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Abstract

Anticipating future activities in video is a task with many

practical applications. While earlier approaches are lim-

ited to just a few seconds in the future, the prediction time

horizon has just recently been extended to several minutes

in the future. However, as increasing the predicted time

horizon, the future becomes more uncertain and models that

generate a single prediction fail at capturing the different

possible future activities. In this paper, we address the un-

certainty modelling for predicting long-term future activi-

ties. Both an action model and a length model are trained

to model the probability distribution of the future activi-

ties. At test time, we sample from the predicted distributions

multiple samples that correspond to the different possible

sequences of future activities. Our model is evaluated on

two challenging datasets and shows a good performance in

capturing the multi-modal future activities without compro-

mising the accuracy when predicting a single sequence of

future activities.

1. Introduction

Anticipating future activities in video has become an ac-

tive research topic in computer vision. While earlier ap-

proaches focused on early activity detection [20, 6, 13, 21],

recent models predict activities a few seconds in the fu-

ture [12, 7, 24, 4]. However, predicting the future activity

label shortly before it starts is not sufficient for many ap-

plications. Robots, for instance, that interact with humans

to accomplish industrial tasks or help in housework need to

anticipate activities for a long time horizon. Such long-term

prediction would enable these robots to plan ahead to com-

plete their tasks efficiently. Moreover, anticipating the ac-

tivities of other interacting humans improves human-robot

interaction.

Recently, [1] extended the prediction horizon to a few

minutes in the future and predict both future activities and

their durations as well. While their approach generates good

predictions, it does not take the uncertainty of the future

into consideration. For example, given a video snippet that

shows a person taking a cup from the cupboard, we cannot

be sure whether the future activity would be pour water or

pour coffee. Approaches that predict a single output and do

not model the uncertainty in the future actions would fail

in such cases. On the contrary, approaches that are capable

of predicting all the possible outputs are preferable. Fig. 1

illustrates a case where the future activities have multiple

modes and the model has to predict all these modes.

In this paper, we introduce a framework that models the

probability distribution of the future activities and use this

distribution to generate several possible sequences of future

activities at test time. To this end, we train an action model

that predicts a probability distribution of the future action

label, and a length model which predicts a probability dis-

tribution of the future action length. At test time, we sample

from these models a future action segment represented by

an action label and its length. To predict more in the future,

we feed the predicted action segment to the model and pre-

dict the next one recursively. We evaluate our framework

on two datasets with videos of varying length and many ac-

tion segments: the Breakfast dataset [11] and 50Salads [23].

Our framework outperforms a baseline that predicts the fu-

ture activities using n-grams as an action model and a Gaus-

sian to predict the action length. Furthermore, we are able

to achieve results that are comparable with the state-of-the-

art if we use the framework to predict a single sequence of

future activities.

2. Related Work

Future prediction has been studied by many researchers.

However, the predicted time horizon is very limited in ear-

lier approaches. Instead of predicting the future, Hoai and

De la Torre [6] proposed a max-margin framework for early

activity detection. Other approaches adapt special loss func-

tions to detect a partially observed activity [13, 21]. To

predict future actions, Lan et al. [12] proposed hierarchi-

cal representations of short clips or still images. In [10] a

spatio-temporal graph is used to predict object affordances,

trajectories, and sub-activities. Vondrick et al. [24] trained

a deep convolutional neural network to predict features in

the future from a single frame. An SVM is then used to
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Figure 1. The anticipation task. Given an observed part of a video, we want to predict the future activities that might follow in the future

with their durations. The model outputs a collection of samples to represent the uncertainty in the future actions.

predict the future action label from the predicted features.

In [4], a sequence of visual representations of past frames is

used to predict a sequence of future representations. A rein-

forcement learning module is used to provide supervision at

sequence level. Zeng et al. [25] used inverse reinforcement

learning to anticipate visual representations from unlabeled

video. Shi et al. [22] proposed a recurrent neural network

with radial basis function kernels to predict features in the

future and then predict the action label with a multi-layer

perceptron. Instead of features, [19] predict future dynamic

images and train a classifier to predict the action label on

top of the predicted images. Furnari et al. [3] predict future

actions in egocentric videos and evaluate the top-k accu-

racy to consider the multi-modal future. Miech et al. [16]

combine a predictive model that directly predicts the future

action label with a transitional model that models the transi-

tion probabilities between actions. However, all of the pre-

vious approaches predict an action label without any time

information. Heidarivincheh et al. [5] introduced a model

to predict the time of completion for an observed activity.

In [14], both the future activity and its starting time are pre-

dicted.

Despite the success of the previous approaches in pre-

dicting the future actions, they are however limited to a

few seconds in the future. For many real world applica-

tions, a long-term prediction beyond just a few seconds is

crucial. Recently, Abu Farha et al. [1] introduced a two-

step approach that is capable of anticipating future activities

several minutes in the future. Given an observed part of a

video, they infer the activities in the observed part first and

then anticipate the future activities and their durations. For

the anticipation step, both an RNN and a CNN are trained

to generate the future action segments. Ke et al. [8] build

on this two-step framework and use temporal convolutions

with attention to anticipate future activities. The model out-

put is conditioned on a time parameter to determine the pre-

dicted time horizon. In contrast to these approaches, we

predict multiple outputs to consider the uncertainty in the

future activities. In a very recent work, [15] adapt a varia-

tional auto-encoder framework to predict a distribution over

the future action and its starting time. However, they do

not model the dependency between the future action and its

starting time directly and rely on a shared latent space to

capture this dependency. On the contrary, our framework

directly models the dependency between the action label

and its length.

3. Anticipating Activities

Given an observed part of a video with n action seg-

ments c1:n = (c1, . . . , cn) with length l1:n = (l1, . . . , ln),
we want to predict all the action segments and their lengths

that will occur in the future unseen part of that video. I.e. we

want to predict the segments cn+1:N and the correspond-

ing segments length ln+1:N , where N is the total number

of action segments in the video. Furthermore, since the

last observed action segment cn might be partially observed

and will continue in the future, we want to update our es-

timate of ln as well. Since for the same observed action

segments c1:n there are more than one possible future ac-

tion segments, we want to predict more than one output to

capture the different modes in the future as shown in Fig. 1.

To this end, we propose a framework to model the uncer-

tainty in the future activities, and then use this framework

to generate samples of the future action segments. We start

with the model description in Section 3.1, and then describe

the prediction procedure in Section 3.2.

3.1. Model

We follow the two-step approach proposed in [1] and in-

fer the actions in the observed frames and then predict the

future actions. For inferring the actions in the observed part,

we use the same RNN-HMM model [18] that is used by [1].

Our goal now is to model the probability of the future ac-

tions and their lengths. This can be done using an autore-

gressive model that predicts the future action and its length,

and then feeding the predicted output to the model again to

predict the next one. Using such an autoregressive approach

allows us to use the same model to predict actions for arbi-

trarily long time horizons. The probability distribution of

the future action segment and its length can be factorized as

follows

p(cn+1, ln+1|c1:n, l1:n) = p(cn+1|c1:n, l1:n) ·

p(ln+1|c1:n, l1:n, cn+1),
(1)

where the first factor p(cn+1|c1:n, l1:n) is an action model

that describes the probability distribution of the future ac-
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Figure 2. Our anticipation framework consists of: (a) The action model which predicts the probability distribution of the future action label.

(b) The length model which predicts the probability distribution of the future action length.

tion label given the preceding action segments. Whereas

the second factor p(ln+1|c1:n, l1:n, cn+1) is a length model

that describes the probability distribution of the future ac-

tion length given the preceding action segments and the fu-

ture action label. In the following, we discuss the details of

these models.

3.1.1 Action Model

The action model predicts a probability distribution of the

future action given the sequence of observed action seg-

ments and their lengths. For this model we use an RNN-

based model similar to the one proposed in [1] as shown

in Fig. 2 (a). Given the observed part of the video, each

action segment is represented by a vector of a 1-hot en-

coding of the action label and the corresponding segment

length. This sequence is passed through a fully connected

layer, two layers of gated recurrent units (GRUs), and an-

other fully connected layer. We use ReLU activations for

the fully connected layers. For the output layer, we use an-

other fully connected layer that predicts action scores for

the future action. To get the probability distribution of the

future action, we apply a softmax over the predicted scores

p(cn+1 = ĉ|c1:n, l1:n) =
exĉ

∑

c̃ e
xc̃

, (2)

where xĉ is the predicted action score for the class ĉ. To

train this model, we use a cross entropy loss

Laction =
1

M

∑

m

−log(ym,c), (3)

where ym,c is the predicted probability for the ground-truth

future action label c in the mth training example.

3.1.2 Length Model

We model the probability distribution of the future action

length with a Gaussian distribution, i.e.

p(ln+1|c1:n, l1:n, cn+1) = N (µ, σ2). (4)

To predict the mean length µ and the standard deviation σ

of this distribution, we use a network with two branches as

shown in Fig. 2 (b). The first branch is the same as the

RNN-based model used in the action model. It takes the

sequence of the observed action segments as input and en-

codes them into a single vector representation. Whereas the

second branch is a single fully connected layer that takes

a 1-hot encoding of the future action cn+1 and encodes it

in another single vector representation. These two encoded

vectors are concatenated and passed through two fully con-

nected output layers to predict the mean length µ and the

standard deviation σ. To ensure that the standard devia-

tion is non-negative we use exponential activations for the

output layer. To train the length model, we minimize the

negative log likelihood of the target length

Llength =
1

M

∑

m

−log p(ln+1 = ℓm|c1:n, l1:n, cn+1),

=
1

M

∑

m

0.5 log(2π) + log(σm) +

(ℓm − µm)2

2σ2
m

,

(5)

where ℓm is the ground-truth length of the future action, µm

and σm are the predicted mean length and standard devia-

tion for the mth training example. As the first term in (5) is



constant, our final loss function for the length model can be

reduced to

Llength =
1

M

∑

m

log(σm) +
(ℓm − µm)2

2σ2
m

. (6)

The training examples for both the action and length

models are generated based on the ground-truth segmen-

tation of the training videos. Given a video with n action

segments, we generate n − 1 training examples. For a seg-

ment i > 1, the sequence of all the preceding segments

is considered as input of the training example, where each

segment is represented by a vector of a 1-hot encoding of

the action label and the corresponding segment length. The

action label of segment i defines the target for the action

model and its length serves as a target for the length model.

3.2. Prediction

Given an observed part of a video with n action seg-

ments, we want to generate plausible sequences of future

activities. Note that the observed part might end in a mid-

dle of an action segment and the last segment in the obser-

vations might be not fully observed. In the following we

describe two strategies for predicting the sequence of future

activities. The first strategy generates multiple sequences

of activities by sampling from the predicted distributions of

our approach. Whereas the second strategy is used to gen-

erate a single prediction that corresponds to the mode of the

predicted distributions.

3.2.1 Prediction by Generating Samples

At test time we alternate between two steps: sampling a

future action label from the action model

ĉn+1 ∼ p(cn+1|c1:n, l1:n), (7)

and then we sample a length for the sampled future action

using the length model

l̂n+1 ∼ p(ln+1|c1:n, l1:n, ĉn+1). (8)

We feed the predicted action segment recursively to the

model until we predict the desired time horizon. As the

last observed action segment might continue in the future,

we start the prediction with updating the length of the last

observed action segment. For this step, we sample a length

for the last observed action segment based on the preced-

ing segments and only update the length of that segment if

the generated sample is greater than the observed length as

follows

l̂n ∼ p(ln|c1:n−1, l1:n−1, cn), (9)

l�n =

{

l̂n : l̂n > ℓn

ℓn : otherwise
, (10)

where ℓn is the observed length of the last observed action

segment, and l�n is the predicted full length of that segment.

3.2.2 Prediction of the Mode

For predicting the mode, we also alternate between predict-

ing the future action label and then predicting the length

of that label. However, instead of sampling from the pre-

dicted action distribution, we choose the action label with

the highest probability. For predicting the length, we use

the predicted mean length from the length model instead of

sampling from the predicted distribution.

3.3. Implementation Details

We implemented both models in PyTorch [17] and

trained them using Adam optimizer [9] with a learning rate

of 0.001. The batch size is set to 32. We trained the ac-

tion model for 60 epochs and the length model is trained for

30 epochs. Dropout is used after each layer with probabil-

ity 0.5. We also apply standardization to the length of the

action segments as follows

l =
l − l

σl

, (11)

where l and σl are the mean length and standard deviation,

respectively, computed from the lengths of all action seg-

ments in the training videos.

4. Experiments

Datasets. We evaluate the proposed model on two chal-

lenging datasets: the Breakfast dataset [11] and 50Sal-

ads [23].

The Breakfast dataset contains 1, 712 videos with

roughly 3.6 million frames. Each video belongs to one out

of ten breakfast related activities, such as make tea or pan-

cakes. The video frames are annotated with fine-grained

action labels like pour water or take cup. Overall, there are

48 different actions where each video contains 6 action in-

stances on average. The videos were recorded by 52 actors

in 18 different kitchens with varying view points. For eval-

uation, we use the standard 4 splits as proposed in [11] and

report the average.

The 50Salads dataset contains 50 videos with roughly

600, 000 frames. On average, each video contains 20 action

instances and is 6.4 minutes long. All the videos correspond

to salad preparation activities and were performed by 25
actors. The video frames are annotated with 17 different

fine-grained action labels like cut tomato or peel cucumber.

For evaluation, we use five-fold cross-validation and report

the average as in [23].

Evaluation Metric. We evaluate our framework using

two evaluation protocols. The first protocol is used in [1]

where we observe 20% or 30% of the video and predict the

following 10%, 20%, 30% and 50% of that video. As a



Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

bi-grams 0.4511 0.3503 0.3094 0.2569 0.4578 0.3629 0.3148 0.2612

tri-grams 0.4595 0.3759 0.3413 0.2952 0.4809 0.4030 0.3586 0.3060

four-grams 0.4728 0.3855 0.3474 0.2970 0.4988 0.4143 0.3645 0.3086

Ours 0.5039 0.4171 0.3779 0.3278 0.5125 0.4294 0.3833 0.3307

50Salads

bi-grams 0.3039 0.2230 0.1853 0.1075 0.3153 0.1859 0.1295 0.0884

tri-grams 0.3188 0.2313 0.1919 0.1158 0.3207 0.1931 0.1390 0.0940

four-grams 0.3042 0.2253 0.1831 0.1125 0.3079 0.1889 0.1309 0.0958

Ours 0.3495 0.2805 0.2408 0.1541 0.3315 0.2465 0.1884 0.1434

Table 1. Results for anticipation with ground-truth observations.

Numbers represent mean over classes (MoC) metric averaged over

25 samples.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

Baseline 0.4954 0.4038 0.3683 0.3271 0.5225 0.4295 0.3892 0.3380

Ours 0.5300 0.4410 0.3972 0.3490 0.5399 0.4453 0.4021 0.3558

50Salads

Baseline 0.3165 0.2502 0.2075 0.1241 0.3698 0.2251 0.1604 0.1158

Ours 0.3810 0.3010 0.2633 0.1651 0.4000 0.2927 0.2317 0.1548

Table 2. Results for anticipation with ground-truth observations.

Numbers represent mean over classes (MoC) metric of the pre-

dicted distribution mode.

metric, we report the mean over classes (MoC) by eval-

uating the frame-wise accuracy of each action class and

then averaging over the total number of ground-truth action

classes. To evaluate multiple samples of future activities,

the average frame-wise accuracy of each action class is used

to compute the MoC. The average accuracy over samples

has been used in other future prediction tasks like predict-

ing future semantic segmentation [2] or predicting the next

future action label [15]. The second protocol is used in [15]

where we predict only the next future action segment and

report the accuracy of the predicted label.

Baseline. As a baseline we replace our action model with

tri-grams, where the probability of the action is determined

based on the preceding two action segments. For the length

model, we assume the length of an action follows a Gaus-

sian distribution with the mean and variance estimated from

the training action segments of the corresponding action.

4.1. Anticipation with Ground-Truth Observations

We start the evaluation by using the ground-truth anno-

tations of the observed part. This setup allows us to isolate

the effect of the action segmentation model which is used

to infer the labels of the observed part (i.e. the RNN-HMM

model). Table 1 shows the results of our model compared

to n-grams baselines. For each example in the test set, we

generate 25 samples and use the average accuracy of each

class to compute the mean over classes metric (MoC). As

shown in Table 1, our approach outperforms the baselines

on both datasets and in all the test cases. This indicates that

our model learns a better distribution of the future action

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

Baseline 0.1539 0.1365 0.1293 0.1190 0.1931 0.1656 0.1576 0.1390

Ours 0.1569 0.1400 0.1330 0.1295 0.1914 0.1718 0.1738 0.1498

50Salads

Baseline 0.2141 0.1636 0.1329 0.0939 0.2459 0.1560 0.1173 0.0857

Ours 0.2356 0.1948 0.1801 0.1278 0.2804 0.1795 0.1477 0.1206

Table 3. Results for anticipation without ground-truth observa-

tions. Numbers represent mean over classes (MoC) metric aver-

aged over 25 samples.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

Baseline 0.1655 0.1474 0.1385 0.1319 0.2080 0.1767 0.1700 0.1578

Ours 0.1671 0.1540 0.1447 0.1420 0.2073 0.1827 0.1842 0.1686

50Salads

Baseline 0.2174 0.1743 0.1496 0.1034 0.2806 0.1870 0.1460 0.0975

Ours 0.2486 0.2237 0.1988 0.1282 0.2910 0.2050 0.1528 0.1231

Table 4. Results for anticipation without ground-truth observa-

tions. Numbers represent mean over classes (MoC) metric of the

predicted distribution mode.

segments represented by the generated samples. We also

show the effect of using bi-grams or four-grams instead of

the used tri-grams for the baseline. As shown in Table 1, the

effect of using different n-grams model is small. While us-

ing more history gives a slight improvement on the Break-

fast dataset, but the tri-grams model performs better than

four-grams on the 50Salads dataset, which contains much

longer sequences. For the rest of the experiments, we stick

with the tri-grams model for the proposed baseline.

We also report the accuracy of the mode of the predicted

distribution. Instead of randomly drawing a sample from

the predicted distribution, we predict the action label with

the highest probability at each step. For the action length,

we use the predicted mean length. Table 2 shows the results

on both 50Salads and the Breakfast dataset. Our approach

outperforms the baseline in this setup as well.

Fig. 3 shows a qualitative result from the Breakfast

dataset. Both the generated samples and the mode of the

distribution are shown. We also show the results of the RNN

and CNN models from [1]. As illustrated in the figure, there

are many possible action segments that might happen af-

ter the observed part (SIL, take cup), and our model is

able to generate samples that correspond to these different

possibilities. In contrast, [1] generates only one possible

future sequence of activities, which in this case does not

correspond to the ground-truth.

4.2. Anticipation without Ground-Truth Observa-
tions

In this section, we evaluate our approach without relying

on the ground-truth annotations of the observed part. I.e. we

infer the labels of the observed part of the video with the

RNN-HMM model [18], and then use our approach to pre-

dict the future activities. Table 3 reports the results of the



Samples :

Observed :

GT Future : take_cup add_teabag pour_water

1 take_cup add_teabag pour_water

2 take_cup add_teabag pour_water

3 take_cup add_teabag pour_water

4 take_cup add_teabag

5 take_cup add_teabag

6 take_cup add_teabag

7 take_cup add_teabag

8 take_cup pour_coffee pour_milk

9 take_cup spoon_powder

10 take_cup spoon_powder

11 take_cup spoon_powder

12 take_cup spoon_powder

13 take_cup spoon_powder

14 take_cup spoon_powder

15 take_cup pour_coffee

16 take_cup spoon_powder

17 take_cup spoon_powder

18 take_cup spoon_powder

19 take_cup pour_coffee

20 take_cup pour_coffee

21 take_cup pour_coffee pour_milk

22 take_cup pour_coffee SIL

23 take_cup spoon_powder

24 pour_coffee

25 spoon_powder pour_milk

SIL take_cup

Mode : take_cup add_teabag pour_water

RNN [1] : take_cup pour_coffee pour_milk

CNN [1] : take_cup pour_coffee pour_water

Figure 3. Qualitative result from the Breakfast dataset. This sequence corresponds to the activity of making tea. We observe 20% of the

video and predict the following 50%. Both the generated samples and the mode of the predicted distribution are shown. The samples are

ranked based on the frame-wise accuracy of the predicted activities. We also show the results of the RNN and CNN models from [1].

generated samples, represented by the mean over classes

averaged over 25 samples. Whereas Table 4 shows the re-

sults of the distribution mode. Our approach outperforms

the baseline in both cases, which emphasizes the robustness

of our approach to noisy input. Nevertheless, the baseline

performs slightly better than our approach for the case of

observing 30% and predicting the next 10% of the videos on

the Breakfast dataset. This case corresponds to a short-term

prediction where in most cases the future activities consist

of only one action segment. Whereas our approach is better

for longer time horizons.

4.3. Effect of the Number of Samples

To evaluate the generated samples, we report the mean

over classes averaged over 25 samples. Table 5 shows the

effect of using different numbers of samples. In each case,

the average and standard deviation of 5 runs are reported.

As shown in Table 5, the impact of the number of samples is

small. While the average MoC remains in the same range,

the standard deviation decreases as increasing the number

of samples.

4.4. Comparison with the State-of-the-Art

In this section, we compare our approach with the state-

of-the-art methods for anticipating activities. Since the

state-of-the-art methods do not model uncertainty and pre-

dict just a single sequence of future activities, we report

the accuracy of the mode of the predicted distribution of

our approach. Table 6 shows the results with the ground-

truth observations, and Table 7 shows the results without

the ground-truth observations. While the mode of the dis-

tribution from our approach only outperforms the CNN

model [1] on the 50Salads dataset, it shows a lower accu-

racy compared to the RNN model and [8]. This is expected

since these approaches were trained to predict only a single

sequence of future activities while our approach is trained

to predict multiple sequences. We therefore also report the

top-1 MoC. The results show that our model captures the

future activities better.

We also compare our approach with [15] in predicting

the next action segment given all the previous segments.

The accuracy of predicting the label of the future action

segment is reported in Table 8. Note that in this compar-



Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

5 samples 0.1547 ± 0.0014 0.1402 ± 0.0007 0.1349 ± 0.0020 0.1310 ± 0.0018 0.1907 ± 0.0017 0.1703 ± 0.0016 0.1738 ± 0.0036 0.1508 ± 0.0020

10 samples 0.1557 ± 0.0010 0.1407 ± 0.0012 0.1347 ± 0.0017 0.1302 ± 0.0013 0.1897 ± 0.0015 0.1708 ± 0.0012 0.1707 ± 0.0010 0.1502 ± 0.0010

25 samples 0.1557 ± 0.0007 0.1406 ± 0.0008 0.1342 ± 0.0007 0.1310 ± 0.0006 0.1904 ± 0.0006 0.1712 ± 0.0008 0.1718 ± 0.0011 0.1509 ± 0.0006

50 samples 0.1556 ± 0.0011 0.1400 ± 0.0006 0.1348 ± 0.0006 0.1298 ± 0.0003 0.1906 ± 0.0011 0.1712 ± 0.0005 0.1722 ± 0.0003 0.1507 ± 0.0006

50Salads

5 samples 0.2404 ± 0.0200 0.2002 ± 0.0071 0.1693 ± 0.0077 0.1247 ± 0.0078 0.2639 ± 0.0108 0.1798 ± 0.0139 0.1453 ± 0.0118 0.1199 ± 0.0044

10 samples 0.2304 ± 0.0118 0.2037 ± 0.0045 0.1739 ± 0.0054 0.1264 ± 0.0054 0.2699 ± 0.0080 0.1807 ± 0.0075 0.1468 ± 0.0095 0.1259 ± 0.0040

25 samples 0.2316 ± 0.0068 0.2003 ± 0.0040 0.1730 ± 0.0048 0.1271 ± 0.0013 0.2658 ± 0.0042 0.1822 ± 0.0062 0.1483 ± 0.0060 0.1220 ± 0.0029

50 samples 0.2308 ± 0.0032 0.1998 ± 0.0010 0.1754 ± 0.0014 0.1278 ± 0.0013 0.2664 ± 0.0030 0.1826 ± 0.0036 0.1459 ± 0.0028 0.1225 ± 0.0037

Table 5. Effect of the number of samples. Numbers represent mean over classes (MoC) metric averaged over the samples. In each case, the

average and standard deviation of 5 runs are reported.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

RNN model [1] 0.6035 0.5044 0.4528 0.4042 0.6145 0.5025 0.4490 0.4175

CNN model [1] 0.5797 0.4912 0.4403 0.3926 0.6032 0.5014 0.4518 0.4051

Time-Cond. [8] 0.6446 0.5627 0.5015 0.4399 0.6595 0.5594 0.4914 0.4423

Ours (Mode) 0.5300 0.4410 0.3972 0.3490 0.5399 0.4453 0.4021 0.3558

Ours (Top-1) 0.7884 0.7284 0.6629 0.6345 0.8200 0.7283 0.6913 0.6239

50Salads

RNN model [1] 0.4230 0.3119 0.2522 0.1682 0.4419 0.2951 0.1996 0.1038

CNN model [1] 0.3608 0.2762 0.2143 0.1548 0.3736 0.2478 0.2078 0.1405

Time-Cond. [8] 0.4512 0.3323 0.2759 0.1727 0.4640 0.3480 0.2524 0.1384

Ours (Mode) 0.3810 0.3010 0.2633 0.1651 0.4000 0.2927 0.2317 0.1548

Ours (Top-1) 0.7489 0.5875 0.4607 0.3571 0.6739 0.5237 0.4673 0.3664

Table 6. Comparison with the state-of-the-art using ground-truth

observations. Numbers represent mean over classes (MoC).

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

RNN model [1] 0.1811 0.1720 0.1594 0.1581 0.2164 0.2002 0.1973 0.1921

CNN model [1] 0.1790 0.1635 0.1537 0.1454 0.2244 0.2012 0.1969 0.1876

Time-Cond. [8] 0.1841 0.1721 0.1642 0.1584 0.2275 0.2044 0.1964 0.1975

Ours (Mode) 0.1671 0.1540 0.1447 0.1420 0.2073 0.1827 0.1842 0.1686

Ours (Top-1) 0.2889 0.2843 0.2761 0.2804 0.3238 0.3160 0.3283 0.3079

50Salads

RNN model [1] 0.3006 0.2543 0.1874 0.1349 0.3077 0.1719 0.1479 0.0977

CNN model [1] 0.2124 0.1903 0.1598 0.0987 0.2914 0.2014 0.1746 0.1086

Time-Cond. [8] 0.3251 0.2761 0.2126 0.1599 0.3512 0.2705 0.2205 0.1559

Ours (Mode) 0.2486 0.2237 0.1988 0.1282 0.2910 0.2050 0.1528 0.1231

Ours (Top-1) 0.5353 0.4299 0.4050 0.3370 0.5643 0.4282 0.3580 0.3022

Table 7. Comparison with the state-of-the-art without ground-truth

observations. Numbers represent mean over classes (MoC).

Model Accuracy

APP-VAE [15] 62.2

Ours 57.8

Table 8. Comparison with [15]: Accuracy of predicting the label

of the next action segment.

ison we use the ground-truth annotations of the videos as

in [15]. Our approach achieves a lower accuracy. How-

ever, our approach is designed for long-term prediction as

we have already observed in Section 4.2 and this compar-

ison considers short-term prediction only. Moreover, the

approach of [15] is very expensive, making it infeasible for

long-term predictions.

5. Conclusion

We presented a framework for modelling the uncertainty

of future activities. Both an action model and a length

model are trained to predict a probability distribution over

the future action segments. At test time, we used the pre-

dicted distribution to generate many samples. Our frame-

work is able to generate a diverse set of samples that corre-

spond to the different plausible future activities. While our

approach achieves comparable results for short-term predic-

tion, our approach is in particular useful for long-term pre-

diction since for such scenarios the uncertainty in the future

activities increases.
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