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Abstract

In this paper, we present a deep learning architecture

that exploits 3D face reconstruction to obtain a robust age

estimation. To this end, effective representation is learned

through an expression-, pose-, illumination-, reflectance-,

and geometry-aware deep model reconstructing a 3D face

from a single 2D image. The 3D face reconstruction net-

work is combined with an appearance-based age estimation

network, where the face reconstruction features are jointly

learned with the visual ones. Experiments on large-scale

datasets show that our method obtains promising results

and outperforms state-of-the-art methods, especially in the

presence of strong expressions and large pose variations.

Furthermore, cross-dataset experiments show that the pro-

posed method is able to generalize more effectively as op-

posed to state-of-the-art methods.

1. Introduction

The human face is an important source of information.

Face properties may reveal different important cues such as

emotion, intent, ethnicity, identity, gender, and age. The fo-

cus of this paper is age estimation. Age estimation has many

potential applications in daily life. For instance, in market-

ing, it can be employed for analyzing which age groups are

interested in what kind of products, services, or entertain-

ment. Vending machines of tobacco and alcohol can use

age estimation to determine if the user is of legal age.

However, due to the large variation of aging patterns, ad-

dressed by [2, 10], age estimation is a challenging task.

Existing methods mostly rely on 2D information by ex-
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ploiting appearance-related features. These features are ei-

ther handcrafted [9, 13, 30, 39]) or obtained in a learn-

ing manner (e.g. through Convolutional Neural Networks

(CNNs) [15, 20, 31, 34, 38, 40]). Other methods use pose

dependent distances between 2D facial landmarks [7, 19] or

learn manifolds to directly map 2D images to age.

Methods relying on 2D features have difficulties when

the face appearance changes. For instance, a change in ex-

pression may introduce disturbing age-related patterns, like

wrinkles, and may negatively influence the accuracy of age

estimation methods [14]. Head pose variations that dras-

tically change the facial appearance may also degrade the

accuracy of age estimation algorithms [8, 22]. These vari-

ations cause issues for other visual facial analysis tasks as

well, like expression recognition [32] and landmark detec-

tion [8]. Robustifying methods for dealing with these vari-

ations are extensively explored for face identification [5].

One subset of solutions attempt to remove the variations

from the input image by face frontalization or expression

normalization, as a pre-processing step for face identifica-

tion [1, 42]. In that case, any failure from the normalization,

being the inability to normalize or the presence of artifacts

on the generated image, negatively affects the performance.

Such approaches may help to preserve the identity related

dominant face features which makes them suitable for iden-

tification. However, the reconstructed images lose impor-

tant high-frequency information such as skin texture detail

(i.e. wrinkles) which would reduce age estimation accuracy.

In this paper, effective representation is learned through

an expression-, pose-, illumination-, reflectance-, and

geometry-aware deep model, reconstructing a 3D face from

a single 2D image. The goal is to minimize the negative

influence of pose and expression variations and to obtain a

face representation which is suited for robust age estima-

tion. The proposed model also learns the changes in fa-



cial appearance (2D image) through an appearance subnet.

These subnets (2D and 3D) are trained to jointly optimize

the 3D reconstruction and age estimation.

The main contributions of this paper are as follows: (1)

To the best of our knowledge, we are the first to exploit 3D

face reconstruction and 2D appearance features to jointly

model pose and expression robust age estimation through

multi-task learning. (2) The proposed multi-task learning

model for age estimation achieves state-of-the-art accuracy

on the Wiki database, as well as on cross-dataset experi-

ments using UTK and AgeDB.

2. Related Work

Age estimation. Until recently, the predominant meth-

ods for performing age estimation are based on handcrafted

features, focusing on wrinkles, skin texture and 2D shapes

such as Local Binary Patterns [30, 39], Bio-Inspired Fea-

tures [13], and Gabor features [9]. However, while dif-

ferent hand-crafted features handle some adversarial con-

ditions, none of them are fully robust against expressions,

head pose, and illumination variations. More specifically,

such approaches are quite sensitive to facial pose since it

causes drastic changes in facial appearance.

Convolutional Neural Networks (CNNs) performs better

than previous methods for age estimation [15, 20, 31, 34,

38, 40]. Instead of mapping a full image to a certain age, as

in manifold learning, CNNs aim to automatically learn effi-

cient age-related features. Exploiting the benefits of CNNs,

[31] proposes the Deep Expectation (DEX) algorithm, an

age estimator that classifies age and, for more robust pre-

dictions, refines the inference prediction with a softmax ex-

pectation.

Pose and Expression Robustness. The effect of pose

and expression on face analysis tasks is well studied. For

instance, to provide pose robustness in face identification,

[23, 27, 28, 29] augment their data by synthesizing face

images for varying head poses using statistical 3D face

models. In a similar way, [1] applies expression neutral-

ization, and [42] employs pose normalization before face

identification. These approaches may help to preserve the

identity related dominant face features which makes them

suitable for face identification. On the other hand, re-

constructed/synthesized facial images lose important high-

frequency details of skin appearance such as wrinkles,

which would negatively influence age estimation. Never-

theless, our model is able to simultaneously learn multiple

robust features, does not require labels other than age, and it

is not influenced by face smoothing on neutralized images.

In [21], age and facial expressions are modeled jointly to

achieve expression robustness in age estimation.

Monocular 3D Face Reconstruction. Monocular face

reconstruction is the task of decomposing a face into its

components (i.e. 3D facial geometry, expression, head pose,

skin reflectance, and scene illumination). Computing these

components for a single RGB image is an ill-posed prob-

lem. To this end, methods use statistical 3D models that rep-

resent 3D faces with a low dimensional parameter code vec-

tor [3, 4, 12, 28]. This code vector contains the encoded face

components such as geometry, expression, skin reflectance,

and additional parameters depending on the statistical 3D

model.

Conventional 3D face reconstruction methods employ it-

erative optimization of an energy function. For instance,

[3] optimizes the parameters by minimizing the error be-

tween the reconstructed and original face. [36] also uses

an iterative approach, yet, it is designed to transfer facial

expressions –in videos– between faces. In addition to be-

ing computationally expensive, energy minimization ap-

proaches have the problem of being reliant on favorable

initialization because of typically non-convex functions to

optimize. Deep learning methods exist using data augmen-

tation techniques to produce results closer to ground truth

fitting [11, 16]. Some other studies apply an analysis-by-

synthesis approach to train the neural network using a phys-

ically plausible image formation model [35]. We base our

model for extracting pose and expression features on [35]

with a number of modifications further discussed in this pa-

per. To the best of our knowledge, we are the first to use 3D

face reconstruction for the age estimation problem.

3. Methodology

An overview of our method is shown in Fig. 1. Given

a cropped face image I, our AlexNet-based CNN model

learns to jointly produce the age prediction ŷ (Section 3.2)

and the 2D-to-3D reconstruction parameterized in a low di-

mensional latent space z (Section 3.1).

The appearance and 3D reconstruction features are com-

bined using multi-task learning. Two methods are explored

(Section 3.3). In the hard parameter sharing approach, a

single shared CNN is adopted. The optimized loss is the

weighted sum of a 3D fitting loss Lfit and an age estima-

tion class distance loss Ldist. In the soft parameter sharing

approach, we use two separate CNN backbones and mutu-

ally connect multiple of their layers to allow sharing. The

loss is the sum of Lfit and Ldist. As a backbone, we use

AlexNet [18] with a removed last fully connected layer.

3.1. Monocular 2D-to-3D Face Reconstruction Sub-
net

The employed monocular 2D-to-3D face reconstruction

(fitting) model jointly decomposes a given 2D face image

into its underlying components represented in a low dimen-

sional code vector z: face rotation ω ∈ SO3 and translation

τ ∈ R
3, face identity α ∈ R

80, face expression δ ∈ R
64,

skin reflecntance β ∈ R
80 and illumination γ ∈ R

27. A



Figure 1. Our multi-task learning architecture for combining visual and 3D face reconstruction to perform robust age estimation. Two

approaches are explored: (1) with hard parameter sharing - sharing the weights of a single AlexNet CNN, and (2) soft parameter sharing -

two AlexNet CNNs have mutually connected layers.

fully connected layer with linear activation is added on top

of the AlexNet backbone to infer z.

z = {α,β, δ,γ,ω, τ} (1)

Reflectance and geometry. The facial geometry

G(α, δ) ∈ R
N×3 and reflectance L(β) ∈ R

N×3 are rep-

resented as a multilinear PCA model using the Basel Face

Model 2017 [12].

G(α, δ) = µgeom +Eid[α · σid] +Eexp[δ · σexp] (2)

L(β) = µref +Eref [β · σref ], (3)

where µgeom, µref ∈ R
N×3 represent the mean neu-

tral geometry and skin reflectance; Eid, Eref ∈ R
N×3×80,

Eexp ∈ R
N×3×64 correspond to the linear bases of the

PCA model together with their standard deviations σid,

σref ∈ R
80, σexp ∈ R

64.

Camera model. We model the face transformation to

the camera space by a rigid transformation consisting of ro-

tation R(ω) : R3 → R
3×3 and translation τ together with

a full perspective transformation Π to obtain vertex coordi-

nates u,v ∈ R
N on the camera plane.

u,v = {ui, vi}, i ∈ {1..N}

= Π ◦ (R(ω)G(α, δ) + τ )
(4)

Illumination model. We model illumination using the

first B = 3 bands of Spherical Harmonics [26] bases Hb(n) :
R

N×3 → R
N assuming the face surface to be Lambertian

with a distant illumination ignoring self-occlusion and cast-

shadows. Illumination coefficients are predicted separately

for the RGB channels. Vertex normals n are estimated us-

ing 1-ring neighborhood. Shaded colour is computed as a

Hadamard product between reflectance and shading:

C(β,n,γ) = {ci}, i ∈ {1..N}

= L(β) ·

B2∑

b=1

γbHb(n)
(5)

Fitting. The energy formulation of [35] is used to train

the proposed pipeline to predict the code vector z. Our loss

consists of a landmark loss Llan, a photometric loss Lphoto

and a regularization term Lreg balanced using weights λlan

and λphoto.

Lfit = λlanLlan + λphotoLphoto + Lreg (6)

Photometric loss. We use the L2,1 loss [6] to penal-

ize the difference between the predicted per vertex shaded

colour (Eq. 5) and the ground truth colour at positions

{u,v}. The loss is defined for a subset of vertices V with

normals directed toward the camera screen.

Lphoto =
1

|V|

∑

i∈V

‖I(ui, vi)− ci‖2 (7)

Landmark Loss. We annotated 48 landmarks with ver-

tex indexes kj , j ∈ {1..48} on the BFM model and penalize

the L2 difference between ground truth landmarks lj and



their corresponding prediction pkj
= {ukj

, vkj
} from the

3D model.

Llan =
48∑

j=1

∥∥pkj
− lj

∥∥2
2

(8)

Regularization. We regularize the model using

Tikhonov regularization to enforce the model to predict

faces closer to the mean.

Lreg = λalpha

80∑

i=1

α2

i + λbeta

80∑

i=1

β2

i + λdelta

64∑

i=1

δ2i (9)

3.2. Appearance Subnet

We refer to our age estimation method, that learns vi-

sual age features, as the appearance subnet. Our appear-

ance model is derived from [31] where the cross-entropy

loss is used for resistance to outliers. Following [31], for

further outlier resistance, we calculate the expectation over

the softmax distribution to obtain a prediction ŷ during the

testing time:

ŷ =

M−m∑

i=0

(i+m) · ai (10)

A fully connected layer is added with an output activa-

tion vector a on the backbone. The ground truth age is de-

noted by y and its one-hot encoding by ỹ. The minimum

and maximum age that a model can predict are m = 0 and

M = 80. In contrast to [31], a distance term is added to the

cross-entropy loss to penalize the probability mass which

is different from the correct classes. The modified loss is

defined as:

Ldist = λdist

M−m∑

i=0

ai · d(i, y)−
M−m∑

i=0

ỹi · log(ai)

where d(i, y) = |(i+m)− y|

(11)

It is assumed that each class corresponds to one year of

age and that the classes are indexed in order of monotonic

increase. d(.) is a distance function. Absolute distance is

chosen to be used in this work, as it is a natural choice to

represent distance and is outlier resistant. λdist is a constant

used to tune the balance between the two terms.

3.3. Multi-Task Learning

Both subnets (3D and appearance) have AlexNet as a

backbone. This establishes a correspondence between the

layers of the two pipelines. The features of the tasks are

different. However, as they are processed by the same filter

size, the features are at the same scale of detail. The com-

bination of these features is then suitable for processing by

both pipelines following the shared layer. In this paper, we

attempt both hard and soft parameters sharing for multi-task

learning.

Hard Parameter Sharing. A single AlexNet is shared

for both tasks. The idea is that by joint training, the fea-

tures are enforced to be suitable to age, and to pose and

expression information. The last layer contains the refined

informative features for each task. The loss is a weighted

sum of both tasks with weight w:

LHPS = (1− w) · Lfit + w · Ldist (12)

Soft Parameter Sharing. The hard parameter model

forces the tasks to share all of their CNN features. This may

not be optimal. Therefore, we employ a soft parameter shar-

ing technique that can learn which layers to share. In this

way, the tasks can produce independent high-level layers.

For this, we use Cross-stitch Networks [24]. The approach

is to have two instances of a backbone, i.e. A and B, one for

each task. We choose to mark the 3D reconstruction subnet

by A and the appearance subnet by B. So-called cross-stitch

layers are then inserted in key positions in the deep network.

Stitch layers take activations xi from two layers, one from

A and one from B, and blends them together as follows:

[
x̄i
A

x̄i
B

]
=

[
κAA, κAB

κBA, κBB

] [
xi
A

xi
B

]
(13)

The κ parameters are trained together with the architec-

ture. They are common for all activations in a pair of lay-

ers. [24] provides information about the positions for the

cross-stitch layers inside AlexNet which we use after all

max-pooling layers and fully connected layers. The final

architecture is shown in Fig. 1.

In our implementation, Adam is chosen as an optimizer,

but the κ parameters are trained separately with the Adagrad

optimizer, to enforce a higher learning rate. This choice is

meant to address the κ parameters receiving very small up-

dates because of the magnitude of AlexNet activations, as

noted by [24]. To avoid overfitting, we apply L2 regulariza-

tion but only on the age estimation branch, since the 3D re-

construction subnet already has its own regularization term.

4. Datasets

The training data is based on the large scale IMDB-Wiki

[31] dataset. Different from other datasets, it contains in-

the-wild faces with a variety of poses and expressions. Only

the Wiki-Cropped subset is used, as it holds more accurate

age annotations.



Figure 2. 3D reconstructions from our 3D face reconstruction model on samples from the Wiki test set. Shown are the original and the

projected on them predicted 3D models.

Wiki-Cropped is cleaned by filtering out data crawled

from unregulated Wikipedia sandbox and user pages, black-

and-white images and photos with undetected face by the

dlib face detector [17]. We keep images labeled below 80

years of age and a maximum of 600 images per age label,

to balance the data distribution. Our test set (referred to as

Wiki test set) consists of 10% of the cleaned data. To ensure

sufficient training data, the test set is distributed as closely

as possible to the training set. We alternate between 5 age

groups when building a training batch to enforce label di-

versity. The boundaries of the groups were chosen to be the

20th, 40th, 60th and 80th percentiles of the dataset distribu-

tion.

The landmarks are extracted by the dlib face detector

[17] and used for landmark loss Llan in training.

For cross dataset evaluation, we choose the manually an-

notated in-the-wild AgeDB dataset [25] and the UTKFace

dataset [41].

5. Experiments

The success of our approach heavily relies on the success

of each subnet, therefore we first demonstrate the qualita-

tive results of our monocular 3D face reconstruction subnet.

In Fig. 2, original images and their reconstructions can be

seen. The reconstructions are visually accurate even under

high pose and expression variations.

5.1. Evaluating the appearance subnet for age esti-
mation

In this experiment, we compare the performance of our

appearance subnet to two other recent age estimation ap-

proaches: Deep Regression Forests [33] and SSR-Net [37].

Like the proposed appearance baseline, both models are

trained on the cleaned Wiki dataset. Training of the ap-

pearance subnet is performed with a learning rate of 10−5,

Adam optimizer, batch size 5, step learning rate decay and

L2 regularization with weight 0.01. The λdist parameter

of the loss is set to 0.2 which results in close values of the

distance loss component and the Cross-Entropy component.

We report on mean absolute error (MAE) between es-

timated and ground-truth age in Table 1. Our appearance

subnet outperforms the other methods. We use it as a base-

line for further experiments.

Method MAE

SSR-Net [37] 7.33

Deep Regression Forests [33] 13.21

Appearance Subnet (Standalone) 5.86

Table 1: Best MAE test score of different age estimation

methods trained on the Wiki dataset. The appearance sub-

net used as the visual baseline in this paper outperforms the

other two methods.

5.2. Joint learning of Age Estimation and 3D face
reconstruction

In this section, we study the performance of the appear-

ance subnet with a joint classification of age estimation and

3D face reconstruction. We show that the performance of

age estimation increases by exploiting features learned from

the monocular face reconstruction.

In this and subsequent experiments, for soft sharing, we

load pre-trained Alexnet weights for the 3D face reconstruc-

tion subnet in the joint model. For other cases, we load Ima-

geNet classification pre-trained AlexNet weights. We apply

L2 regularization with weight 10−5, dropout with rate 0.7

on the final layer of age estimation. For comparison, we



used the same regularization scheme for the standalone ap-

pearance subnet and hard parameter sharing.

After tuning, the MAE score from the hard parameter

sharing model (5.74 MAE) marks an age prediction im-

provement over the independent appearance subnet, as evi-

dent in Table 4, and shows the benefit from sharing the 3D

reconstruction features.

Age estimation weight MAE

Appearance Subnet 5.86

w = 0.1 5.95

w = 0.3 5.74

w = 0.5 5.78

w = 0.7 5.83

w = 0.9 5.89

Table 2: Best MAE test scores of the hard-parameter shar-

ing model after training on Wiki dataset with different

weights w for the age estimation loss. The weight of the

3D face reconstruction is 1 − w. Hard parameter sharing

outperformed the appearance subnet.

Soft sharing parameters MAE

κAA = 0.9, κAB = 0.1 5.58

κAA = 0.8, κAB = 0.2 5.68

κAA = 0.7, κAB = 0.3 5.52

κAA = 0.5, κAB = 0.5 5.47

Table 3: Best MAE test scores from tuning soft parameter

sharing model’s κ parameters on the Wiki dataset.

We obtain better MAE scores with κ parameters that en-

courage large sharing in the soft parameter sharing model.

Table 2 gives an overview of the test performance of hard

parameter sharing for different choices of the loss weight

w. The MAE scores are decreasing with decreasing of the

weight for age estimation, which means higher sharing with

3D face reconstruction.

For soft parameter sharing, we assess different choices

for the amount of sharing by κ. Our initialization follows

the rules κBB = κAA and κAB = κBA = 1 − κAA. We

chose non-sharing (κAB and κBA) values from the range

[0.5, 1] in order to follow the predetermined rules. If smaller

values are chosen, the branches would just switch the CNNs

they rely mostly on. The test MAE scores after training

on Wiki are shown in Table 3. The results show that age

estimation benefits from large sharing. Significance of the

best results (κ = 0.5) is confirmed p-value 2.70 ·10−5 from

t-test after confirming normality with a normality test.

Having outperformed the hard parameter sharing, as

shown in Table 4, the soft sharing age estimation seems to

benefit from the independence of higher layers offered by

the soft sharing architecture. As shown in Table 4, after

5 repeated training sessions per model, MAE score distri-

butions are narrow and not overlapping. We can conclude

that our age prediction is stable. For further experiments,

we consider only the much better performing soft parame-

ter sharing model.

5.3. Analyzing the age estimation improvements by
pose and expression

In this experiment, we evaluate the performance of the

proposed soft parameter sharing model on varying pose

and expression and compare it to the standalone appearance

subnet. Each image in the test set is associated with expres-

sion (i.e. using predicted expression parameters) and head

pose (i.e. using predicted head pose angle). We obtain an

expression extremeness metric from the Euclidean norm of

the expression vector δ. Our pose extremeness metric is

based on the maximum of the exponential coordinates that

parameterize a rotation ω ∈ SO3. Separately for each of

these metrics, we cluster the images into equally balanced

groups. For each of the groups, the mean of the MAE dif-

ferences over all the images falling in the group is computed

and plotted to analyze the impact of our model on each chal-

lenge.

Fig. 3 (a) visualizes the expression strength of each

group by showing a number of samples. Fig. 3 (b) shows

how the MAE changes throughout the groups. The appear-

ance subnet’s MAE increases with increasing expressive-

ness whereas the soft sharing method always scores better

and performs similarly for the different ranges of expres-

siveness. Therefore, our proposed algorithm is more robust

to expression variations. It improves over the appearance

subnet the most on the most extreme expressions group (im-

provement is up to 1.8 MAE).

Fig. 4 (a) visualizes the head poses contained in each

group. Looking at fig. 4 (b), the appearance subnet is much

more likely to fail on more extreme poses than the soft shar-

ing model. Moreover, the trend is that increasing the head

pose extremeness leads to higher improvement over the ap-

pearance subnet. Therefore, the proposed algorithm is more

robust to head pose variations. Notably, the improvement

is highest for the most extreme head pose variations (1.4

MAE).

Fig. 5 further demonstrates the pose and expression ro-

bustness of the soft parameter sharing model by visually

showing its superior predictions to the appearance subnet

on the extreme pose and expression examples.

5.4. Cross-dataset evaluation

To show if the results extend beyond the dataset used

for training, evaluation is done on UTKFace and AgeDB.

The expectation is to obtain MAE scores with soft param-



Method Mean ± Std

Appearance Subnet (Standalone) 5.86 ± 0.04

Proposed: HPS (Appearance + 3D Reconstruction Subnets) 5.74 ± 0.04

Proposed: SPS (Appearance + 3D Reconstruction Subnets) 5.47 ± 0.03

Table 4: Mean best MAE test scores and deviations calculated from 5 training sessions on Wiki dataset of the appearance

subnet, the proposed soft parameter sharing (SPS) and hard parameter sharing (HPS), combining the Appearance subnet with

the 3D Face reconstruction subnet.

Appearance Subnet

Soft Sharing

(a) (b)

Figure 3. (a) Samples from the expression intensity groups. Each row contains samples from one group. Groups are sorted by increasing

metric from top to bottom; (b) The MAE for the soft sharing model and the standalone appearance subnet over the expression extremeness

groups. The expression extremeness metric is increasing in the groups from left to right. The results show that the proposed model shows

robustness to expression in contrast with the appearance subnet.

Appearance Subnet

Soft Sharing

(a) (b)

Figure 4. (a) Samples from the rotation groups. Each row contains samples from one group. Groups are sorted by increasing metric from

top to bottom. (b) The MAE measures for soft parameter sharing model and appearance subnet over the rotation extremeness groups. The

rotation extremeness metric is increasing in the groups from left to right. The results show the robustness of the proposed algorithm to

head pose in contrast to the appearance subnet.

Method UTKFace AgeDB

Appearance Subnet (Standalone) 9.73 10.27

Proposed: SPS (Appearance + 3D Reconstruction Subnets) 9.54 10.01

t-test p-value 3.22 · 10−9 1.78 · 10−8

Table 5: MAE scores from cross dataset evaluation of the appearance subnet and the soft parameter sharing model (SPS).



Figure 5. Age predictions of the Appearance subnet (denoted as Baseline) and the soft parameter sharing model (denoted as SS) on non-

frontal and non-neutral faces from the Wiki test set. The improvement of age prediction under extreme pose and expression conditions is

visible.

eter sharing, which are significantly lower than the MAE

scores of the standalone appearance subnet. It is not com-

mon practice to provide results on cross-dataset evaluation

for age estimation since the performance may largely dete-

riorate. Results are shown in Table 5. It can be derived the

improvements are significant. It shows the generalizable

power of the soft sharing multi-task learning model.

6. Conclusion

In this paper, we have shown that 3D reconstruction fea-

tures can significantly improve the age estimation perfor-

mance when jointly learned with appearance features. Our

method takes a single 2D image and derives 3D reconstruc-

tion features as a new source of pose and facial expression

robustness by employing a monocular 3D face reconstruc-

tion model. After evaluation, our method has shown to be

consistently more robust across variation and improved over

the baseline the most with extreme head poses (1.4 MAE)

and intensive expressions (1.82 MAE).
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