing is simpler and more direct.
Therefore, in this paper, we also use point cloud as network
input.

PointNet++ [21] is a neural network specially designed
to deal with unordered point sets. Its previous version, ba-
sic PointNet [21], directly map the input points to per-point
features by a multi-layer perception networks (MLP), and
then pool those per-point features into a global feature by
max-pooling operation. But the basic PointNet [21] does
not have the ability to explore local details of point cloud,
so PointNet++ [21] builds a hierarchical grouping of local
features based on basic PointNet [21] and progressively ab-
stract larger and larger local regions. However, we find that
it is inappropriate to use PointNet++ [21] directly into hand



pose estimation like Ge et al. [6,9]. Because max-pooling
would lead to the loss of some useful information, and the
last pooling layer would also destroy the independence of
each local feature. Hence, we make some improvements of
PointNet++ [21] and propose a new network structure that
is more suitable for hand pose estimation.

Data augmentation methods: For data-driven methods,
augmenting data with effective method can significantly im-
prove performance [16]. Oberweger et al. [15, 17] improve
the robustness of the network by randomly rotating, trans-
lating and scaling images in dataset. Further, Ge et al. [7]
augment the dataset by rotating the hand in 3D space and
projecting it to three viewpoints. But these methods do not
increase the diversity of gestures and can not solve the prob-
lems caused by the high degree of spatial freedom of the
hand. Rad et al. [22] effectively improve the prediction ac-
curacy by using synthetic data to increase the diversity of
gestures. Wan et al. [1,25,34] learn the latent space of in-
put data through GAN or VAE, and then acquire the abil-
ity to generate new data. However, those methods need to
use hand model or additionally train GAN and VAE to gen-
erate data, which is time consuming and laborious. Like
Madadi et al. [12], we propose a non-rigid data augmen-
tation by processing the original data. But different from
Madadi et al. [12], which scale fingers and palm indepen-
dently and increase the diversity of the size. Our method
process the original input point cloud according to label,
and directly augments the gesture diversity of datasets de-
pending on kinematics.

3. Method

In this paper, a three-dimensional hand pose estimation
network is designed. The network takes the hand point
cloud as input and outputs the 3D coordinates of the hand
joints, as illustrated in Figure 1. Our network structure is
improved on the basis of PointNet++ [21], which is a pio-
neer to study deep learning on point sets but not suitable for
hand joint estimation. Because a lot of work [3, 10, 18,41]
shows that hand pose estimation is a task that pays attention
to not only global but also local information. However, the
max-pooling in original PointNet++ structure will ignore
the local information and produces an ambiguous global
feature. This is not wise and will cause waste of features.
Therefore, in this paper, we propose the adaptive pooling,
which is based on self-attention mechanism and makes the
network capable of choosing feature. Further more, for the
per-point feature obtained from the last feature extraction
layer, we do not directly use the pooling operation to get a
global feature, but adopt ensemble strategy to make full use
of each feature through learning. In addition, we propose
a data augmentation method for point net. By segmenting
hand with joints in label and then rotating each part accord-
ing to the hand kinematics to add gestures, the performance

of network in original data can be significantly promoted.

The network architecture of the proposed hand pose esti-
mation method consists of three parts. In section 3.1, we de-
scribe the first part which extracts the coarse features of the
hand by proposed “A-PointNet++" structure, whose max-
pooling layer is replaced by our proposed adaptive pool-
ing. The second and third part are our ensemble strategy for
making full use of local features and introduced in section
3.2. In Section 3.3, we will describe the data augmenta-
tion approach. Finally, the implementation details are intro-
duced in section 3.4.

3.1. The extraction of coarse features

In the first part of our network, we use the proposed
“A-PointNet++” structure to extract coarse local features
from input hand point set. Before entering the network, we
need to pre-process the data. We use the same data pre-
processing method as Ge et al. [6,9], where a depth image
is converted into a partial 3D point cloud with noise and
the point set is then downsampled to 1024 points and nor-
malized with oriented bounding box (OBB) [6]. In this pa-
per, the “A-PointNet++" structure is composed by two set
abstraction levels. In the first level, each of the 1024 in-
put points passes through the same multi-layer perceptron
(MLP) to obtain a per-point feature. Then those per-point
features are partitioned into 512 overlapping local regions,
and each region contains 64 nearest features to the cluster-
ing center. For each local region, we use proposed adaptive
pooling instead of the max-pooling to generalize 64 per-
point features into a local feature. As shown in Figure 2,
adaptive pooling employs the idea of self-attention [33] to
give network the ability to choose feature before pooling.
In detail, each feature of this region will get an importance
score vector through a shared full connection (FC) layer,
and then use softmax to normalize the feature along the di-
rection of the dimension to be reduced. Finally, the origi-
nal features is weighted by these normalized score vectors
and synthesized into one feature by the sum operation. This
structure gives the network a better ability to combine scat-
tered features into useful features. In this way, the useless
features in this local region can be discarded, and the re-
maining useful and certainly independent features can be
combined into a feature which can represent the local region
more effectively. After the first level, we got 512 per-point
features about local region. The second level is similar to
the first level, except that the input has changed from 1024
points to 512 per-point features, and the output is 128 per-
point features.

3.2. Hand pose estimation by ensemble learning

After extracting features through “A-PointNet++”, 128
per-point features were obtained. A natural approach is
to pool these features into a global feature to regress hand
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Figure 3: The results ensemble strategy, in which each value of
all results is weighted, and each weight is learned by the network
itself. Meanwhile, the label of weight matrix is generated online.

joints directly. But we don’t think this method can make
good use of these features that were painstakingly learned
before. Because a lot of work [3, 10, 18,41] has shown that
hand pose estimation is a task that pays attention to not only
global but also local information. Here we adopt an en-
semble strategy to solve this problem skillfully and easily,
which can make better use of local features.

We first randomly divide the 128 features obtained in the
first part into n overlapping sets, each with m features, and
then pool those m feature of each set to one feature by adap-
tive pooling, as shown in the second part of our network in
Figure 1. In this way, each set of features can maintain a
certain degree of globality. What needs to be explained is
that point cloud are actually unordered, so randomly parti-
tion can be approximated by sliding in sequence as shown
in Figure 1, and this also ensures that all 128 features are
used.

The third part of our network is the proposed ensemble
strategy. After the second part, we can obtain n sets of hand
features, each predicts a hand pose including the coordi-
nates of K x 3 joint points, where K represents the number
of joints. The labelled joint coordinates of the hand are used
to supervise every pose estimation as follows

Ly = Y0t i [ P* = 2 (1)
where P* and p” respectively correspond to the GT and
predicted 3D joint coordinates. We believe that such n dif-
ferent groups of hand features will predict n different hand
poses, which can complement each other. Inspired by the
ensemble learning, we propose to improve the prediction
accuracy by integrating these poses. This is a more reason-
able strategy for pose estimation which reduce the difficulty
of one-time global hand pose estimation. By superimposing
these n results in proportion to their importance, the coor-
dinates of all the joints of the hand are obtained.

In order to measure the importance of each hand pose,
we generate a N x K weight matrix where N represents
the number of poses and K represents the number of joints
per pose, as shown in Figure 3. Any element wX in the
weight matrix represents the influence or importance of the
same joint in each hand pose on the final ensemble result.
The greater the weight parameter wX, the greater the contri-
bution to the final results, and vice versa. The weight matrix
can be learned by the network itself during training process.
It is supervised by an online generated ground truth matrix
where any element W} is denoted as:

In Zk

W= s @
where we define z* as:
zn = [P = pill, 3)

In order to ensure the stability of formula (2), we set a
threshold e. When 2¥ is the minimum and less than ¢, W’
is set to 1, and the rest is 0. The N x K weight matrix is
trained end-to-end to minimize the following cost

Ly = S35, [PF = pb "+ S0l S Wi —wil” @)

where the second part of the cost adds another constraint
and leads the entire network to converge to the hand pose as
accurate as possible.

3.3. Kinematic data augmentation with label

In this paper, we propose an effective data augmenta-
tion method. Different from simple rotation, translation and
scaling, our method increases the richness of gestures com-
plied with hand kinematics constraints. Firstly, we select
16 joints in label to calculate the centroids of clustering, as
the red ‘X’ shown in Figure 4(a). Then we divide the hand
into 16 parts, as shown in Figure 4(b), according to Euler
distance and rotate each part according to hand kinematics
to expand the gesture.

Figure 5 shows some examples of data augmentation,
where (a) is the original point cloud and (b) is the aug-
mented data. Although these new data do not conform to the
distribution of the original data obtained from the sensor,
these points after rotated are actually on the hand surface,
in other words, the new data is still a sampling of the com-
plete hand surface. Therefore, when new data and original
data are input into the network together, this augmentation
can help the point net learn the relationship more clearly
between joints and points of the hand surface.

3.4. Implementation details

We use Adam [14] optimizer with initial learning rate
0.001, momentum 0.9, batch size 35 and regularization
strength 0.00001 to train our network. The learning rate
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Figure 4: (a) We select 16 joints in label as the red ‘X’, and calcu-
late the clustering center as the green point. (b) Hand point cloud
segmentation using k-means.

(a) (b)

Figure 5: (a) The original hand point cloud. (b) Hand point cloud
after changing gesture.

is divided by 10 after 30 epochs, and we stop the training
process after 60 epochs.

Our experimental platform is Pytorch with Intel Core i7
7700K, 32GB of RAM and an Nvidia GTX 1080 GPU.

4. Experiment and Result

We evaluate our proposed method on three public hand
pose datasets: ICVL [29], NYU [30], and MSRA [27].

The ICVL dataset [29] contains 22K training frames
from 10 different subjects and 1596 testing frames with two
sequences of 702 and 894. The ground truth of each frame
contains M = 16 joints.

The NYU dataset [30] contains 72757 training frames
from one subject and 8252 testing frames from two subjects.
The annotation of each frame is 36 joints and we estimate
a subset of M = 14 joints following previous works [8, 18,
30].

The MSRA dataset [27] contains 76500 frames from 9
subjects and each subject contains 17 gestures. The anno-
tation of each frame is M = 21 joints. For evaluation, we
used the nine-fold cross-validation method.

We use two metrics to evaluate the hand pose estimation
performance: the first metric is the joint mean error distance
over all test frames; the second metric is the proportion of

framework NYU ICVL
Max 12.21mm 8.12mm
Avg 12.89mm 8.03mm
FC+Max 12.09mm 8.02mm
Max+FC 12.17mm 8.07mm
FC+Avg 12.56mm 7.86mm
Avg+FC 12.7Tmm 7.94mm
adaptive 11.36mm  7.62mm
pooling
Group+ 1121lmm  7.50mm
average
our 10.33mm 6.88mm

Table 1: Comparison of average joint error between different
framework for ablation experiments

good frames in which the worst joint error is below a thresh-
old.

4.1. Effect of adaptive pooling

As mentioned in Section 3.1, in order to better retain
the effective information of the original features after pool-
ing, we use adaptive pooling instead of maximum pool-
ing. In this subsection, we will demonstrate the effective-
ness of this method through experiments on NYU [30] and
ICVL [29] datasets.

We use the network structure shown in Figure 6(a) to
compare the pooling methods, which is the backbone of
our overall network, in other words, the overall network
removal ensemble method. There are three parts for pool-
ing, which can be replaced by different pooling methods in
the experiment. Our baseline use max-pooling as same as
PointNet++ [21], and we also compare with average pool-
ing. In addition, since adaptive pooling (Ada), as shown
in Figure 6(b), has more network parameters than max-
pooling, we also compare four pooling methods ‘FC+Max’,
‘Max+FC’, ‘FC+Avg’, ‘Avg+FC’ as shown in Figure 6(c)-
(f) in order to compare fairly with the same parameter. The
results of comparison are shown in Table 1. As we can see,
the average joint error of Adais 11.36mm on NYU, which is
0.85mm less than ‘Max’, 1.53mm than ‘Avg’, and 0.73mm,
0.81mm, 1.2mm and 1.35mm than ‘FC+Max’, ‘Max+FC’,
‘FC+Avg’, ‘Avg+FC’. And on ICVL, itis 0.5mm, 0.41mm,
0.4mm, 0.45mm, 0.24mm, 0.32mm less than the other six
frameworks. Hence, this effectively proves that the feature
pooled by proposed adaptive pooling can better retain hand
information. In addition, it can be found that max-pooling
is better than average pooling on NYU, while the opposite
is true on ICVL, so it can be seen that the choice of pooling
methods has a direct impact on the result.
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Figure 6: The framework for verifying the effectiveness of adaptive pooling.

.. Gestures  Gesture  Scale Scale
Methods Original <5 %20 <5 %20
Ada 7.6mm 7.2mm 6.7mm 7.4mm 7.2mm
Group+weight  6.9mm - 6.24mm - -
Table 2: Effects of our data extension method on ICVL

dataset [29]. “Gestures” means our data augmentation method and
“Scale” comes from [6]. “x5” means augmenting the dataset five
times, and so on.

4.2, Effect of ensemble strategy

As mentioned in Section 3.2, we propose an ensemble
strategy where a weight matrix is learned to guide results
fusion. In order to evaluate the impact of different ensem-
ble strategy, we compare the result of two model, one is
our overall network (Group+weight), which uses the en-
semble strategy mentioned above to obtain the final pre-
diction result, and the other is Group+average, where the
multiple hand poses are averaged as a final result. As can
be seen in Table 1, the Group+weight can achieve supe-
rior performance on NYU [30] and ICVL [29] datasets.
Specifically, on NYU dataset, the average joint error of our
overall network is 10.33mm, which obviously lower than
the Group+average (our), which is 11.2lmm. On ICVL
dataset, the average joint error of Group+weight is reduced
by 0.62mm. This proves the weight matrix learned by net-
work itself can effectively guide the ensemble of results, so
as to get more accurate results.

4.3. Effect of data augmentation

We verify the effect of data augmentation on ICVL
dataset [29]. We augment the data offline by 20 times with
randomly bending fingers, and then we train two models
with this augmented dataset. One is the PointNet++ whose
max-pooling is replaced by the adaptive pooling (Ada). The
other is our overall network (Group+weight). As can be
seen from Table 2, when augmenting the data set by 20

times, the test error of Ada can be reduced by 0.9mm com-
pared with that without data augmentation, and the test er-
ror of Group+weight can be reduced by 0.66mm. Through
this experiment, it can be proved that it is very effective
for improving the performance of the network by using our
proposed gesture extension method.

In addition, we also compare the data augmentation
method with Ge er al. [6], which increases the diversity
of scales and augments the data by five times on ICVL
dataset [29]. Hence, we also augment ICVL dataset [29]
by five times to keep the same experimental conditions, and
use these two datasets to train Ada. As can be seen from
Table 2, by comparing columns 2 to 4, it can be found that
the average joint point error decreases significantly with the
increasing amount of data. From the 4 and last columns, we
can see the average joint error of our augmentation method
is 0.2mm less than that of the method in Ge et al. [6].
Hence, it proves that our method that increases the diversity
of gestures is more effective than the method of increas-
ing diversity of scales. Therefore, we believe that the high
freedom of gesture space is more important for limiting the
accuracy of hand pose estimation.

4.4. Comparisons with state-of-the-arts

We compare our method with latent random for-
est(LRF) [29], 2D CNN in hand model (DeepModel) [40],
feedback loop based on 2D CNN (Feedback Loop) [18],
2D CNN with priors (DeepPrior) [17] and its evolu-
tion (DeepPrior++) [15], Lie group based 2D CNN (Lie-
X) [36], multi-view 3D CNN (3DCNN) [8], region ensem-
ble network (REN) [10], pose guide structured REN (Pose-
REN) [3]dense 3D regression (DenseReg) [35], voxel-to-
voxel (V2V) [13], SHPR-net [4], hand regression with hi-
erarchical PointNet (HandPointNet) [6], and its improved
version Point-to-Point [9]. The proportion of good frames
over different error thresholds and the per-joint mean error
distance of different methods on ICVL [29], NYU [30] and
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Figure 7: Comparison of our proposed method with state-of-the-arts methods. Left: the percentage of success frames over different error
thresholds. Right: 3D distance errors per hand keypoints. Top row: ICVL dataset, Middle row: NYU dataset, bottom row: MSRA dataset

MSRA [27] datasets are presented in Figure 7.

On ICVL dataset [29], to evaluate the capability of our
methods, we augment the data offline by 20 times, total-
ing 440K point clouds. As shown in the top of Figure 7,
our method demonstrate good performance compared with
state-of-the-art methods over most of the error thresholds.
Specifically, the average joint error of our method is slightly
lower than V2V [13] and Point-to-Point [9]. This proves

that our method is effective for hand pose estimation tasks.

On NYU dataset [30], in order to fairly compare our
method with HandPointNet [6] and Point-to-Point [9], we
double the data as they did. As shown in the middle of
Figure 7, our method achieve 9.90mm in average joint er-
ror, which shows comparable performance with the two best
methods V2V [13] and Point-to-Point [9]. And compared
with HandPointNet [6], our method can reduce the average



HandPointNet
10.3M

v2v
457.4M

Ours
11.6M

Point-to-Point
17.2M

Model name
Parameters

Table 3: Comparison of parameters between different models.

joint error by 0.64mm, and the proportion of good frames
of our method is better than HandPointNet [6] over almost
all the error thresholds. Those demonstrate that our method
can achieve comparable performance with state-of-the-arts.

On MSRA dataset [27], we mainly compare the effect
of our network structure with other methods. As shown in
the bottom of Figure 7, our network can still achieve satis-
factory results without augmenting data. Specifically, com-
pared with HandPointNet [6], which directly use the Point-
net++ structure and then adjusts the position of each fin-
gertip joint, our approach shows better performance. This
proves that our network can extract fine features from point
clouds and make full use of them to hand pose estimation
tasks.

Based on the above performance, we think that our net-
work structure makes more effective use of the 3D informa-
tion contained in the hand point cloud. At the same time,
our data augmentation method can significantly improve the
performance of 3D hand pose estimation method based on
point cloud.

4.5. Computational complexity

The runtime of our method is 14.5ms in average, includ-
ing 4.2ms for point sampling, 10.3ms for the hand pose re-
gression network to predict result. Thus, our method runs
in real-time at over 69.0fps. In addition, our network model
size is 11.6MB, and the comparison with some related work
is shown in Table 3.

5. Conclusion

We propose a hand pose ensemble learning approach
based on grouping features of hand point sets. Every group
of features is used to predict a hand pose and all groups of
features are then integrated to improve the prediction accu-
racy. We segment hand with joints in label and augment the
datasets by adding gestures to increase the diversity of the
datasets. The two ideas boost the performance significantly
and make the our model achieve comparable performance
with state-of-the-arts.
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