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Abstract

This paper presents a novel approach for predicting the

falls of people in advance from monocular video. First, al-

l persons in the observed frames are detected and tracked

with the coordinates of their body keypoints being extracted

meanwhile. A keypoints vectorization method is exploited

to eliminate irrelevant information in the initial coordinate

representation. Then, the observed keypoint sequence of

each person is input to the pose prediction module adapted

from sequence-to-sequence(seq2seq) architecture to predict

the future keypoint sequence. Finally, the predicted pose is

analyzed by the falls classifier to judge whether the person

will fall down in the future. The pose prediction module and

falls classifier are trained separately and tuned jointly using

Le2i dataset, which contains 191 videos of various normal

daily activities as well as falls performed by several actors.

The contrast experiments with mainstream raw RGB-based

models show the accuracy improvement of utilizing body

keypoints in falls classification. Moreover, the precognition

of falls is proved effective by comparisons between models

that with and without the pose prediction module.

1. Introduction

Falls are a major cause of fatal injury especially for the

elderly and create a serious obstruction for independent liv-

ing [23]. Therefore, falls prediction is one of the most

meaningful applications for elderly caring and home mon-

itoring etc. The precognition of falls is the prerequisite for

follow-up preventions and early warning, which will largely

decrease the risks of falling accident. Although mainstream

human action recognition (HAR) algorithms can be trained

to recognize falls as one of the action classes, most of them

utilize raw RGB information for classification and are not

capable of predicting falls in advance.

However, the following characteristics make fall distinct

from other actions: 1) Fall is highly relevant to the status

of body keypoints, i.e., the body skeleton of a fallen person

is significantly different. 2) Unlike smoking and handshak-

ing, fall does not involve interactions with objects or other

people. 3) Fall is an accident rather than a daily activity. So

it’s expected to ‘foresee’ its happening and alert emergency

as soon as possible.

According to 1) and 2), our falls classifier gives predic-

tion using human body keypoints instead of raw RGB in-

formation in the video frames. The essence is to decrease

the dimensionality of features with valuable cues preserved.

With regard to 3), we introduce a pose prediction module

adapted from sequence-to-sequence (seq2seq) [30] to pre-

dict future keypoint sequence based on the observed key-

point sequence. By analyzing future pose, the falls classifier

is able to give early prediction.

It is well known that mainstream keypoints detection

models like OpenPose [4] and AlphaPose [7] represent each

extracted keypoint by its coordinate in the image. Howev-

er, coordinate representation involves the body’s absolute

position and scale, which contribute little to action classi-

fication. Consequently, we propose a keypoints vectoriza-

tion method to transform coordinates to a feature vector, in

which only the direction information remains.

Since the pose prediction module already encodes tem-

poral features, the falls classifier can focus on the spatial

cues in the predicted body pose. To train the falls classifier,

we re-annotated Le2i dataset [5] to tag each frame a label.

This operation largely increases the amount of training data,

which makes the falls classifier converge better.

The main contributions of this paper are as follows:

• We proposed an end-to-end falls prediction model,

which consists of a seq2seq-based pose prediction

module and a falls classifier.

• We developed a keypoints vectorization method to ex-

tract salient features from coordinate representation.

• We evaluated our model by comparisons with main-

stream HAR networks, and self-comparison between

the pose prediction module enabled and disabled.

The rest of the paper is organized as follows: Section 2

reviews the related work on falls detection, action recog-

nition and prediction. The proposed network is presented

in Section 3. In Section 4, the dataset and experiments are

described. Finally, Section 5 gives a conclusion.



2. Related Work

2.1. Falls Detection

Many early solutions for falls detection relied on the

wearable devices equipped by the person to be monitored.

Bourke et al. proposed a method in [3] to detect falls

based on peak acceleration. Narayanan et al. developed a

distributed falls management system, which is capable of

real-time falls detection using a waist-mounted triaxial ac-

celerometer [24]. Bianchi et al. enhanced previous falls de-

tection system with an extra barometric pressure sensor in

[1, 2] and found that the algorithm incorporating pressure

information achieved higher accuracy.

Although wearable device based falls detection methods

are computationally efficient and insensitive to the environ-

ment, they require users to wear corresponding sensors for

data collection. This limitation causes huge inconvenience

to the users, and also makes it expensive for widespread ap-

plication. Moreover, these algorithms suffer from a high

false-detection rate due to sudden acceleration change in

daily activities such as squat and run etc.

Later, vision-based solutions were developed to bring

more user-friendly experience. Ma et al. [21] proposed an

approach that extracted curvature scale space (CSS) fea-

tures of human silhouettes from a depth camera and repre-

sented each action by a bag of CSS words (BoCSS), which

was then classified by the extreme learning machine (ELM)

to identify falls. Stone et al. presented solutions for falls

recognition using gait parameters in [28] and five handcraft-

ed features in [29]. And both were based on the foreground

extracted from the Kinect. Besides, Quero et al. adopted

non-invasive thermal vision sensors in [25] to detect falls

using thermal images.

To the best of our knowledge, there was a lack of monoc-

ular vision based algorithms specialized for falls detec-

tion. However, most of the HAR models would support

falls recognition after being trained on the dataset includ-

ing fall as one of the actions. For example, the UCF-101

dataset [27] contains 13320 videos divided into 101 ac-

tion categories but without falls. By contrast, the HMDB-

51 [17], another large-scale dataset containing 6849 videos,

takes ‘fall on the floor’ as one of the 51 action classes.

2.2. Action Recognition and Prediction

As investigated in [14], convolutional neural networks

(CNN) and temporal modeling are the two major variables

for action recognition. Karpathy et al. [12] pioneered to

introduce CNN in HAR problem by finetuning a general

image recognition model pre-trained on ImageNet [6] using

UCF-101 [27]. However, The inability of utilizing temporal

information became a severe disadvantage of 2D CNN. This

issue was resolved by the 3D CNN proposed in [32, 11]. By

performing 3D convolutions, the 3D CNN was capable of

extracting features from both spatial and temporal dimen-

sions, thereby capturing the motion information in multiple

adjacent frames. As for the temporal modeling methods like

Two-Stream [26] and TSN [35], the main idea was to extract

spatial features using 2D convolutions and encode temporal

information by recurrent neural networks(RNN).

However, all the aforementioned models predict only

one label for each video, even when multiple actions are

existing in the meantime. As shown in Fig. 1, although two

people are presenting different actions, the TSN model [35]

trained on UCF-101 dataset [27] just predict ‘swing’ with

the man’s fall being ignored.

Figure 1. An example of multiple actions presented in the mean-

time. TSN model trained on UCF-101 dataset gives the prediction

‘swing’. However, the man’s fall is ignored because only one label

will be predicted for a video.

Action recognition models must ‘watch’ the entire video

to give prediction. But in some cases like incomplete da-

ta or the requirement of early alarm, predicting the future

action based on partial clip is necessary. Early classifica-

tion and motion prediction are two routes of action pre-

diction towards different goals: Given tobs observed frames

(f1, f2, ..., ftobs
), early classification tries to infer the label y

in advance, while motion prediction tries to produce future

motions in next tpred frames (ftobs+1, ftobs+2, ..., ftobs+tpred
).

The work in [20] designed novel ranking losses to

learn activity progressing in LSTMs for early classification.

Kong et al. adopted an auto-encoder to reconstruct missing

features from observed frames by learning from the com-

plete action videos [16]. In [15], a mem-LSTM model was

proposed to store several hard-to-predict samples and a va-

riety of early observations in order to improve the prediction

performance at early stage.

In recent years, motion prediction attracted much atten-

tion. Fragkiadaki et al. proposed the encoder-recurrent-

decoder (ERD) model [8] that extended long short term

memory (LSTM) [9] to jointly learn representations and

their dynamics. Jain et al. proposed structural-RNN (S-

RNN) based on spatiotemporal graphs (st-graphs) in [10] to

capture the interactions between the human and the objects.

Martinez et al. modified standard RNN models in sampling-

based loss and residual architectures for better motion pre-

diction [22]. Tang et al. proposed modified highway unit

(MHU) to filter the still keypoints and adopted gram matrix

loss in [31] for long-term motion prediction. For the same

purpose, Li et al. proposed convolutional encoding module

(CEM) in [18] to learn the correlations between each key-

point, which is hard for an RNN model.



Figure 2. The major work flow of our model. A sequence of observed frames is input to the network. Then the human body keypoints are

extracted from each frame to form a keypoints sequence, which is used to predict future keypoints sequence by the pose prediction module.

At last, the predicted body pose is passed into a falls classifier to judge whether the person will fall down in the future.

3. Methodology

3.1. Overview of the Proposed Model

The problem to be solved in this paper is formulated as

follow: Given tobs observed frames (f1, f2, ..., ftobs
), we try

to predict whether the human(s) in the video will fall down

in next tpred frames (i.e., from ftobs+1 to ftobs+tpred
).

The skeleton framework of our model is presented in

Fig. 2. The input is a sequence of observed frames. We first

adopted OpenPose [4] to extract keypoints coordinates of

human(s) from each observed frame. The bounding boxes

of detected persons were passed to DeepSort [36], a track-

ing algorithm, to cluster body keypoints belonging to the

same person in different frames. As a result, the i-th per-

son was corresponding to a sequence of observed keypoints

Ki
obs =

(
ki
1,k

i
2, ...,k

i
tobs

)
, where ki

j included the keypoints

coordinates of the i-th person in frame j.

Based on the observation that fall is highly correlated to

the relative position between body keypoints, we exploited

a keypoints vectorization method to extract salient features

from coordinate representation. The transformed sequence

of the i-th person was denoted Ki
obs =

(
ki
1,k

i
2, ...,k

i
tobs

)
.

Then, the pose prediction module adapted from seq2seq ar-

chitecture [30] was used to predict body poses in next tpred

frames. Considering that applying excessive LSTM unit-

s made the network hard to converge, we encoded several

consecutive keypoints vectors in one LSTM unit to short-

en the lengths of both encoder and decoder LSTM layers.

Moreover, shorter sequences also suppressed the mean-pose

problem caused by long-term prediction [31, 18].

After that, ki
tobs+tpred

, the future keypoints vector of the

i-th person at frame ftobs+tpred
, was predicted and used for

classification. The falls classifier adopted fully connected

network and was trained on re-annotated Le2i [5] dataset,

in which each frame was labeled either ‘fall’ or ‘no fall’.

Combining the pose prediction module and falls classifier,

our model was capable of predicting falls in advance.

3.2. Keypoints Vectorization

The keypoints coordinates extracted by OpenPose [4]

cannot reflect the correlation between different keypoints,

and suffered from the effects of body skeleton’s absolute

position and scale. With the motivation that the same pose

should be represented by the same keypoints vector, we ex-

ploited the following keypoints vectorization method.

As we know, the 18 keypoints of MS COCO [19] are

nose, neck, left and right shoulders, elbows, wrists, hips,

knees, ankles, eyes and ears. Since we focused on the body

keypoints, 5 face keypoints (i.e. nose, left and right eyes and

ears) were ignored. For 13 concerned ones, we transformed

their coordinates to vectors connecting with corresponding

adjacent keypoints. As illustrated in Fig. 3, the left and right

shoulders are connected to the neck, the left/right elbow is

connected to left/right shoulder, and the left/right wrist is

connected to left/right elbow. Similarly, the left and right

hips are connected to the neck, the left/right knee is con-

nected to left/right hip, and the left/right ankle is connected

to left/right knee. As a result, 12 keypoints vectors were

constructed from the coordinates information. Finally, we

normalized all the vectors to unit length.

Formally, recall that the observed keypoints sequence of

the i-th person was Ki
obs =

(
ki
1,k

i
2, ...,k

i
tobs

)
, where

ki
j =

(
xi
j,1, y

i
j,1, x

i
j,2, y

i
j,2, ..., x

i
j,18, y

i
j,18

)
. (1)

(xi
j,m, yij,m) denoted the m-th keypoint coordinate of the i-

th person in frame j. For the p-th connection pointing from

the l-th keypoint to the r-th keypoint, the keypoints vector(
xi
j,p, y

i
j,p

)
was calculated by:

(
xi
j,p, y

i
j,p

)
=

(xi
j,r−xi

j,l,y
i
j,r−yi

j,l)
√

(xi
j,r

−xi
j,l)

2

+(yi
j,r

−yi
j,l)

2
. (2)

After 12 keypoints vectors were constructed, they were then

concatenated to form ki
j as follows:

ki
j =

(
xi
j,1, y

i
j,1, x

i
j,2, y

i
j,2, ..., x

i
j,12, y

i
j,12

)
. (3)



Figure 3. The illustration of the keypoints vectorization method.

The arrows indicate 12 vectors constructed from the coordinates

of 13 body keypoints. All the vectors are normalized to unit length

with only direction information remains.

The transformation from ki
j to ki

j eliminates the absolute

position and scale of body skeleton, and preserves direction

information between adjacent keypoints. It not only ensures

that the same body pose has the same representation, but

also extracts salient features for better falls classification.

3.3. Seq2Seq-based Pose Prediction Module

The authors in [30] proposed a seq2seq network, which

was applied to machine translation at first and achieved ex-

cellent performance. Later, they introduced this architecture

to conversational modeling in [34]. In analogy to mapping

a sentence from one language to another in machine trans-

lation, the conversational model maps a query sentence to a

response sentence. Generally, the seq2seq framework uses

an LSTM [9] layer to encode the input sentence to a vector

of a fixed dimensionality, and then another LSTM layer to

decode the target sentence from the vector. This encoder-

decoder architecture is widely used in sequence mapping

problems such as machine translation [30], conversation

modeling [34] and even video caption [33] because of its

powerful capabilities.

Inspired by the great success of seq2seq network in the

sequence mapping problems, we implemented a seq2seq-

based pose prediction module to predict body poses in

the future tpred frames. Formally, recall that the ob-

served keypoints vector sequence of the i-th person was

Ki
obs =

(
ki
1,k

i
2, ...,k

i
tobs

)
. The pose prediction module

was designed to generate future keypoints vector sequence

Ki
pred =

(
ki
tobs+1,k

i
tobs+2, ...,k

i
tobs+tpred

)
.

As illustrated in Fig. 4, the pose prediction module is

composed of two LSTM [9] layers as the encoder and de-

coder respectively. The encoder analyzes the sequence of

observed keypoints vectors with each LSTM unit parsing

one keypoints vector. The hidden vector calculated by the

previous unit is passed to the next one. In the decoder, the

keypoints vector is generated one at a step. The first decoder

LSTM unit accepts the last hidden vector from the encoder

and outputs the first prediction. Latter units take the pre-

vious outcome as input and produce a new one. As all the

LSTM units in the decoder complete predictions, the output

keypoints sequence will be generated.

Recall the mechanism of LSTM layer: Assume that the

input sequence is (x1,x2, ...,xm), the t-th LSTM unit up-

dates the states based on the states at t− 1:

it = σ (Wi [ht−1,xt] + bi)

ft = σ (Wf [ht−1,xt] + bf )

ot = σ (Wo [ht−1,xt] + bo)

c̃t = tanh (Wc [ht−1,xt] + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh (ct) ,

(4)

where σ denotes the sigmoid function, tanh is the hyperbol-

ic tangent function, ⊙ denotes the element-wise multiplica-

tion, it, ft, ot, ct and ht represent input gate, forget gate,

output gate, cell state and hidden state of the t-th LSTM unit

respectively. W and b are trainable weights.

We attempted to apply tobs LSTM units to the encoder

and tpred LSTM units to the decoder (i.e., each LSTM unit

only deals with a single keypoints vector). However, we

found that as the increment of tobs and tpred, the network

was getting harder to converge. To mitigate the negative

effect of long LSTM layer, we packed every np consecu-

tive keypoints vectors in one for decreasing the length of

keypoints sequence and the number of LSTM units. For-

mally, the packed sequence of Ki
obs =

(
ki
1,k

i
2, ...,k

i
tobs

)

was K̃i
obs =

(
k̃i
1, k̃

i
2, ..., k̃

i
tobs/np

)
, where

k̃i
j = ki

np(j−1)+1 ⊕ ki
np(j−1)+2 ⊕ ...⊕ ki

npj
, (5)

where ⊕ denotes the concatenation of two vectors. If there

are no enough keypoints vectors for the last package (it

will always happen when np is not divisible by tobs), zero-

paddings are filled to its tail for the dimensional equality.

Correspondingly, since the vectors in output sequence are

also packed, they need to be unpacked before classification

to obtain the future pose at each frame.

Benefiting from the vector packing technique, the pose

prediction module required less time to get convergent in

the training phase, and the mean-pose problem raised in [31,

18] was also suppressed.

3.4. Falls Classifier

The falls classifier was trained to perform inference on

the future keypoints vector at frame ftobs+tpred
. Considering

that ki
tobs+tpred

only contained 24 features, we simply adopt-

ed a traditional fully connected neural network for classifi-

cation. The input layer was embedded with 24 neurons to

fit the dimensionality of the input vector. And we set up

five hidden layers containing 96, 192, 192, 96, 24 neurons

respectively. The output layer with 2 neurons was used to

give the final prediction: ‘fall’ or ‘no fall’.



Figure 4. The architecture of our seq2seq-based pose prediction module, which is composed of an encoder (colored green), and a decoder

(colored blue). Each LSTM unit in the encoder parses an observed keypoints vector (visualized in the figure to present more intuitive

result) and produces a hidden vector. The first unit in the decoder accepts the last hidden vector from the encoder and generates the first

prediction. Latter units receive the previous prediction and produce a new one. Note that the vector packing is reflected in the figure.

4. Experiments

4.1. Dataset Overview

We trained and evaluated our model on Le2i falls de-

tection dataset [5], which consists of 191 videos captured

under four different scenes: home, coffee room, office and

lecture room. The frame rate is 25 frames per second and

the resolution is 320×240 pixels. In each video, an actor

performs various of normal activities and falls (fall might

be absent in several videos). The official annotations pro-

vide the falling-start frame stamp and the falling-end frame

stamp for each video. If there is no fall in a video, both

frame stamps will be marked as 0 in its annotation file.

For the requirement of tagging a label for each frame, we

first looked through all the videos and manually annotated

an extra getting-up frame stamp for each one. If there is no

fall appears, this value will be set to 0. And if the actor does

not get up until the video ends, this value will be set to the

last frame. Suppose that the frame stamps of falling start,

falling end and getting up are denoted Sfs, Sfe, Sgu re-

spectively, we attempted three automatic frame-annotation

principles in our experiments:

1. Frames between Sfs and Sfe are labeled ‘fall’;

2. Frames between Sfs and Sgu are labeled ‘fall’;

3. Frames between Sfe and Sgu are labeled ‘fall’.

And all the excluded frames are labeled ‘no fall’. The first

principle only regarded the falling proceeding as fall, which

means ‘no fall’ will be annotated to a fallen person. Under

this principle, the trained falls classifier could not recognize

falls normally. The second one resulted in a high false pos-

itive rate because many ‘precursors’ of falling event will be

predicted as ‘fall’ even when they are not leading to a real

fall. The third principle achieved great balance by labeling

‘fall’ after the actor was already in the fallen state. So we

finally adopted this principle for frame annotations.

4.2. Experiments Setup

We implemented our model on a workstation with dou-

ble Nvidia 1080Ti GPUs. The seq2seq-based pose predic-

tion module and the falls classifier were trained separately

and tuned jointly.

To train the pose prediction module, we preprocessed al-

l videos in the Le2i dataset. For each video, we utilized

OpenPose to extract the actor’s keypoints coordinates frame

by frame, and transformed them to keypoints vectors with

the method proposed in Section 3.2. However, due to the

effect of illuminance or camera perspective etc., the actor’s

keypoints might be partially or completely missed. We dealt

with the partial missing by setting vectors connecting un-

detected keypoint to (0, 0) in the vectorization step. For

the complete missing, the corresponding frames would be

discarded. To ensure the coherence of keypoints sequence,

consecutive 10 discarded frames would break the sequence

into two segments. Then we filtered out the sequences con-

taining less than 10 frames and finally obtained 139 se-

quences. The maximum, minimum and average frames of

these sequences are 1773, 13 and 241.26 respectively.

During the training phase, the network loaded all the pro-

cessed keypoints sequences and acquired training samples

according to the configurations of tobs and tpred. For each se-

quence, all sub-sequences with length of tobs + tpred frames

were segmented and used as valid training samples. The

former tobs frames were input to the encoder of the pose

prediction module, and the latter tpred ones were regarded

as ground truth. After the network completed inference, the

mean square error (MSE) was applied to calculate the loss

between ground truth and the predicted sequence. And the

network was optimized using Adam [13] algorithm. In our

experiments, the learning rate was set to 0.001.

To evaluate performance of the pose prediction module

trained with different selections of tobs, tpred and np men-

tioned in Section 3.3, we exploited mean cosine similarity



Figure 5. The MCS comparisons among several parameter con-

figurations. We first selected five combinations of tobs and tpred,

which is denoted by (tobs, tpred) in the figure, then trained and eval-

uated the pose prediction module with different np.

(MCS) as the metrics. Specifically, suppose that there are

m test samples, the ground truth and the predicted sequence

of the i-th sample are gi and pi respectively. Note that gi

and pi both contain tpred keypoints vectors (pi has been un-

packed). The j-th vector of gi and pi are denoted gi
j and

pi
j . Then the MCS was calculated by:

MCS =
1

m

m∑

i=1

Ci, (6)

where

Ci =
1

tpred

tpred∑

j=1

gi
j · p

i
j∥∥gi

j

∥∥ ∥∥pi
j

∥∥ . (7)

We tried several configurations of tobs, tpred and np to

see the effect to the pose prediction module. It can be seen

from Fig. 5 that observing 10 frames was insufficient for

the network to give accurate predictions, especially for long

predictions. Using 25 frames to predict 25 frames and using

50 frames to predict 50 frames both resulted in high MCS.

Generally, the network was capable of predicting future 50

frames based on 25 observed frames with a tolerable MCS

decrease. And np = 5 showed the best performance among

all the candidate values. Hoping that the pose prediction

module could predict further future poses with acceptable

performance for earlier falls warning, we adopted tobs = 25,

tpred = 50 and np = 5 in the deployment.

With respect to the training of falls classifier described

in 3.4, we mapped each keypoints vector to the label of

corresponding frame. Samples with less than 8 detected

body keypoints were discarded because they contained too

many null features. (In the inference phase, these samples

would be prejudged as ‘unknown’ before the classification.)

All the valid vector-label pairs were used to train the net-

work and cross-entropy function was adopted to calculate

the loss. Adam [13] was still selected as the optimizer.

4.3. Evaluations

Evaluations are designed concerning about the following

questions: 1) Whether our falls classifier utilizing body key-

points information outperforms mainstream raw RGB based

models. 2) What effects will the pose prediction module

bring to the accuracy of falls classification.

4.3.1 Body Keypoints vs. Raw RGB

We conducted comparisons between our falls classifier and

popular raw RGB-based HAR models including C3D [32],

Two-Stream [26] and TSN [35] etc. However, consider-

ing that these models just predict one label to a complete

video rather than a single frame, we converted the annota-

tions from frame-label pairs to clip-label pairs.

The main idea was to segment 3-second (i.e. 75 frames)

clips from the original video and labeled ‘fall’ to those in-

cluding the whole falling proceeding and ‘no fall’ to those

not involving falls at all. The choice of 3-second length

is based on the statistic that the average duration of falling

proceeding among all the videos is 1.26 seconds, which en-

sures the acquirement of positive samples. Formally, recall

that Sfs, Sfe and Sgu are three frame stamps that mark the

falling start, falling end and getting up respectively. Sup-

pose a clip is segmented from the video’s Sl-th frame to

Sr-th frame (Sr − Sl = 75), its annotation is decided by:

Sl ≤ Sfs and Sfe ≤ Sr ≤ Sgu labeled ‘fall’

Sr ≤ Sfs or Sl ≥ Sgu labeled ‘no fall’
(8)

To avoid ambiguities, clips with partial falling proceed-

ing were excluded. We finally obtained 9549 samples,

which were randomly divided into a training set and a test

set with the ratio of 7:3. We finetuned C3D (3 nets), Two-

Stream and TSN (2 modalities) on the training set and eval-

uated them on the test set. For each clip, our falls classifier

directly classified the keypoints vector from the frame Sr.

The limitation of Sr ≤ Sgu in Eq. (8) ensured the label

consistency between each clip and its last frame.

The test set consists of 2865 samples, including 531 pos-

itive samples (fall) and 2334 negative samples (no fall). We

adopted accuracy, precision, recall and F1-score to evaluate

each model. As illustrated in Table 1, our keypoints-based

classifier showed better performance than mainstream raw

RGB-based models, which proved the salience of body key-

points features for falls classification problem.

Table 1. Comparisons between mainstream RGB-based models

and our keypoints-based model on falls classification problem

Model Acc. Prec. Rec. F1

C3D [32] 89.4% 66.1% 87.9% 0.755

Two-Stream [26] 91.6% 71.6% 91.0% 0.801

TSN [35] 94.6% 79.8% 94.5% 0.866

Ours 97.8% 90.8% 98.3% 0.944



Figure 6. Some experimental results of our model. In case (a)-(c), the pose prediction module successfully predicts future keypoints

sequence based on the observed frame sequence, and the falls classifier correctly infers the label. (d) and (e) are two failure cases. In (d),

there are too many missing detections of the body keypoints due to the camera perspective. Consequently, the pose prediction module

generates absurd keypoints prediction, which is insufficient for classification. In (e), the observed keypoints sequence does not includes

any ‘precursors’ of falling event, thus leads to wrong prediction and classification.

Table 2. Comparison between Modelcls and Modelpred+cls

Model Acc. Prec. Rec. F1

Modelcls 99.2% 95.1% 98.8% 0.970

Modelpred+cls 98.7% 92.6% 98.0% 0.952

4.3.2 Effects of the Pose Prediction Module

The pose prediction module was evaluated by self compar-

isons with this module enabled (denoted as Modelpred+cls)

and disabled (denoted as Modelcls).

The first experiment was designed to compare the clas-

sification results between predicted keypoints and directly

observed ones. Specifically, while predicting the label of

the i-th frame in a video, Modelpred+cls utilized frames from

i− 74 to i− 50 (25 frames) to predict the keypoints vectors

of frames from i − 49 to i (50 frames). Then the predicted

keypoints vector of frame i was input to falls classifier to

produce a label. As for Modelcls, it was directly given the

keypoints vector of the i-th frame for classification.

The comparison result is presented in Table 2. In ac-

cordance with expectations, the pose prediction module

brought a reduction to the accuracy of falls classification.

However, Modelpred+cls is capable of predicting falls in

advance. For a fairer comparison, we conducted another

experiment to enable Modelcls to ‘foresee’ the falls by early

annotation. Specifically, the labels of the falling proceeding

(i.e., from frame Sfs to Sfe) were modified to ‘fall’ in the

training of Modelcls. As shown in Table 3, compared to

the pose prediction method, early annotation improves the

recall at the cost of an obvious drop on the precision, which

is caused by the significant increase of false positive.

Table 3. Comparison between Modelcls and Modelpred+cls with

modified annotations
Model Acc. Prec. Rec. F1

Modelcls 98.1% 87.7% 99.7% 0.933

Modelpred+cls 98.7% 92.6% 98.0% 0.952

4.4. Results

We present several experimental results in Fig. 6. In

most scenarios, our model can correctly predict the falling

event in advance. However, (d) and (e) show two failure

cases caused by different reasons. In (d), many keypoints

are undetected by OpenPose due to the invisibility of the

person’s upper body under that camera perspective. As a

consequence, the pose prediction module produces absurd

keypoints sequence providing insufficient features for clas-

sification. (Recall that vectors with less than 8 detected key-

points will be prejudged as ‘unknown’ before the falls clas-

sifier). While in (e), no ‘precursor’ of fall is discovered in

the observed frame sequence, which is beyond the ability of

the pose prediction module to predict the future falls.

5. Conclusion

In this work, we propose a model combining a pose pre-

diction module and a falls classifier for the precognition

of falls. The pose prediction module generates future key-

points vector sequence based on the observation. Then the

falls classifier takes the predicted keypoints vector as input

and judges whether it’s a fall. Evaluations has proved the

superiority of keypoints features for falls classification and

the effectiveness of the pose prediction module.
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