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Abstract

This work presents computational methods for trans-

ferring body movements from one person to another with

videos collected in the wild. Specifically, we train a person-

alized model on a single video from the Internet which can

generate videos of this target person driven by the motions

of other people. Our model is built on two generative net-

works: a human (foreground) synthesis net which generates

photo-realistic imagery of the target person in a novel pose,

and a fusion net which combines the generated foreground

with the scene (background), adding shadows or reflections

as needed to enhance realism. We validate the the efficacy

of our proposed models over baselines with qualitative and

quantitative evaluations as well as a subjective test.

1. Introduction

Imitation is a common everyday experience, from babies

copying their parents’ movements, to instructional videos

and video games, people often learn new skills by mimick-

ing others. For example, in dance classes or other sports, we

mimic the movements of instructors, but it can take years to

advance from amateur to professional level. What if you

could skip those thousands of hours of practice and simply

generate a video of yourself excelling in an extreme sport

or instantly copying your favorite celebrities’ dance steps?

In this paper, we develop computational methods for im-

itating human movements. In particular, we train a model

using one several-minute-long video of a target person and

can then transfer any desired movement from a new refer-

ence video to the target person (maintaining appearance) as

Fig. 1 shows. Previous work [16, 21, 1, 4] investigates hu-

man pose transfer either under generalized settings (mod-

els trained across various individuals/scenes) or using sin-

gle person lab-recorded videos. In this work, we explore

personalized motion transfer on videos obtained from the

Internet, such as YouTube. With such data pre-recorded in

uncontrolled ways, our models are required to generalize

well to novel poses, as we cannot ask a person on YouTube

to demonstrate the entire range of poses we might want to

Figure 1. We train a personalized model for a target individual in

an Internet video. This model can synthesize the target person in

novel poses (right) from the input frame (bottom left) driven by a

different individual (top left).

generate. We show example frames of the Internet videos

used as training data in Fig. 2.

We formulate the motion transfer problem as a pose

guided image translation task. Specifically, given an input

frame (from the target person) and a desired pose, our model

synthesizes the output as the target person in that new pose.

Because our goal is to develop a general method that can

handle unconstrained target videos from the Internet, which

may contain moving background objects or unstable camera

motions, we break our task down into two pieces that deal

with the foreground (person) and background separately. In

particular, our model is composed of two stages: the hu-

man synthesis stage which extracts body segments of the

target person and then generates a photo-realistic image of

the target in a new pose; and a fusion stage which com-

bines the generated person with the extracted background

scene. The latter fusion stage helps to remove small arti-

facts introduced from the human generation stage as well as

adding shadows/reflections due to the interaction between

the person and the scene. In addition, because we sepa-

rate foreground and background processing, a side benefit

of our method is the ability to place the generated person on

a new background (something that cannot be achieved with

whole frame generation methods). To obtain high-quality

synthesis results, we also apply temporal smoothing to gen-

erate temporally coherent movements and use hand, foot,

and face landmarks to enhance local body details. We de-

scribe our method in Sec. 3. To evaluate the effectiveness

of the proposed method, we conduct both numerical evalua-

tions and human experiments on generated results in Sec. 4.



Figure 2. Example frames of personal videos from YouTube (from left to right are: Video 01 to Video 08).

In summary, our contributions include the following.

1) We demonstrate personalized motion transfer on videos

from the Internet. 2) We propose a novel two-stage frame-

work to synthesize people performing new movements and

fuse them seamlessly with background scenes. 3) We per-

form qualitative and quantitative evaluations validating the

superiority of our method over existing state-of-the-art.

2. Related work

Pixel to pixel translation: Recent developments in genera-

tive models have started to make high quality photo-realistic

image synthesis possible. Pixel to pixel translation frame-

works are conditioned on input images or video frames

and learn a mapping from the input domain to the same or

different output domain. Image-to-image translation [11]

was one of the first papers to present a general framework

for handling a variety of translation tasks, such as edge to

pixel or grayscale to color translation, using a conditional

Generative Adversarial Network (GAN) [9] to learn map-

pings from paired data. CycleGAN [26] further introduced

a novel cycle consistency loss to learn domain translations

without requiring paired image data. In follow-on work,

Recycle-GAN [2] added spatial and temporal constraints

to enable video to video translation. Cascaded refinement

frameworks [5, 20] were designed to synthesize images

from semantic layouts, achieving visually appealing genera-

tion. To further improve results, pix2pixHD [25] proposed a

multi-scale conditional GAN to synthesize high-resolution

images from semantic labels, while spatio-temporal adver-

sarial constraints were added to generate temporally consis-

tent results for video to video synthesis [24].

Motion transfer: Generative human motion transfer learns

a mapping from input images of a person to generate im-

ages showing the person in new poses. Various models

have been proposed which are either conditioned on a tar-

get pose or map directly from poses/surface maps (without

requiring an input human image) to the desired output im-

age. Ma et al. [16] use a two-stack U-Net [11] framework

to synthesize images of people given an input image of the

person and an arbitrary target pose. Siarohin et al. [21]

solve the same pose transfer problem by applying novel

deformable skip connections in the generative architecture.

Similarly, Balakrishnan et al. [1] generate a depiction of a

person in a novel pose given an image of the person and the

target pose under a framework with sub-modules to com-

posite the transformed foreground layers with a hole-filled

background. On the other hand, Chan et al. [4] learn the

mapping directly from detected poses to generate a target

person’s video by applying pix2pixHD [25] with temporal

smoothing and face GAN structures. This works quite well

in constrained video domain where models are trained on

lab-made videos of a single person showing a large variety

of poses. Neverova et al. [18] generate images based on

an input person image and a surface map (dense 3D pose).

They present a framework that combines the pixel-level pre-

diction and UV texture mapping. Very recent work [15]

presents a method to transfer poses from a source video

to the target person. Specifically, they reconstruct a 3D

model of the person and train a generative model to pro-

duce photo-realistic frames based on images rendered with

this 3D model.

3. Approach

We formulate the personalized motion transfer task as

follows. Given an input frame Iin and a reference frame

Iref of size H×W , as well as their associated human poses

Pin and Pref , we would like to learn a mapping F that gen-

erates an output frame Iout with the reference pose trans-

ferred to the target person in the input frame:

Iout = F(Iin, Pin, Pref ) (1)

where Iout retains the same human appearance and back-

ground scene as Iin while rendering with the reference

pose, Pref . During training, we sample random frame pairs

from a personal video as our training data (Iin, Iref ).
We treat the human body part segments from Iin as tan-

gram pieces which are placed on a composition image ac-

cording to the layout of reference pose, Pref . A similar

step is used in [1]. This provides us with a good initial im-

age on top of which we apply the human synthesis part of

our method. The body part transform process is illustrated

in Fig. 4 and described in detail in Sec. 3.1.



Figure 3. Two-stage motion transfer framework. (a) The human synthesis network takes transformed body parts T as input to synthesize

human image Ĩout on a green background, simplifying foreground H
bi
gen extraction. Pref represents the aggregated pose maps. (b) The

fusion network takes the combined foreground image Ĩout and fixed background B as input and synthesizes the final output frame Iout.

Fig. 3 shows the architecture of our two-stage model.

The human synthesis stage (a) takes the transformed body

parts as input and produces a foreground body image, fill-

ing the “holes” between transformed segments and adjust-

ing details (e.g., angle of face) to produce a photo-realistic

image of the target person in the reference pose (Sec. 3.3).

In the second stage, a fusion network (b) takes the gener-

ated foreground and a fixed background image as inputs and

generates the final synthesized output Iout (Sec. 3.4). The

fusion network combines the foreground and background,

fixing discontinuous foreground boundaries and adding im-

portant details such as shadows. We design special training

techniques and loss functions as discussed in Sec. 3.5.

3.1. Human body part transformation

For each frame pair (Iin, Iref ), we first apply a hu-

man body parsing algorithm [7] on Iin as illustrated in

Fig. 4, where Hin is the human parsing map and ⊗ rep-

resents element-wise multiplication. The person from the

input frame is segmented into 10 body parts (head, torso,

left/right upper arms, left/right lower arms, left/right up-

per legs, left/right lower legs). We also employ the Al-

phaPose [8] pose estimation algorithm to detect 2D poses,

(Pin, Pref ), in both input and reference frames.

Given the pose estimates, we connect line segments be-

tween pairs of key points for each of the ten body parts.

Based on the corresponding line segments in Pin and

Pref , we compute affine transformation matrices {Mi ∈
R

2×3}i=1,...,10 which define the transformation to align

each body part in Iin with the pose in reference frame Pref .

This transformation helps normalize the body part rotation

and scaling between two images (the reference person may

appear smaller or larger than the target person). A spatial

transformer network [12], which applies image warping op-

erations including translation, scale, and rotation, is used to

transform input frame body parts according to transforma-

tion matrices Mi and generate reference-aligned body seg-

ments T ∈ R
H×W×(3×10) (Fig. 4).

Figure 4. Body parts transformation. Spatial transformer network

(STN) aligns the body parts of Iin with target pose Pref , produc-

ing body segments represented as a 3D volume T .

3.2. Pose map representation

Previous works [16, 21] represent pose information as

keypoint maps. We find that this can cause ’broken limbs’

(missing or disconnected body parts) when synthesizing

foreground human body. In our work, we alleviate this is-

sue by encoding the position, orientation and size of each

body part as Gaussian smoothed heat map parameterized by

a solid circle or rectangle, as illustrated by Pref in Fig. 3.

The shape parameters (radius, height, width, etc.) are esti-

mated from the associated key points.

Enhancing local details: Besides filling holes between

transformed body parts, the human synthesis model is also

expected to correct the orientation of head/feet/hands since

errors on these important body parts can severely degrade

the perceptual quality of results. Thus, in addition to

the original 10 body parts, we also add facial, hand and

foot landmarks detected by OpenPose [3, 22]1, and encode

them in the Gaussian smoothed heat map format. In sum-

mary, we represent the reference pose map as a 3D volume

Pref ∈ R
H×W×(10+5), with the first 10 channels represent-

ing limbs/trunk and the last 5 channels representing facial,

1We use AlphaPose [8] as our main detection algorithm because of its

robust performance, and use OpenPose [3] to gather additional face, hand,

and foot key points which are unavailable from AlphaPose.



left/right hands, left/right feet landmarks.

Temporal smoothing: What we have described so far

focuses on image-based frame-to-frame translation. Since

our input pose maps are characterized by 2D spatial infor-

mation, there exists ambiguity when inferring the underly-

ing body configuration in the 3D world. Such uncertainty

leads to non-smooth video outputs or temporal flickering.

To enforce smooth change across the generated frames, we

introduce temporal smoothing through the inputs of our

model. We include the previous K reference poses as model

inputs. Specifically, we stack P t−k+1
ref , ..., P t

ref along the

pose map channel where P t
ref denotes the current reference

pose detected from Itref . Now the stacked pose map Pref

has (10 + 5)K channels.

3.3. Human synthesis network

The human synthesis network generates the foreground

person in the reference pose given the transformed body

parts T and the pose map Pref (Sec. 3.2). To train the syn-

thesis network, we convert the body parsing map Href for

reference image Iref [7] to a binary mask Hbi
ref , and extract

only the foreground human region Ĩref = Iref ⊗ Hbi
ref as

training supervision. Of course, the parsed mask will not

always be perfect due to algorithmic limitations. Artifacts

such as broken limbs will be refined by the fusion network

(Sec. 3.4). Note that to avoid distraction by background

clutters, the synthesis network is trained to generate human

body on a green background with Chroma key compositing

as shown in Fig. 3 (a). This uniform background can sim-

plify foreground extraction so that we can directly obtain

the foreground mask Hbi
gen of the generated frame Ĩout for

later processing. As discussed in Sec. 3.2, the human syn-

thesis net adjusts important pose details, such as head/feet

orientations, as exemplified in Fig. 5 (a).

3.4. Fusion network

The fusion network is used to combine the generated hu-

man foreground image Ĩout with a fixed background image

B to generate the final output Iout. The background image

is obtained by averaging all the frames in the personal video

after masking out the foreground with human segmentation

results [7]. B might contain artifacts such as blurriness due

to moving objects or small camera motions that will be re-

fined by the fusion network.

As shown in Fig. 3 (b), the fusion network takes the com-

bined foreground/background frame Icomb and the stacked

pose map Pref as inputs. The combined frame Icomb is

given by:

Icomb = Hbi
gen ⊗ Ĩout + (1−Hbi

gen)⊗B (2)

where Hbi
gen is the foreground mask for the generated hu-

man frame Ĩout. We apply these “cut and paste” opera-

tions to explicitly define the layering order of the human

and background for better blending results.

Figure 5. (a) The foreground synthesis net adjusts the body seg-

ments (left) to obtain correct face orientation (right). (b) The fu-

sion net fills in the background and fixes broken limbs (e.g., arms)

produced by the synthesis net. (c) The combined frame Icomb and

fusion net output Iout (left), with their zoomed-in regions (right).

We use the reference frame Iref as supervision for train-

ing the fusion network. Besides blending the human with

the background scene, the fusion network helps refine the

human (foreground) and fills in broken limbs introduced

in the previous stage as demonstrates by the example in

Fig. 5(b) . The example in Fig. 5(c) shows the network’s

ability to add appropriate shadows for interactions between

human and scene. In particular, on the left side, we show

two frames Icomb and Iout. In the zoomed-in regions on the

right, we observe that the fusion network has removed arti-

facts from the estimated background B and added shadows

consistent with the lighting and person’s position.

3.5. Loss functions

In order to synthesize frames at high resolution, we uti-

lize a pix2pixHD-style [25] framework to train the model

in a multi-scale manner. The human synthesis network and

fusion network share the same architecture as well as the

same loss functions. As usual, G denotes the generator and

D denotes the discriminator. We use I to represent input

frames Iin or Icomb, x to represent predicted results Ĩout or

Iout, y to represent supervision (ground truth) Ĩref or Iref ,

and p to represent the reference pose maps Pref . So we

have x = G(I, p). We employ several losses in our model:

Relativistic average LSGAN loss Lrela: The traditional

LSGAN [17] losses based on our task can be formatted as:

min
D

LLSGAN (D) =
1

2
Ey,p[(D(y, p)− 1)2]+

1

2
Ex,p[(D(x, p))2]

min
G

LLSGAN (G) =
1

2
Ex,p[(D(x, p)− 1)2]

(3)

To make training more stable, we make the LSGAN frame-

work relativistic [13]. Here, the main idea is that D esti-

mates the probability that the input is real while G increases

the probability that fake data is real. [13] argues that it is



necessary for G to also decrease the probability that real

data is real. We also apply a gradient penalty [10] term in

D. Define µ(.) as the mean operation, and the relativistic

average LSGAN becomes:

min
D

Lrela(D) =
1

2
Ex,y,p[(D(y, p)− µ(D(x, p))− 1)2]+

1

2
Ex,y,p[(D(x, p)− µ(D(y, p)))2]+

wGPEx̂,p[(‖ ▽x̂,pD( ˆx, p) ‖2 −1)2]

min
G

Lrela(G) =
1

2
Ex,y,p[(D(x, p)− µ(D(y, p))− 1)2]+

1

2
Ex,y,p[(D(y, p)− µ(D(x, p))2]

(4)

where wGP is the weight for the gradient penalty term.

Feature matching loss LFM : We use the feature matching

loss from [25]. Specifically, we minimize the distance of

the features extracted from different layers of D between

real and synthesized frames:

LFM = Ex,y,p

M∑

i=1

1

Ni

[‖ Di(y, p)−Di(x, p) ‖1] (5)

where M is the number of layers in D, Ni is the number of

elements in each layer, and Di denotes the ith layer of D.

Perceptual loss LV GG: We utilize the intermediate repre-

sentations of VGG19 [23] pre-trained on ImageNet [6] clas-

sification. We use ϕ(.) to represent the VGG network and

the perceptual loss is computed as:

LV GG = Ex,y

M∑

i=1

1

Ni

[‖ ϕi(y)− ϕi(x) ‖1] (6)

where ϕi represents ith layer of the VGG network with Ni

elements and M is the number of layers.

Semantic layout and pose feature losses LSP : We ap-

ply this loss in order to encourage the model to synthesize

frames with similar pose and human semantic layouts as

ground truth. We use a pre-trained model from [19] which

jointly performs human semantic parsing and pose estima-

tion. We extract intermediate representations from the pose

encoder and parsing encoder, resulting in feature vectors in

R
256×256×64. We use φp to denote the pose encoding net-

work and φs to represent the semantic parsing encoding net-

work. Then, the loss can be formatted as:

LSP =Ex,y[‖ φp(y)− φp(x) ‖1]+

wSEx,y[‖ φs(y)− φs(x) ‖1],
(7)

where wS is the weight for the semantic parsing loss.

Finally, We linearly combine all losses as:

L =wrelaLrela + wFMLFM+

wV GGLV GG + wSPLSP

(8)

where w’s represent the weights for each loss term.

4. Experiments

In this section, we introduce training and inference data

(Sec.4.1) as well as the model architectures and training de-

tails (Sec. 4.2), show qualitative visualizations (Sec. 4.3),

and present numerical and human evaluations (Sec. 4.4 and

Sec. 4.5). Additional results are presented in the supple-

mentary material2, including generated videos.

4.1. Dataset

To study personalized motion transfer on Internet videos,

we collect 8 videos from YouTube ranging from 4 to 12

minutes. Fig. 2 shows some example frames for each video.

These personal videos include dancing videos and dancing

tutorial videos. For each video, we train a personalized

model.

We also collect pose reference videos from different peo-

ple which are used to drive our personalized motion gener-

ation. 16 short videos are downloaded from YouTube in-

cluding various dance types such as break-dance, shuffle

dance and ballet, as well as Taichi martial art which has

very different motion style from the target personal videos.

All video URLs are provided in the supplementary material.

4.2. Model and training details

The human synthesis network and fusion network use the

same architecture. For each we apply a multi-scale genera-

tor and discriminator. Specifically, we train the model un-

der two scales: 256×256 and 512×512. We use g and G =
(g, g̃) to refer to their generators respectively. g̃ means the

additional convolution layers and residual blocks stacked

with the start and end of g, and jointly trained to form G.

We also use a two-scale discriminator for lower resolution

prediction and three-scale for higher resolution. Due to

GPU memory limitation, we make the number of activation

maps of each layer half of the original model [25]. During

training, we apply Adam Stochastic Optimization [14] with

learning rate 0.0002 and batch size 4.

We set K=3 for reference pose maps Pref , i.e., stack-

ing the previous two and the current reference poses as net-

work inputs to encourage temporal smoothness. We set the

weight of the gradient penalty term wGP=10 and wS=0.01
in Eq. 7. The linear combination weights in Eq. 8 are

wrela=1, wFM=10, wV GG=10 and wSP=10.

We train one model for each personal video, sampled

at 30 FPS. We split each video into training and testing

sequences by ratio of 0.85:0.15 (there is no overlap be-

tween the training and testing sets) and randomly sam-

ple 20,000/2,000 (Iin, Iref ) frame pairs from the train-

ing/testing sub-sequence. This testing set is used for quanti-

tative evaluation because of the availability of ground truth

Iout (which is from the same person as Iref ).

2Supplementary video url



Figure 6. Generation results on testing set of four methods from the first to fourth row: Posewarp, pix2pixHD, Ours-baseline, Ours. Row

5 shows the zoomed-in regions and the last row shows the reference frames, which are also the ground truth outputs.

Figure 7. Comparison between results generated by single-stage

pix2pixHD (left) and our two-stage model (right).

4.3. Qualitative results

We visualize the generated results from our model for

testing and inference. For each personal video we randomly

sample testing pairs that have never been seen by the model

during training. In addition to using unseen frames from an

input video to drive motion transfer, we can also drive mo-

tions of the target person using novel reference videos. Here

there is no ground truth to compare with, but we can eval-

uate results using human experiments. For each reference

frame from a new video, we select Iin from the personal

video with the shortest normalized pose keypoint distance

to the reference pose.

We show synthesized results from our method as well as

other approaches. We utilize pix2pixHD [25] as one base-

line. This model learns a mapping directly from pose Pref

to frame Iout. We use the loss functions and model struc-

ture from [25], but reduce the number of activation maps in

each layer by half (as in our model). We also evaluate the

Posewarp model from [1] as another baseline. Finally, we

evaluate a simplified variant of our model Ours-baseline

that has the same two-stage model architecture but trained

without supervision on the human synthesis result Ĩout. For

the baseline Posewarp method, we generate 256×256 res-

olution frames as in [1], while results from the others are

at 512×512 resolution. We show examples of both testing

(Iref and Iout of the same person) and inference (Iref and

Iout of different persons) results in Fig. 6 and Fig. 8 respec-

tively. We compare the proposed method with competing

methods on the testing set and show motion transfer from

novel reference videos to any of our training videos on the

inference set.

Compared with single-stage models which learn direct

mapping between poses and video frames, our two-stage

model divides this process into easier sub-tasks. This im-

proves generation quality for both foreground and back-

ground, and reduces blending artifacts between synthesized

human and background scene as Fig. 7 shows. In this work,



Figure 8. Inference generation results: we show two sets (column 1-3 and column 4-6 ) of generation results from our model. For each set,

the first two columns are the synthesized results and the last column is a sequence of reference frames from a different video.

Figure 9. Combine generated foreground person with different

scenes.

the human synthesis and fusion networks are jointly trained

while retaining their own respective supervision. One ad-

vantage is that the intermediate human generation can be

utilized to place the generated individual on new back-

grounds. In fig. 9, we show several examples where the gen-

erated foregrounds have been composited on other scenes

from the Internet. We apply simple Gaussian blur on the

boundary of the foreground to alleviate border effects (more

advanced blending techniques could be used to further im-

prove visual quality).

4.4. Numerical evaluation

We quantitatively evaluate testing results of the proposed

method and other approaches with metrics Mean Square Er-

ror (MSE), PSNR, and SSIM averaged over all personal

videos. The results for the whole frames and foreground

(human) regions are reported in Table 1 and 2, respectively

Our method achieves the best synthesis quality in MSE,

PSNR, and SSIM for both full-frame and foreground-only

evaluations. The Posewarp method achieves relatively high

errors in whole frame evaluation because the moving back-

ground in some videos violates the static background as-

sumption of the method (background synthesized through

hole-filling on the input frame).

To measure the temporal coherence of generated frames,

we calculate the difference between all consecutive gener-

ated frame pairs (Itout−It−1
out ) from the testing results, and

measure the MSE against the ground truth difference frame.

This simple metric can be regarded as a rough surrogate to

optical flow difference. As can be seen from the results av-

eraged over all the input videos in Table 3, both our full

model and ours-baseline achieve competitive temporal co-

herence on the synthesized results.

Generalization to unseen reference poses, e.g. to trans-

fer ballet motion to a target person whom has only been

observed to perform hip-hop dancing, is critical for our per-

sonal model as it is trained with an Internet video with only

a few minutes covering a limited portion of human pose

space. Fig. 10 shows the relationship between the “nov-

elty” of reference poses and the SSIM generation quality.

Specifically, we compute the normalized keypoints distance



Figure 10. Relationship between pose distance to training samples

and generation quality. The highlighted frame pair with magenta

and yellow color (left is generated and right is ground truth) have

the same pose distance with training sample but different SSIM

scores due to the subtitle occasionally observed in the background

of the yellow frame. The frame pair of green and red color have

similar generation quality although in training the model has only

seen similar poses as the green one but not the red one.

MSE PSNR SSIM

pix2pixHD [25] 702.5714 20.9388 0.7947

Posewarp [1] 744.3939 20.6992 0.7663

Ours-baseline 664.7313 21.2318 0.8064

Ours 642.9080 21.3286 0.8115
Table 1. Evaluation of whole frame synthesis results on testing set.

MSE PSNR SSIM

pix2pixHD [25] 191.5246 25.7823 0.9314

Posewarp [1] 191.1796 25.8334 0.9264

Ours-baseline 176.9530 26.0477 0.9338

Ours 171.3259 26.1752 0.9352
Table 2. Evaluation of foreground synthesis results on testing set.

Whole frame Foreground

pix2pixHD [25] 225.7470 103.5557

Posewarp [1] 220.8329 103.4395

Ours-baseline 219.5680 98.9921

Ours 217.8404 99.5027
Table 3. The MSE of difference frame on testing set.

between the reference pose and all training poses, and take

the average of the top 10 nearest distances as the value in

x axis. The testing results from 3 personal videos are plot-

ted as colored dots in Fig. 10. We observe that even for

poses very different from training (large x axis), our model’s

performance remains stable. Most outliers in Fig. 10 come

from unexpected ground truth such as frames in the video

prologue with very dark color.

4.5. Human evaluation

Finally, we also measure the human perceptual quality

of generated results, especially for motion transferred from

novel videos to a target person, where there exists no ground

pix2pixHD Posewarp Ours-baseline Ours

Q1 14.70% 17.59% 25.98% 41.73%

Q2 13.39% 21.00% 25.20% 40.42%

Q3 17.85% 22.83% 23.36% 35.96%

Q4 19.42% 22.05% 28.87% 29.66%

Q5 14.17% 19.69% 25.98% 40.16%
Table 4. Human rating percentages over different methods on com-

plete body (Q1); clearest face (Q2); isolated foreground and back-

ground (Q3); temporal stability (Q4); and overall quality (Q5).

truth for comparison. Therefore, we conduct a human sub-

jective test to measure motion transfer quality.

In these experiments, we compare videos generated with

our proposed method, our simplified baseline model, Pose-

warp, and pix2pixHD by conducting a forced-choice task on

Amazon Mechanical Turk (AMT). We show Turkers videos

generated by each of the four methods with random order.

Turkers are provided with five questions and asked to select

one video as the answer to each question. The questions are

related to: 1) the most complete human body (least missing

body parts or broken limbs); 2) the clearest face; 3) the most

isolated human and scene (the foreground and background

are not mixed together); 4) the most temporally stable video

(least jitters); 5) the most overall visual appealingness. For

each question, we show instructional examples to help the

Turker better understand the task. Three different Turkers

are asked to label each group of videos for each question,

and their selections are aggregated across tasks as the final

result. We show the selection rate of the four methods aver-

aged over the 8 personalized models in Table 4. We can

see that consistent with our previous quantitative ground

truth based measurements, the human evaluation also favors

our proposed method on all the five questions. In particu-

lar, our proposed method achieves much better performance

on body completeness, face clarity, foreground/background

separation, and the overall visual appearance. For temporal

stability, both our full model and baseline model outperform

the existing methods.

5. Conclusion

In this paper, we introduced a model for personalized

motion transfer on Internet videos. Our model consists of

two parts: a human synthesis network and a fusion net-

work. The former synthesizes a human foreground based

on pose-transformed body parts. The latter fuses the person

with a background scene and further refines the synthesis

details. The evaluation shows that our method can gener-

ate personal videos of new motion with visually appealing

quality and fewer artifacts than existing methods. Future di-

rections include handling online videos with drastic camera

motion (with background significantly changing from frame

to frame) and motion transfer using incomplete or partially

observed body parts.
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