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Abstract

Crowd collectiveness refers to the behavior consisten-
cy of crowd scenes, which reflects the degree of collective
movements among massive individuals in crowd systems.
The existing methods focus on measuring the discrepan-
cy of motion direction among the individuals. However,
few studies consider the magnitude discrepancy of velocity
in a crowd and the collectiveness among different crowds,
which can also affect the overall crowd collectiveness. In
this paper, we propose a novel descriptor which combines
intra-crowd collectiveness with inter-crowd collectiveness
to solve the problem. For intra-crowd collectiveness, we in-
troduce the energy spread process to identify the impacting
factors of collectiveness, then measure the collectiveness of
individuals within a crowd cluster by computing their sim-
ilarities of magnitude and direction from the optical flow.
For inter-crowd collectiveness, we assess the motion con-
sistency among various crowd clusters generated from col-
lective merging. Experimental results demonstrate that how
the new collectiveness descriptor improves performance on
three different crowd datasets, thus validating the superior-
ity of the proposed descriptor.

1. Introduction

The motion collectiveness of crowds is one of the most
common phenomena in nature, which broadly appears in
different crowd systems such as human crowd, bacterial
colony, and traffic vehicles. Motion collectiveness repre-
sents the collective movements of massive individual parti-
cles of crowds in both nature and social scenarios. Motion
collectiveness is closely related to many low-level and high-
level computer vision problems, such as solving problems
of depicting collective human behavior [45], motion pattern
understanding [1, 48], motion segmentation [16, 30], ob-
ject tracking [2], and microorganism motion analysis [40].
Meanwhile, it is also applied to the high-level semantic
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Figure 1: Examples depict the different collectiveness with
consistent motion direction. (a) Military formations. (b)
Marathon parades. (c) One-way traffic flow. (d) Two-way
traffic flow.

analysis in crowded scenes such as modeling scene struc-
tures [11,34,47] and recognizing crowd behaviors [48].

Measuring crowd collectiveness indicates the degree of
individuals acting as a union in collective motion [45], it is
difficult to measure the complex crowd behavior because
the integrated individuals in crowds can generate diverse
motion patterns, so the problem is essentially whether there
is an objective way to identify the key factors for explicitly
measuring the underlying principles of the phenomenon? In
general, the behavior of crowd primarily affects the motion
consistency of crowd. Especially, the direction and velocity
of the crowd motion should be related to the crowd collec-
tiveness according to human’s visual intuition. For exam-
ple, as shown in Fig. 1(a) and (b), military formations in a
parade and marathon parades have the same consistency in
terms of motion direction, but the military formations have
a more uniform velocity than the marathon parades, our in-
tuition is that the former should be more consistent. Thus,
we need to find a rational way to reveal the relation between
intuition and motion collectiveness.

Motivated by the energy diffusion proposed in [19], it
transforms input motion field into a coherent crowd motion
field named as thermal energy field. Energy diffusion treats
the crowd individuals as particles in sets and uses the optical
flow based energy mechanics to capture individual move-
ments and their interactions. However, [19] ignores the ini-
tial optical flow of particles, which can’t get a comprehen-
sive energy field to find all impacting factors of crowd col-



lectiveness. Therefore, we propose an energy spread pro-
cess to solve the problem and try to capture all useful im-
pacting factors of crowd collectiveness.

In addition, traditional approaches typically focus on the
collectiveness of intra-crowd in terms of crowd density es-
timation [14, 18,43]. However, a crowd may include some
clusters that involve different motion patterns. As shown in
situations of Fig. 1 (c) and (d), although the motion direc-
tions of the vehicle crowd in every road lane is consistent,
the collectiveness of Fig. 1 (c) is more consistent in terms
of intuition, and the intra-crowd collectiveness can’t mea-
sure the situation well. Hence, we propose the inter-crowd
collectiveness to measure the motion collectiveness among
these clusters.

In this study, we propose a fusional descriptor to esti-
mate crowd collectiveness. The novelty of our approach
lies in three aspects. First of all, we propose a novel strate-
gy to establish the intra-crowd collectiveness by measuring
the discrepancies of both the velocity magnitude and mo-
tion direction. Second, an energy spread process is intro-
duced to validate the factors that impact intra-crowd collec-
tiveness. The energy spread process utilizes the theory of
zero-input response and zero-state response in terms of op-
tical flow to deduce the diffusion process. Third, we intro-
duce the cluster merging module to compute the inter-crowd
collectiveness, which indicates the collectiveness among d-
ifferent crowd clusters. The overall crowd collectiveness is
thus composed of the intra-crowd and inter-crowd collec-
tiveness.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 presents the theo-
retical framework of the proposed crowd collectiveness de-
scriptor and the energy spread process. The experimental
results and corresponding conclusions are given in Sections
4 and 5, respectively.

2. Related Works

In this section, we review relevant studies of crowd mo-
tion consistency in the four aspects of the energy spread
process, optical flow, merging cluster motion, and the col-
lective motion property.

2.1. Energy Spread Process

The energy spread process based methods [6, 19,32, 35,
37] are previously used for finding coherent motions. How-
ever, our method differs from them. At first it uses the en-
ergy spread process to find the key factors that influence
motion consistency, while the other methods use it for im-
age segmentation or understanding crowd scenes. Second,
our work not only considers the additional effects on the
particle from external force but also the initial energy state,
while other works only consider the former. It is natural
for us to regard the energy change of a particle as a system,

(a) (b) (c)

Figure 2: Visualization of optical flow in different scenes.
(a) Crowd in market. (b) Grove scene on the Middlebury
dataset [4]. (c) Moving scene in animation on the MPI S-
intel dataset [9]. The first row is the original image, the
second row is the visual results of optical flow.

and the effects of an external force as a signal. If there is
no external signal source in the system and the initial con-
ditions have non-zero value, then the solution with these
initial conditions is known as the zero-input response [3],
which is similar to the initial energy state. If all of the ini-
tial conditions have zero values, then the system is said to
be in the zero-state, and the solution to non-zero inputs for
the system is known as the zero-state response, which is like
the effects of external force. The complete response is the
sum of the zero-input response and the zero-state response,
which can reflect the real motion state of a particle. Thus
we can use the theory of zero-input response and zero-state
response from the field of signals and systems [26].

Compared with the complete response, the zero-state re-
sponse is incomplete and limited in its ability to reflect the
energy spread process. To tackle this issue, we introduce
the complete response to explain the energy spread process
and take the zero-input response into consideration.

2.2. Motion Field of Optical Flow

Obtaining an accurate motion field is essential for mea-
suring crowd collectiveness. The motion field can be built
by using the optical flow estimation, which is typically
solved by an energy minimization framework of the data
term and the smoothness term [12,23]. The data term main-
ly reduces the motion blur and preserves the image plot-
s such as motion boundaries, while the smoothness term
can reduce outliers by denoising [24]. As the visualiza-
tion results shown in Fig. 2, optical flow can precisely
extract the motion boundaries both in the cases of small-
displacement (Middlebury Dataset [4], see Fig. 2(b)) and
large-displacement (MPI Sintel Dataset [9], see Fig. 2(c)).
The energy optimization of the optical flow preserves the
motion boundary and segments the regions of coherent mo-
tion clusters. Energy diffusion by optical flow can be re-
garded as an external force added onto the individual parti-
cle in a cluster to affect its diffusion behavior [19], and the
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Figure 3: Framework of the proposed method.

information of the optical flow preserves the original mo-
tion patterns.

2.3. Merging Cluster Motion

Merging cluster motion is a classical topic with wide ap-
plications including crowd motion analysis, and some ap-
proaches [11,25,33,47, 48] learn motion patterns by clus-
tering trajectories in crowd scenes. Sharma et al. [27] pro-
posed a clustering-based trajectory approach for segment-
ing flow patterns in high-density crowd videos, and Wu
et al. [36] proposed the Curl and Divergence of motion
Trajectories (CDT) descriptors to describe collective mo-
tion patterns. Detecting whether the behavior in crowds
is coherent is of great interest in crowd surveillance man-
agement. Zhou et al. [44] proposed a graph-based method
to detect coherent motion from tracklets. Lin etal. [19]
discovered recurrent activities in crowd scenes by cluster-
ing and merging the extracted coherent motion data. Wang
et al. [31] proposed multi-view clustering method by incor-
porating their motion and context similarities to detect co-
herent groups in crowd scenes.

Another class of methods is based on the different simi-
larity measurement of clusters. Recently, Keuper et al. [16]
proposed correlation co-clustering method by normalizing
the motion difference between different trajectories based
on defining graph model, which can be thought of measur-
ing the discrepancy of velocity of clusters. On the other
hand, Wu et al. [38] introduced Collective Density Clus-
tering (CDC) method which using the cosine similarity to
measure the motion discrepancy of clusters.

2.4. Collective Motion Property

Scientists in various research fields have long been in-
terested in the collective motion of organisms. Individual-
s in crowds tend to lose their personalities and follow the
behavior of others. In biology, the principles of collective
behavior have been revealed through empirical or theoreti-
cal methods. In empirical methods, crowd behavior such as

bacterial colonies [40] have been extensively collected and
analyzed. It is found that factors like crowd density [28]

Algorithm 1: Measuring Crowd Collectiveness via
Global Motion Correlation
Input: Crowd video frame I.
Output: Crowd collectiveness degree V.
1 Compute the optical flow field of I to get the
magnitude and direction of the particles’ velocity;

Filter out the outlier particles by the threshold h;
M .
m=1">

Thresholding matrix Z to get M clusters{c,, }
for each cluster c,,, do

for each particle P in a cluster c,, do
Compute the similarity s;(P, Q) between P
and the neighboring particle Q using Eq. 5;

7 Construct the path-based graph [5] by
weighted adjacency matrix S;

8 Compute the [—path similarity s;(P, Q) using
Eq. 6 and 7;

9 Using Eq. 8, compute the sum ¥;(P) of all
[—path similarity;

10 Using Eq. 9, compute the collectiveness of P
on all path similarities;

A U A W N

11 Using Eq. 10 to compute the intra-crowd
| collectiveness W;,1rq;

12 Measure the average normalized velocity by Eq. 11;

13 Compute the inter-crowd collectiveness W4, using
Eq. 12;

14 Return the overall crowd collectiveness W.

and crowd counting [39] make difference to the crowd col-
lectiveness. Zhang et al. [40] used bacteria densities to s-
tudy collective motion, and Makris et al. [22] studied the
temporal and spatial collectiveness of vast oceanic shoals.
As for theoretical methods, various models and theorems
about the properties of collectiveness have been proposed,
such as self-driven particle (SDP) models [10] and collec-
tive merging [7, 21, 38,45].The SDP models can establish
collectiveness as they are very similar to complex crowd
systems in reality. Collective merging detects collective
motion from randomly moving particles, and can remove
outlier particles with low collectiveness then obtain the con-
nected clusters by a threshold [46]. However, the collective
merging is only used in the postprocess or for visualization,
and its potential effects to construct the descriptor have not
been explored.

3. Framework of the Proposed Method

In this section, we introduce the proposed descriptor of
crowd collectiveness, which merges global motion corre-
lation via intra-crowd collectiveness and inter-crowd col-
lectiveness. As shown in Fig. 3, our framework general-



ly involves three steps: First, find the trajectories of indi-
viduals using tracking algorithms such as the generalized
KLT (gKLT) tracker derived from [13]. Second, measure
the intra-crowd collectiveness which consists of direction
module (®) and magnitude module (M) according to the
corresponding trajectories. Third, use collective merging
to measure the inter-crowd collectiveness of cluster module
(C), then merge the intra-crowd and inter-crowd collective-
ness to generate the global crowd motion collectiveness. As
gKLT is the preliminary step which can be found in [45],
we start to describe the proposed framework from the sec-
ond step.

3.1. Proposed Energy Spread Process

To find the useful factor of intra-crowd collectiveness
rationally, it is important to construct a collective motion
field of correlated particles which can describe the coherent
crowd motions accurately. In the micro crowd motion field,
correlated motion patterns of these particles usually collide
and change trajectory. They diffuse thermal energy to oth-
er neighboring particles by colliding, which can change the
motion status of the other particles. Therefore, the motion
energy of the particles is updated. As [19] mentions, after
T seconds, the diffused energy from Q to P is

e%’,T = U?Q X e_kaP—QHZ X ekf|FQ'(P—Q)‘ (1)

where v € (z,y) denotes the axis, k, and k¢ are the prop-
agation coefficients, Fq is the optical flow at location Q,
Uq = (ug,ug) is the current motion pattern of Q, which
is initialized by Uq = Fq, and the corresponding ther-
mal energy is |[Uq|. However, [19] ignores the initial input
motion Fp in energy spread process, the energy diffusion
can’t change the motion state of the particle since the initial
motion always assumes to zero, so it can’t deduce the un-
derlying principle of intra-crowd collectiveness. Hence, our
motivation is finding a global energy diffusion way to reveal
the principle, which considers the initial input motion.

Motivated by the complete response which considers
both the initial and current energy state, the beginning of the
energy spread process is supposed to be zero-moment. Let
Ep be the total motion energy at location P, which can be
split into two parts: the diffused energy from the heat source
that not concerned with the initial motion is the zero-state
response E'p .,; and the initial motion energy before the
diffusion process is the zero-input response E'p ;. Based
on Eq. 1 [19], the final individual thermal energy diffused
from the heat source QQ can be expressed as the zero-state
response Ep .:

w 2
EP,zs = \/(eP,T)2 + (6%7,1—,)
= |Uq| x e~ kpIP=QI* o JksIFq (P-Q)|  (2)

= |Uq| x e *» x ¥lFal

Here we assume the length of |P — Q] is 1 for computation-
al convenience as they are neighboring, kz} is a coefficient.
In this way, optical flow is the current motion pattern of a
particle, the energy of a particle’s optical flow updates the
correlation with neighboring particles, and the new corre-
lation updates its optical flow in turn. Therefore the ener-
gy of particle’s original optical flow is also diffused by its
neighboring particles before the zero-moment according to
the energy spread process. Eq. 1 shows that particle P
with an original motion state like the zero-input response,
which considers the initial optical flow without energy d-
iffusion from other particles after the zero-moment, but it
can be diffused by the neighboring particle’s motion before
the zero-moment. Combined with Eq. 1, optical flow Fq
should be projected to the direction of optical flow Fp to
diffuse the energy, and Fq is invariant in the zero moment.

As Eq. 2 indicates Ep ,; x |[Ug| ckrIFal the energy of
the zero-input response can be denoted as

Ep_.; = |Uq| x e"!F?l x cos(Fp,Fq) 3)

where k; is a propagation factor in the exponential term to
approximate the impact of Fp in the zero-input response.
Thus the total motion energy of P is the complete response,
which combines the zero-state and zero-input responses.
The energy of a particle reflects the real motion state in a
crowd, and the crowd motion performs more consistent if
the energy distribution of particles is uniform, so it is im-
portant to compare the energy of different particles. Here-
by, the energy ratio r of particle P and its neighboring Q is
computed as

_ Ep _ |Ugq|(e *»thslFal 4 ekilFrl x cos(Fp,Fq))

 Eq Uq|
= e ko thMFRl L ohilFRl o cos(Fp, Fq)

_ ek'i |Fp| (e—kp+(k})\_k'i)‘Fp‘ + COS(FP, FQ))

“4)
where \ = % is the magnitude ratio of the velocity, the
direction similarity can be denoted by the cosine similari-
ty. As kp, kz}, k; are constant and |Fp| in Eq. 4 has been
given, the potential discriminative factors remain the ve-
locity magnitude ratio and the motion direction similarity
of neighboring particles. Thus, we denote (P, Q) as the
motion correlation at time ¢ between P and Q.

3.2. Intra-Crowd Collectiveness

The intra-crowd collectiveness can be determined by
the collectiveness of its constituent individuals, and can be
computed in three steps. First, we compute the motion con-
sistency in neighborhoods of individuals; then, we compute
the pairwise collectiveness of the individuals within partic-
ular paths; finally the crowd collectiveness is obtained by
the mean of all individual collectiveness (see Algorithm 1).



We propose a comprehensive similarity metric to mea-
sure the intra-crowd motion consistency between each par-
ticle and its neighborhood. The comprehensive motion sim-
ilarity of intra-crowd is defined as

St (P7 Q) = max(rt(P, Q)a O) 5

where individual Q is in the neighborhood of P at time ¢.
r¢ consists of the magnitude similarity A\ and direction sim-
ilarity cos(Fp, Fq) of the particle’s velocity. Then we nor-
malize s;(P, Q) € [0, 1] to measure the motion consistency
between the adjacent individuals.

After that, we need to estimate the motion similarity be-
tween non-adjacent individuals. The path-based graph pro-
posed in [5] can solve this problem. Let S be the weighted
adjacency matrix in the graph that represents the individual
distribution of crowd set D, and s;(P, Q) be the edge in
the graph. Considering all paths P; between individuals P
and Q whose lengths are [ , similarity on these paths can be
collected as the [-path similarity

)=> sn(P,Q) (6)

{P1}

l

sn=11
& i=0

where {¢;} are the nodes in path P;. In addition, as there
can be more paths P; with length [ between P and Q, Eq. 7
denotes each path similarity. As the [-path similarity gives
the motion consistency between P and Q at [-path scale, we
can define the collectiveness of all individuals with [-path to
individual P as

5¢(qis Qig1) @)

U,(P) =) s(P,Q) ®)

QeD

Then we define the individual collectiveness on all path sim-
ilarities in crowd D as

wpP) =3 sy (P) = [z, ©)

=1

where [-]j; is the k-th element of a vector. Thus the intra-
crowd collectiveness of D is defined as the mean of all in-
dividual motion collectiveness, which can be written as

eTrpe
|D‘ Z |1 Zi (10)

PeD

\I/intra =

where |D| is the cardinality of set D, i and I are the u-
nit vector and unit matrix, respectively, and the matrix
Z = (I-2S)~! — Iis a mutual similarity matrix of al-
I particles which converges when z < % Here, z is a
real-valued regularization factor of the weighted adjacen-
cy matrix S, and K is the number of adjacent particles.
Thus, the intra-crowd collectiveness has upper and lower

Figure 4: Examples depict the visualization of the merg-
ing clusters. Scatters with different colors indicate different
detected merging clusters, arrows represent motion orienta-
tions, cross points indicate the outliers. (a) Human crowd.

(b) Traffic crowd. (c) Bacterial colony.

bounds which denoted as 0 < W10 < IZK

The new intra-crowd crowd collectiveness descriptor mea-
sures both magnitude and direction discrepancy of the op-
tical flow, which can be used to measure the intra-crowd
motion consistency as a whole.

3.3. Measuring Inter-Crowd Collectiveness

Since the crowd may be constituted of more than one
clusters of individuals gathering together. The intra-crowd
collectiveness can’t measure the motion consistency among
different clusters, while the inter-crowd collectiveness can
make up the problem. We propose an cluster merging mod-
ule to detect the inter-crowd collectiveness using a collec-
tive merging process, which can measure the collectiveness
among different clusters if more than one crowd cluster ap-
pears simultaneously in the video. First, we need to remove
the outlier particles with low intra-crowd collectiveness and
derive the clusters of crowds from the connected compo-
nents via thresholding matrix Z. According to Property 3
in [45], we let h = 1351( be the threshold to remove out-
lier particles where o € (0.4, 0.8). The connected compo-
nents in the image are then integrated into piles of particle
clusters. Thus, the outliers with low collectiveness can be
removed, while groups of neighboring particles with high
motion consistency can be extracted and separated into M
different clusters {cm}%zl. Fig. 4 shows the visualization
of the cluster merging.

Second, for a cluster ¢, with [NV particles, we measure
the motion similarity between it and other cluster by two
strategies. One is the average normalized velocity which

denoted as
an
Vi = Z (1)

n=1 ||V |

where v,,,,, denotes the velocity of the nth particle in clus-
ter ¢,,. Eq. 11 suppresses the impact of the velocity magni-
tude of particles by normalization, and focuses on the over-
all motion direction of a cluster. Then the collectiveness
W, nter Of all clusters can be merged as

m=19mVm

HZm 1 @ [[Vin|

znter -

‘ 12)



] Method | MAE | | Correlation (%) 1 |
i) 21.67 78.34
M 62.18 -27.26
C(Velocity) 30.87 50.85
C(Cosine) 42.48 57.74
d+M 17.55 79.04
d+C(Velocity) 16.28 81.68
®+C(Cosine) 16.65 81.31
M+C(Velocity) 26.71 54.39
M+C(Cosine) 25.18 59.63
P+M+C(Velocity,Ours) | 15.64 82.85
®+M+C(Cosine,Ours) 15.92 82.51

Table 1: Results of different modules and combined mod-
ules on the Collective Motion Dataset. The proposed col-
lectiveness “¥” is the same as the combined modules of
“®+M+C”, “Velocity” and “Cosine” denote using average
normalized velocity and cosine similarity as the cluster
merging measurement, respectively.

where a,, is the number of particles in ¢,,,. In Eq. 12, the
normalized velocity of all clusters are weighted according
to the corresponding size of each cluster, which emphasizes
the clusters with larger amount of particles. Eq. 12 finally
normalizes the weighting result to obtain the velocity mag-
nitude ;.. of merging clusters, which is the collective-
ness of the overall clusters.

The other strategy is the cosine similarity, we denote the
average cosine similarity between each v, and the average
velocity v of all particles as

M
Uy = 2= G COS(Vim, V) (13)

M
Zm:l am

In this way, we can measure the motion direction consisten-
cy among multiple clusters.

The value of W;,, represents the inter-crowd motion
consistency. The overall crowd collectiveness ¥ consists of
\I’intra and \I/inter-

3.4. Difference from Other Research

Among prior research, [45] is the most relevant work to
ours, in which collectiveness is utilized to measure crowd
motion consistency. However, the core ideas in the two
works are different. In [45], only the discrepancy of mo-
tion direction is considered when assessing the similarity
of individuals, and not consider whether the velocity of the
two crowds is consistent or not. In addition, we validate
the necessity of velocity magnitude with the energy spread
process, which [45] does not. Our work also focuses on
using optical flow to explain the factors affecting motion
consistency. Another study [19] also uses the energy spread

(c) 6T =0.90 ¥ =0.71 & = 0.[(

(d) GT =0.90 ¥ =0.88 & =0.49

Figure 5: Some comparative collectiveness results on Col-
lective Motion Dataset. GT, ¥, ® are the ground truth, our
collectiveness descriptor and method in [45], respectively.
The four scenes are: (a) One-way traffic flow. (b) Marathon
parades. (c) Same motion direction in two-lane highway.
(d) One pedestrian walks against the crowd.

process, but it focuses on discovering recurrent activities in
crowd scenes, while our work use the process to find the
factors that affect crowd motion collectiveness. In addi-
tion, [19] only considers the zero-state response in the en-
ergy spread process without the initial optical flow term,
while our approach jointly leverages the initial optical flow
term as the zero-input response of the process.

4. Experiments
4.1. Datasets and Settings

Datasets. = We perform experiments on three crowd
datasets, i.e., the Collective Motion Dataset [45], the
Self-Driven Particle (SDP) Dataset [29], and the Bacterial
Colony Dataset [40]. The Collective Motion Dataset con-
sists of 413 video clips from 62 different crowds scenes,
which includes parades, pedestrian crowds, and vehicle
crowds. The SDP Dataset introduces a novel type of dy-
namics model to investigate the emergence of self-ordered
motion in crowds of particles with biologically motivated
interaction. The Bacterial Colony Dataset comes from the
wild-type Bacillus subtilis [15] bacteria colony which ex-
hibits the motion patterns of microorganism crowd. There
are two videos in the Bacterial Colony Dataset, one video
records the motion of bacteria colony with sparse density
named “SMO1” and the other records dense bacteria colony
named “SMO02”, their average numbers of bacteria in each
frame are 343 and 718 [40].

Settings. To make fair comparisons, we evaluate us-
ing the Mean Absolute Error (MAE) and the correlation
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Figure 6: Evolution of SDP collectiveness with time and
different noise level. (a) Collectiveness evolution under d-
ifferent frames and n = 0.3. (b) Average collectiveness
within 100 frames under increasing 7.

degree between the ground truth and different collective-
ness descriptors. Crowd collectiveness may be related to
the crowd counting as mentioned in Section 2.4, so we fol-
low the crowd counting [17,20,42] to use MAE as the met-
ric, which complements the evaluation of correlation met-
ric [45]. MAE is computed as

(Xi —Yi)

1 T
MAE = 100 x EZ' (14)

i=1
where X; and Y, are the estimated collectiveness and
ground truth of the ith frame in a video, respectively. L is
the number of frames in the video. MAE reflects the degree
of absolute error. The indicator of the correlation metric is
a quantitative metric w.r.t. the degree of linear correlation
between variables X and Y:

Cov(X,Y)
Var(X)Var(Y)

Correlation = x 100% (15)

where Cov(X,Y) and Var(X,Y) are the covariance and
variance between variables X and Y, respectively. Accord-
ing to our metrics, lower MAE and higher correlation indi-
cates a better collectiveness descriptor.

The ground truth of the Collective Motion Dataset is in-
dependently graded by 10 volunteers according to [45]. The
collective motion degree of these videos are rated as either
low, medium or high, and are scored as 0, 1, and 2, respec-
tively. The range of the total scores is [0, 20], and for the
sake of convenience we normalize the scores to [0, 1] as the
ground truth (GT). The test conditions of the parameters are
set to (K, z,a, h) = (20,0.025,0.6,0.03) in the proposed
framework.

4.2. Evaluations of the Collective Motion Dataset

The proposed collective framework involves three mod-
ules: direction collectiveness (®), velocity magnitude col-
lectiveness (IM), and cluster merging collectiveness (C). As
mentioned above, the evaluation can be performed in each
module independently or in combined patterns, we perform
ablation experiments to evaluate the effect of each module.

14T [T
12k [ v (Cosine)
l:lw(Velocwty)

Standard deviation (x 10°%)

Figure 7: The stability comparison of our methods and ¢
with increasing 7. The smaller deviation means the method
is stable and less sensitive to the initialization of SDP. We
repeats the simulation at each n for 20 times as [45].

The results of MAE and the correlation are shown in Ta-
ble 1. The performance of our descriptor is found to be bet-
ter than other modules, and outperforms the descriptor of
the direction collectiveness, which improves MAE by 6.03
and raises the correlation by 4.51%. The results show that
the correlation of the single velocity magnitude module is
negative, which indicates it is not sufficient to only consider
the discrepancy of velocity magnitude and it must be con-
sidered together with the direction module. For the cluster
module, the Velocity strategy in Eq. 12 is better than the
Cosine strategy in Eq. 13 since the former handles velocity
as vector, which considers the motion consistency of both
magnitude and direction among clusters. However, the lat-
ter only considers the direction. According to our deduction
in energy spread process, the magnitude is also helpful to
the collectiveness. As a result, the direction module com-
bined with either the velocity magnitude module or the clus-
ter merging module may also lead to improvements, which
indicates the effectiveness of the velocity magnitude collec-
tiveness and the cluster merging collectiveness.

In addition, we provide examples in Fig. 5 to illustrate
the performance in difficult situation, particularly for the
case in Fig. 5(c), which appears to be a two-way road but
is in fact a same direction of traffic moving in both lanes.
Intra-crowd descriptor ¢ handles the situation as a whole
and ignores the inter-crowd collectiveness, while the pro-
posed ¥ overcomes the defect and achieves much better re-
sults than & in kinds of complex situation in Fig. 5. On
the other hand, since our method is based on trajectory in-
formation, we compare with recent state-of-the-art methods
which based on tracking, we evaluate the collectiveness re-
sults by achieving their algorithms [16,38] or released code
from GitHub [45], and our method outperforms them as
shown in Table 2. All above experiments validate the su-
periority of our method on Collective Motion Dataset.



Method | MAE | [ Correlation (%) 7 |

Keuper et al. [16] 30.87 50.85
Wu et al. [38] 42.48 57.74
Zhou et al. [45] 21.67 78.34
Ours 15.64 82.85

Table 2: Comparison with state-of-the-art methods on the
Collective Motion Dataset.

4.3. Evaluations of the Self-Driven Particle Dataset

To demonstrate the effectiveness on the SDP Dataset, we
compare our approach with other state-to-the-art descriptors
by different sub-modules. SDP has been applied widely in
the study of collective motion and resulted in high level of
similarity with different real-world crowd systems [8]. The
ground truth of the SDP Dataset is the instantaneous aver-
age normalized velocity of all IV particles

S
V= |l=
N Ln=1 [[v,]]

The particles of SDP model are driven with a constan-
t speed, and their motion directions are updated according
to the average directions of their neighboring particles. The
velocity magnitude in the SDP model is invariant, which
leads to no discrepancy about the velocity magnitude in this
dataset. Thus, we test our module without the magnitude
module.

We conduct experiments with complex SDP models. In
this case, the SDP model is added different levels of random
perturbed noise 1 on the aligned orientation in neighbor-
hood, which would cause the phase transition of crowd sys-
tem to change from disordered movements into consistent
motion. At initialization, the SDP particles are randomly
assigned with spatial locations and velocity directions. The
moving direction of particle P is updated as

’ (16)

Op(1) = (BQ(t — D)genmy + A0 (17)

where 6p (t) denotes the moving direction of P at time ¢,
0q(t — 1) is the average direction of velocities within the
neighboring particles of P. A6 is a random angle chosen
within the interval [—m, 7]. GT is the average normalized
velocity of all particles. As Fig. 6(a) shows, the collec-
tiveness is low since the particles are randomly assigned at
the initialization, the behaviors of the SDP system turns in-
to collective motion gradually, the two kinds of our methods
are more accurate to the GT than ®. In addition, as shown in
Fig. 6(b), the collectiveness of SDP becomes less as the per-
turbation increases, all curves reflect the trend, so we need
to make further comparison to their stability under different
7). For further comparison, we plot the histograms of their

. Method | & $4M  ®+C  W(Ours)
Video
SMO1 1244 1531 1662 18.44
SMO2 3538 3542 5532  55.64

Table 3: The numerical results of the correlation (%) be-
tween the measuring collectiveness and the crowd density.

standard deviation in Fig. 7. From the large standard de-
viation of ® under the same 7 compared with both of our
methods, it is shown that our methods are more stable and
less sensitive to the initial conditions of SDP model, which
validates the robustness of our methods in terms of handling
the perturbation.

4.4. Evaluations on Bacterial Colony Dataset

In this experiment, we use the bacterial motion videos to
evaluate our method. The crowd density has been proved to
be one key factor for the collective bacteria motion [29,40].
Therefore we conduct our experiment to analyze the corre-
lation between the collectiveness descriptor and the number
of the bacteria crowd.

Table 3 gives the numerical results of the correlation, we
use the similarity of average normalized velocity as the clus-
ter merging measurement in this experiment. The results in
“SMO02” is better than “SMO01” because its density is high-
er, which leads it to be more probably measured the trend of
bacteria motion. Moreover, W is better than other methods,
and adding the magnitude module (M) or cluster merging
module (C) can improve the direction module (®). The re-
sults indicate the measurement of our crowd collectiveness
descriptor has outstanding potentials to apply in the scien-
tific research.

5. Conclusion

In this study, we propose a comprehensive collectiveness
descriptor to measure the crowd collectiveness by exploit-
ing the energy spread process. It considers both the discrep-
ancy of the magnitude and the direction in crowd motion
to get the intra-crowd collectiveness. Moreover, we mea-
sure the motion similarity among different crowd clusters
to construct inter-crowd collectiveness. We have validated
and demonstrated its robust performance in terms of depict-
ing crowd collective behavior.
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