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Abstract

Predicting crowd behaviour in the distant future has in-

creased in prominence among the computer vision com-

munity as it provides intelligence and flexibility for au-

tonomous systems, enabling the early detection of abnormal

events and better and more natural interactions between hu-

mans and autonomous systems such as driverless vehicles

and field robots. Despite the fact that Deep Inverse Re-

inforcement Learning (D-IRL) based modelling paradigms

offer flexibility and robustness when anticipating human be-

haviour across long time horizons, compared to their su-

pervised learning counterparts, no existing state-of-the-art

D-IRL methods consider path planning in situations where

there are multiple moving pedestrians in the environment.

To address this, we present a novel recurrent neural net-

work based method for embedding pedestrian dynamics in

a D-IRL setting, where there are multiple moving agents.

We propose to capture the motion of the pedestrian of inter-

est as well as the motion of other pedestrians in the neigh-

bourhood through Long-Short-Term Memory networks. The

neighbourhood dynamics are encoded into a feature map,

preserving the spatial integrity of the observed trajecto-

ries. Utilising the maximum-entropy based non-linear in-

verse reinforcement learning framework, we map these fea-

tures to a reward map. We perform extensive evaluations

on the publicly available Stanford Drone and SAIVT Multi-

Spectral Trajectory datasets where the proposed method ex-

hibits robustness towards lengthier predictions into the dis-

tant future, demonstrating the importance of capturing the

dynamic evolution of the environment using the proposed

embedding scheme.

1. Introduction

In an era of automaticity, understanding and predicting

crowd behaviour is critical for the accreditation of safe and

effective autonomous systems. The applications vary from

autonomous driving to security surveillance where the abil-

ity to understand and predict human behaviour could gener-

ate a positive impact on the safety of the system in question.

This paper proposes a Deep Inverse Reinforcement Learn-

ing (D-IRL) based framework for predicting pedestrian dy-

namics over long time horizons.

The most common approach for predicting pedestrian

behaviour is through supervised learning where function ap-

proximators, like neural networks operate directly over the

input trajectory and use a pre-defined cost function, to try

and mimic human behaviour [1, 6, 7, 11].

There are numerous arguments for preferring Inverse Re-

inforcement Learning (IRL) over such direct optimisation

methods. Firstly, the direct application of supervised learn-

ing is proven to ill represent the scene context and pedes-

trian dynamics of any given scene, making it potentially in-

tractable to generalise the learned knowledge to a new envi-

ronment [9, 10]. Secondly, IRL based path planning frame-

works have demonstrated resilient predictions over length-

ier time intervals [21, 23, 24]. This utility arises from the

fact that IRL methods are reward seeking algorithms which

uncover the end goal or intentions of the pedestrians from

the demonstrations [10]. Hence they posses the ability to

segregate dynamics from scene context, allowing the plat-

form to better model pedestrian behaviour [21].

However, the original IRL framework in [26] assumes a

linear mapping from the features to a reward. The recent

works of Wulfmeier et. al [22, 23] extended this to a deep

learning setting, lifting this constraint and permitting a non-

linear mapping which allows more flexibility in the learned

reward structure. While this provides greater flexibility and

robustness for a behaviour anticipation task, none of the

current state-of-the-art systems have investigated it’s abil-

ity in a dynamic environment where there are other moving

agents.

Thus, in this paper, we are proposing a framework that

utilises the motion information from the pedestrian of inter-

est as well as the information from other moving agents, and

effectively embeds this information in the learned reward

representation. We demonstrate how recurrent neural net-

works and an attention framework can be coupled with the



D-IRL process to provide resilient long-term predictions.

The main contributions of this work can be summarised

as follows:

• We extend the D-IRL framework to a dynamic envi-

ronment where there are multiple pedestrians in mo-

tion.

• We incorporate recurrent neural networks to model

the neighbourhood dynamics in the D-IRL framework,

and augment the reward function learning process.

• We demonstrate how the hidden state representation of

the recurrent network can be used as the input feature

map for D-IRL, preserving the structural relationships

of the neighbourhood.

• We perform extensive evaluations on multiple public

benchmarks where the proposed method outperforms

state-of-the-art methods.

2. Preliminaries

We model the decision making process of the pedestrians

as a Markov Decision Process (MDP) [2]. The MDP, M =
[S,A, τ, R], is composed of state space, S; set of possible

actions, A; a transition matrix, τ ; and a reward function,

R. A policy, π, defines the selection of an action given a

particular state. The goal of the learning algorithm is to find

the optimal policy, π∗, that maximises the expected sum of

rewards for the agent.

In the IRL setting, we assume that the reward function

is unknown. Instead we are presented with a set of demon-

strations, D = [ζ1, ζ2, . . . , ζN ], where we have examples

of agents behaving in the environment. Note that each tra-

jectory, ζi = [s0, s1, . . . , sTobs
]. In a supervised learning

setting we are directly mapping the observed states to the

future states, [sTobs+1, sTobs+2, . . . , sTpred
]. With an IRL

framework we first recover the reward function, R. One

of the most popular approaches for solving IRL problems

is Maximum Entropy (MaxEnt) IRL [26] where the expert

behaviour is modelled as a distribution to the one of highest

entropy [23]. The MaxEnt formulation assumes that the re-

ward function can be calculated as a weighted linear com-

bination of the features, Φ(s), where Φ is a function that

outputs the features of the state, s, and the set of weights θ,

R(Φ(s)) = [θ]⊤Φ(s). (1)

The works of [22, 23] extended this to a non-linear set-

ting where,

R(Φ(s)) = f(θ,Φ(s)), (2)

where f is a non-linear function. The authors of [23] try

to maximise the log likelihood of the demonstrated trajec-

tories,

L(θ) = log
∏

ζi∈D

P (ζi, θ), (3)

where P (ζi, θ) is the probability of the trajectory ζi in

demonstration D and

δLD

δθ
= µD − E[µ]

δR(Φ(s))

δθ
, (4)

where µD and E[µ] are the State Visitation Frequencies

(SVF) from the demonstrated and inferred reward functions,

respectively. Alg. 1 illustrates the process of refining the re-

ward network in the Maximum Entropy Deep IRL (MED-

IRL) framework proposed in [23], where γ is a discount

factor for the value iteration algorithm (See. Alg. 2), and

α is the learning rate of the deep neural network. In each

iteration, i, of the algorithm, they first evaluate the reward

based on the state features, Φ(s), and the current reward

network parameters, θi. Then, using the current reward

function they apply value iteration [26] to solve the forward

Reinforcement Learning (RL) problem, which determines

the current policy, πi, based on the current approximation

of the reward, Ri(Φ(s)), and the transition matrix, τ . The

value iteration algorithm is illustrated in Alg. 2. Within

Alg. 1, line 5 computes the gradient with respect to the re-

ward which determines how to update the reward network

parameters (line 6).

Algorithm 1: Maximum Entropy Deep IRL

Input: D, S, A, τ , γ, α

Output: Reward network parameters θ∗

1 for iteration i = 1 to M do

2 Ri(Φ(s)) = f(θi,Φ(s)) ∀s∈S ; // Forward pass in the

reward network

3 πi = V alue Iteration(Ri, S, A, τ, γ) // Planning

step

4 E[µi] = compute SV F (πi, S, A, τ)

5
δLi

D

δRi = µD − E[µi] // Gradient calculation

6 θi+1 = back propagate(θi,
δLi

D

δRi , α) // Reward

network update

7 end

8 return θ

3. Related Works

There exist multiple ways to address the task of predict-

ing an agent’s future motion. Among them, one of the most

popular approach is to use supervised learning. Alahi et.

al [1] proposed a Social LSTM model where recurrent neu-

ral networks are utilised to encode the trajectory informa-

tion from the neighbourhood of the pedestrian of interest.

They pooled out the last hidden state of each LSTM [14] as



Algorithm 2: Value Iteration

Input: R, S, A, τ , γ

Output: φ

1 V(s) = -∞ repeat

2 Vt(s) = V (s)
3 Q(s, a) = r(s, a) + Eτ(s,a,s′)[V (s′)]
4 V (s) = maxa(Qi(s, a))

5 until maxs(V (s)− Vt(s)) < ǫ;

6 return φ(a|s) = eQ(s,a)−V (s)

the representation of each trajectory. Prior work in [7] has

extended this framework with a soft and hard-wired atten-

tion combination to use all the hidden states of the LSTMs

corresponding to the pedestrians of interest as well as their

neighbours. The works of [4, 11, 19, 27] have also consid-

ered the supervised learning of human trajectory patterns

within a GAN learning framework, while [6, 8] incorpo-

rated neural memory architectures to capture long-term de-

pendencies with respect to the environment in the predic-

tion framework. However, it is a well established fact that

such a direct mapping between the observed trajectory and

the target lacks generalisation [22–24]. Most importantly

these models doesn’t possess the capacity to understand the

underlying intention or the end goal that influences human

behaviour, making accurate long-term predictions with su-

pervised learning models infeasible [10, 21, 22, 24].

On the other hand IRL [26] based path planning segre-

gates the underlying semantics of the scene such that the

goal or the intentions of the agents can be recovered based

on the modelled reward function. This allows more resilient

predictions into the distant future as well as transferring the

learnt knowledge into new environments. Numerous pre-

vious works [12, 15, 21] have capitalised on these benefits

and extensively utilised IRL for trajectory prediction. How-

ever, the original IRL framework proposed in [26] assumes

a linear mapping between the features and the reward rep-

resentation which severely limits the degrees of freedom of

the learned reward function.

The recent work of Wulfmeier et. al [22] removed this

constraint with their proposed deep, non-linear IRL (D-

IRL) based framework. Several attempts [23, 24] have

been made to utilise this framework in real world applica-

tions, however none of the existing methods have consid-

ered crowded environments where there are multiple pedes-

trians in motion. Thus, this work propose a D-IRL frame-

work which effectively embeds the spatio-temporal features

of the neighbourhood of the pedestrian of interest using a

combination of recurrent neural networks and an attention

mechanism.

It should be noted that there exists a separate line of

work, Generative Adversarial Imitation Learning (GAIL)
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Figure 1: The architecture used to embed the neighbour-

hood context: The trajectory of the pedestrian of interest

is shown in blue, with three neighbours shown in green.

Heading directions are indicated with circles. We encode

the trajectories using LSTMs where soft attention is utilised

to embed the information from the pedestrian of interest and

the neighbours use hard-wired attention. Next a feature map

is generated to embed this information spatially, based on

the cartesian points of each trajectory.

[5, 13, 16], which attempts to directly mimic the expert’s

policy. However, these methods suffer the same deficien-

cies experienced in the supervised learning setting as they

also do not attempt to recover the reward function of the

expert. Instead they attempt to directly mimic the expert’s

behaviour [10].

4. Architecture

The aim of this section is to illustrate the framework used

to embed the information from the pedestrian of interest’s

trajectory and their neighbours (Sec. 4.1), and to describe

the architecture used to map this embedded information to

a reward map (Sec. 4.2).

4.1. Embedding Neighbourhood Context

Motivated by the recent success of the neighbourhood

context modelling approach presented in [6, 7], we utilise

a combination of soft attention and hard-wired attention to

embed features from the local neighbourhood of the agent.

The approach utilised for embedding the neighbourhood

context is visually illustrated in Fig. 1.

Let pk be a vector containing the set of states of the kth

pedestrian trajectory, τk, from time instant 0 to Tobs,

pk = [sko , . . . , s
k
Tobs

], (5)

where states are composed of points in a Cartesian grid.

Then each vector pk is passed through an LSTM encoder,

hk
t = LSTM(pkt , h

k
t−1). (6)

Motivated by [7] we use soft attention to embed the fea-

tures from the pedestrian of interest such that,

ĥk
t = βt,jh

k
j for j = [0, . . . , Tobs], (7)



where the hidden states, hk
j , are weighted based on the

weights, βt,j , computed by,

βt,j =
exp(etj)∑Tobs

j=1 exp(etl)
, (8)

where

etj = a(hk
t−1, h

k
j ). (9)

a is a feed forward neural network jointly trained with the

other components of the reward network.

To encode the effect of neighbouring pedestrians we use

the hard-wired attention framework proposed in [7] due to

its simplicity and effectiveness. The hard-wired weight, w,

is computed by,

wn
j =

1

dist(n, j)
, (10)

where dist(n, j) is the Euclidian distance between the

pedestrian of interest, k, and the nth neighbour at the jth

time instant. Using hard-wired weights we generate the ef-

fect of each neighbour, n, such that,

h̃n
j = wn

j h
n
j ∀j∈Tobs

and ∀n∈N , (11)

where we assume there are N neighbours in the neighbour-

hood and the encoded hidden state of the nth neighbour at

the jth time instant is given by hn
j .

4.2. Reward Prediction

The works of [23, 24] have demonstrated the utility of

maintaining the reward prediction network architecture as a

fully convolutional network, allowing a direct mapping be-

tween the modelled environment and the predicted reward

map. This ensures that the learned reward map covers all

the areas of the environment, encapsulating structural fac-

tors such as buildings and pathways that influence pedes-

trian behaviour.

Hence we first generate an empty map, G, of the envi-

ronment and then we assign values, ĥk
t , from the pedestrian

of interest, k, and h̃n
j from the neighbours, to the grid, G,

based on the Cartesian coordinates that the specific hidden

state comes from (i.e based on the position of the trajec-

tory). Then using a Fully Convolution Network (FCN) we

map G to a reward map, R. The architecture of the FCN is

illustrated in Fig. 2.

5. Experiments

In this section we present the details of the datasets that

are utilised in our evaluations (Sec. 5.1), implementation

details of the proposed method (Sec. 5.2), information re-

garding the evaluation metrics (Sec. 5.3), baselines (Sec.

5.4), and quantitative and qualitative evaluations (Sec. 5.5).

conv 1 X 1 X 32

conv 1 X 1 X 32

conv 1 X 1 X 32

conv 1 X 1 X 1

Figure 2: The architecture of the four layer fully convolu-

tion network used to map the feature map G to the reward

map R. The first three layers contain 32, 1 × 1 convolution

kernels with a ReLU activation, and the final layer contains

1, 1 × 1 convolution kernel.

5.1. Datasets

5.1.1 Stanford Drone (SD) Dataset [18]:

Following [11, 20, 21] we utilise the Stanford Drone (SD)

dataset in our evaluation as it provides substantially length-

ier trajectories compared to the frequently used Grand Cen-

tral Station [25], and ETH-BIWI Walking Pedestrians [17]

datasets. Furthermore, this dataset provides a challenging

setting with high density crowds and different interactions

among the groups [20]. This allows us to effectively evalu-

ate the ability of the proposed D-IRL framework to antici-

pate human behaviour in to the distant future.

The SD dataset was collected using a downward facing

camera mounted on a drone hovering above Stanford Uni-

versity. It was captured at 2.5fps and contains 11,216 anno-

tated pedestrian trajectories. Similar to [21] we converted

the provided bounding box annotations to x, y coordinates

using the centre of the bounding box as the coordinate. Fol-

lowing [21], we consider four scenes from the dataset, in

our evaluations: “Book Store”, “Gates”, “Death Circle” and

“Coupa”. For training and testing we used the splits pro-

vided by the dataset authors.

5.1.2 SAIVT Multi-Spectral Trajectory (MST) Dataset

[6]:

To further demonstrate the proposed method we evaluate

our model on a second dataset, the SAIVT Multi-Spectral

Trajectory dataset [6]. This dataset is collected from syn-

chronised CCTV and Radar feeds, captured at 5fps. From

this dataset we used the trajectories from the Radar stream

as it provides lengthier trajectories with average trajectory

length of 1362.33 frames for the available 27,462 trajec-

tories, compared to the CCTV stream where the average

trajectory length is only 310.22 frames. After filtering out

short and fragmented trajectories we are left with 20,800

trajectories. We randomly select 14,560 trajectories for

training, 5,200 for testing and 1,040 for validation1.

1These splits are available upon request



Figure 3: Hyperparameter Evaluation: Using the validation

set of the SAIVT Multi-Spectral Trajectory (MST) Dataset

[6]. We measure the change in Average Displacement Er-

ror (AED) with the embedding dimension of the encoder

LSTMs. As the performance plateaus when the embedding

dimension reaches 50, we set the embedding dimension to

50.

5.2. Implementation Details

We consider a grid size of 120 × 120 and first mapped

the x, y coordinates to grid cells. Considering the neigh-

bourhood encoding scheme, for all LSTMs we use a hidden

state dimension of 50 units which we experimentally evalu-

ated using the validation set of the MST dataset [6]. Fig. 3

illustrates the change in AED with respect to the embedding

dimension of the LSTMs. We observe that the performance

plateaus when the embedding dimension reaches 50.

When modelling the neighbourhood, following [7] we

use the trajectories of the closest 10 neighbours in each

direction, namely front, left and right. If there are more

than 10 neighbours in any direction, we choose the closest

9 neighbours and the mean trajectory of the rest. In cases

where there are less than 10 neighbours, we create a dummy

trajectory such that we have 10 neighbours from each direc-

tion and set the hard-wired weight of that dummy trajectory

to zero.

For the FCN, to enable direct comparison to other base-

lines, we limit the FCN architecture to four-layers. The first

three layers contain 32, 1 × 1 convolution kernels followed

by ReLU activation and the final layer contains 1, 1 × 1

convolution kernel.

5.3. Metrics

For quantitative evaluation of the performance, similar

to [21, 23, 24] we utilise the Modified Hausdorff Distance

(MHD) [3] and the Average Displacement Error (ADE) [6,

7].

MHD measures the geometric similarity between the

ground truth and predicted trajectories. In order to mea-

sure the spatial similarity between the predicted and ground

truth trajectories we measure the average Euclidian distance

(a) RGB Frame (b) Semantic Segmentation

Figure 4: A sample RGB frame from the Stanford Drone

(SD) Dataset [18] and its semantic segmentation (grass is

denoted by green, walkways by blue, trees by yellow and

buildings by purple).

between the two.

As the proposed framework generates a probability dis-

tribution over the grid cells, we sample 1000 trajectories

from the distribution and measured the average MHD and

ADE between the ground truth and the samples. We map

the predictions back to the image coordinate space for clear

comparisons with the baselines.

5.4. Baselines

Supervised Learning Baselines: We use the super-

vised models in [7] (SHA), CAR-Net [20], Social LSTM

(S-LSTM) [1] and social GAN (S-GAN) [11].

Linear-IRL Baseline: We use the linear-IRL model (L-

IRL) proposed in [21].

Deep-IRL Baselines: To demonstrate the utility of deep-

IRL models we use the models proposed in [23] (D-IRL)

and [24] (DK-IRL).

In the original works of [23] and [24] the authors utilise

terrain maps captured using LIDAR. As this information is

not available in our datasets, similar to [21] we use the se-

mantic segmentation of the RGB frames which is generated

manually. A sample RGB frame from the SD dataset and

the segmentation map are shown in Fig. 4 (a) and (b), re-

spectively.

For the D-IRL baseline we strictly adhere the recommen-

dations of the authors and used the FCN architecture intro-

duced in [23]. This takes the semantic segmentation map as

the input and generates the reward map purely based on the

environment.

For the DK-IRL baseline we follow the two stage archi-

tecture in [24] and used the FCN model from D-IRL as the

network for the first state. For the second stage, following

the experimental setup of [24] we generate two feature maps

encoding each grid cell, the x and y positions of the grid cell

in a pedestrian centred, world-aligned frame. Another three

feature maps are generated encoding the kinematic informa-

tion: ∆x, ∆y and the curvature of the input trajectory. For

this implementation we use the codebase released by the au-



Figure 5: A Sample Neighbourhood Plot: The observed

potion of the pedestrian of interest’s trajectory is shown in

blue, neighbouring trajectories are shown in green. Heading

direction is indicated with a circle.

thors 2 which also provided an implementation of the D-IRL

framework in [23]. For more details please refer to [24].

Additionally, in order to account for the motion of neigh-

bouring pedestrians we used trajectory plots of the pedes-

trian of interest as well as the neighbours. A sample plot is

shown in Fig. 5. Here the observed part of the trajectory is

given in blue, and neighbours are indicated in green. The

heading direction of each pedestrian is indicated with a cir-

cle. We extend the D-IRL and DK-IRL baseline models to

use this neighbourhood information as follows. For the DN-

IRL baseline model we concatenate the segmentation map

input together with the neighbourhood plot and feed it to

the four-layer FCN. In the DKN-IRL baseline we concate-

nate the segmentation map input with the neighbourhood

plot and feed it to the first stage network.

5.5. Results

Quantitative evaluations of the performance of our pro-

posed method and the baselines for the Stanford Drone (SD)

dataset [18] and SAIVT Multi-Spectral Trajectory (MST)

dataset [6] are presented in Tab. 1 and Tab. 2, respectively.

In order to clearly demonstrate the utility of the proposed

Deep IRL framework, we measure the trajectory predictions

under two settings, predicting the trajectories for 5 seconds

ahead and 12 seconds ahead. For each trajectory, we use

the first 6 frames (i.e 2.4 seconds for SD dataset [18] and

1.2 seconds for MST dataset [6]) as the observed part of the

trajectory and predicted the trajectory for the next 5 seconds

or 12 seconds depending on the experiment.

From the results presented in Tab. 1 and Tab. 2 it is

clearly evident that the proposed model has outperformed

all the baselines, and achieved a lower ADE and MHD.

Furthermore, we observe that the performance of the su-

pervised learning methods significantly degrades when we

predict into the distant future. We speculate that this is be-

cause those models are trying to directly map the inputs to

the targets, without paying attention to the end goal or the

intention of the pedestrian. When comparing the perfor-

mance of the supervised learning methods and the linear-

2https://github.com/yfzhang/vehicle-motion-forecasting

Table 1: Evaluation results for the Stanford Drone (SD)

Dataset [18]. We evaluate performance under two settings,

predicting 5 seconds and 12 seconds ahead. We report

Modified Hausdorff Distance (MHD) [3] and the Average

Displacement Error (ADE) [6, 7] as error metrics (lower

is better for both metrics). For clarity supervised learning

methods are shown with a blue background, the linear-IRL

method with a yellow background, Deep IRL based base-

lines with a green background, and naive neighbourhood

based deep IRL approaches with a purple background.

5.0 Sec Ahead 12.0 Sec Ahead
Method

ADE (pixels) MHD (pixels) ADE (pixels) MHD (pixels)

S-LSTM [1] 31.19 30.13 68.26 67.49

CAR-Net [20] 25.72 - - -

SHA [7] 19.32 16.53 63.35 61.01

S-GAN [11] 19.27 16.51 62.11 60.93

SMN [6] 15.34 13.11 58.11 57.91

L-IRL [21] 12.93 11.95 44.35 42.91

D-IRL [23] 18.63 17.14 43.12 41.56

DK-IRL [24] 17.51 16.63 41.00 40.99

DN-IRL 16.01 15.32 39.16 38.17

DNK-IRL 15.23 14.01 37.35 36.08

Proposed 06.15 04.08 28.15 27.91

Table 2: Evaluation results for the SAIVT Multi-Spectral

Trajectory (MST) Dataset [6]. We evaluate performance un-

der two settings, predicting 5 seconds and 12 seconds ahead.

We report MHD [3] and ADE [6, 7] as error metrics (lower

is better for both metrics). For clarity supervised learning

methods are shown with a blue background, the linear-IRL

method with a yellow background, Deep IRL based base-

lines with a green background, and naive neighbourhood

based deep IRL approaches with a purple background.

5.0 Sec Ahead 12.0 Sec Ahead
Method

ADE (pixels) MHD (pixels) ADE (pixels) MHD (pixels)

S-LSTM [1] 20.21 19.13 43.35 40.11

SHA [7] 17.62 15.33 41.91 39.10

S-GAN [11] 17.59 15.31 41.93 40.06

SMN [6] 12.57 11.94 38.06 37.86

L-IRL [21] 10.01 09.87 32.24 31.65

D-IRL [23] 15.35 13.54 38.33 37.11

DK-IRL [24] 12.35 11.02 35.76 33.90

DN-IRL 14.51 13.55 37.71 35.41

DNK-IRL 11.43 10.68 34.55 32.61

Proposed 04.89 03.59 26.78 35.67

IRL model of [21], we observe better performance with the

reward based learning framework of IRL. Though we ex-

pect to observe better performance with the introduction of

the non-linear mapping with the deep-IRL framework, the

performance of D-IRL and DK-IRL methods are unsatisfac-

tory compared to the linear-IRL model of [21]. We observe

that even with the augmented feature to reward mapping,

the deep-IRL framework still lacks information regarding

the neighbourhood context, which is a highly influential

factor in crowded environments. The plotting based visual

representations that we embedded in the DN-IRL and DKN-

IRL baselines haven’t been able to fully capture the neigh-



bourhood motion, and result in only a slight performance

boost compared to [21]. We hypothesise that this is mainly

due to the fact that the neighbourhood plots only offer a

static representation of the neighbouring trajectories, and

do not encode velocities and other kinematic factors.

With the proposed framework multiple LSTMs are

utilised to effectively encode the spatial and temporal dy-

namics of the pedestrian of interest as well as the neigh-

bours. This allows us to better capture motion information

which leads us to attain better performance compared to

state-of-the-art methods.

To further demonstrate the performance of the proposed

methods we conducted an ablation experiment where we

constructed ablation models as follows:

• a) MPI : Uses the proposed LSTM based encoding

scheme but uses the trajectory information from the

pedestrian of interest only. Uses soft attention in the

encoding process.

• b) MPI + Neighbours : Uses the trajectory informa-

tion from both the pedestrian of interest as well as

the neighbours, however encodes everything through a

single LSTM. Uses soft attention in the encoding pro-

cess.

Table 3: Ablation model evaluations using the SAIVT

Multi-Spectral Trajectory (MST) Dataset [6]. We evaluate

performance under two settings, predicting 5 seconds and

12 seconds ahead. We report MHD [3] and ADE [6, 7] as

error metrics (lower is better for both metrics).

5.0 Sec Ahead 12.0 Sec Ahead
Method

ADE (pixels) MHD (pixels) ADE (pixels) MHD (pixels)

MPI 14.27 12.64 36.44 35.60

MPI +Neighbours 08.13 07.34 30.57 29.92

Proposed 04.89 03.59 26.78 35.67

Tab. 3 presents the ablation evaluation results. In this

evaluation we used the MST dataset [6]. These results ver-

ify the importance of using the information from both the

pedestrian of interest as well as from the neighbourhood.

We would like to further compare the performance of the

ablation model MPI + Neighbours and the L-IRL model

in Tab. 2. This comparison clearly emphasises the utility

of using the deep-IRL framework instead of the linear-IRL

model. However, instead of naively passing all the trajec-

tory information from a single LSTM, the proposed method

effectively utilises the informative facts from a combination

of soft and hard-wired attention, which allows us to better

capture the neighbourhood dynamics.

In Fig. 6 we plot the Negative Log Likelihood (NLL)

of a given test trajectory under the learned policy against

the number of iterations. We normalise the NLL by the to-

tal length of the trajectories in the test set. It is clear that

Figure 6: Change in Negative Log Likelihood (NLL) of

a given trajectory in the test set under the learned policy

against the number of iterations.

the proposed method understands the expected behaviour

quickly from the available demonstrations compared to the

baselines, denoting the value of mapping the dynamics of

the environment through the proposed method.

An illustration of the predictions generated by the DK-

IRL baseline method along with the proposed method for

Stanford Drone [18] datasets is given in Fig. 7. The ob-

served part of the trajectory is shown in blue. The ground

truth future trajectory is in red while the neighbours are in

green. We observe that the baseline method DK-IRL is ac-

curate when predicting for short time intervals. However as

we predict further into the future the model becomes more

uncertain about the agent’s behaviour. We speculate that

this is mainly due to the fact that the motion of the neigh-

bourhood also shapes the agent’s behaviour, which the base-

lines fail to infer. By effectively capturing these dynamics,

the proposed method generates better predictions.

Qualitative results of the proposed method and the re-

covered reward representation for two examples from the

MST dataset [6] is given in Fig. 8, In the overlaid proba-

bility map and the reward map, colours from blue to yellow

indicate low to high probabilities. Considering the struc-

ture of the environment, the model hypothesises two path-

ways, however assigns a higher probability to the ground

truth pathway that is actually undertaken by the pedestrian.

6. Conclusion

In this paper we proposed a recurrent neural network

framework for embedding neighbourhood dynamics when

anticipating human trajectories using Deep Inverse Rein-

forcement Learning (D-IRL). We proposed the utilisation

of an attention framework together with LSTMs to encode

motion information for the pedestrian of interest as well

as their neighbours, and we map these encoded dynamics

into a feature map, preserving the structural integrity of the

neighbourhood. Our experimental evaluations on multiple

public benchmarks demonstrated the utility of the proposed



(a) DK-IRL (b) Proposed

Figure 7: Qualitative Results of the proposed method with

DK-IRL baseline. The observed part of the trajectory is

shown in blue. The ground through future trajectory is

given in red while the neighbours are shown in green. In

the overlaid probability map the colours from blue to yel-

low indicate low to high probability.

encoding mechanism, especially when anticipating pedes-

trian behaviour in the distant future, where the baseline sys-

tems were uncertain about the intentions or the end goals

of the pedestrians, allowing us to attain state-of-the-art per-

formance for both datasets. Encouraging results obtained

under a security surveillance setting, especially when fore-

casting lengthier trajectories, verifies its applicability to un-

derstanding and predicting human behaviour in real world

scenarios.
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