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Abstract

Detecting and segmenting individual objects, regardless

of their category, is crucial for many applications such as

action detection or robotic interaction. While this prob-

lem has been well-studied under the classic formulation

of spatio-temporal grouping, state-of-the-art approaches do

not make use of learning-based methods. To bridge this gap,

we propose a simple learning-based approach for spatio-

temporal grouping. Our approach leverages motion cues

from optical flow as a bottom-up signal for separating ob-

jects from each other. Motion cues are then combined with

appearance cues that provide a generic objectness prior for

capturing the full extent of objects. We show that our ap-

proach outperforms all prior work on the benchmark FBMS

dataset. One potential worry with learning-based meth-

ods is that they might overfit to the particular type of ob-

jects that they have been trained on. To address this con-

cern, we propose two new benchmarks for generic, mov-

ing object detection, and show that our model matches top-

down methods on common categories, while significantly

out-performing both top-down and bottom-up methods on

never-before-seen categories.

1. Introduction

People have the remarkable ability to thrive in a stag-

geringly diverse world, frequently encountering things they

have never seen before. Our approaches for machine per-

ception, meanwhile, often remain trapped in a closed world,

as in the case of object recognition, where approaches

are designed to recognize and name one of N pre-defined

classes. But practical robot autonomy requires robust per-

ception in the open-world: even a self-driving car must be

able to detect never-before-seen obstacles and debris, re-

gardless of what particular semantic name it happens to as-

sociate with.

In the computer vision community, open-world recog-

nition is typically addressed from a machine-learning per-

spective such as zero-shot learning [35] or open-set clas-

sification [33]. We advocate a different approach that has

Figure 1: Detecting and segmenting all objects, regardless of cat-

egory, is key for many perception and robotics tasks. Bottom-up

grouping approaches, e.g. [19] (left), aim to tackle this task, but

lag behind the quality of closed-world methods that detect a fixed

set of N categories. Our work (right) bridges this gap, accurately

segmenting generic moving objects, even ones unseen in training.

its roots in classic vision: perceptual grouping. Specifi-

cally, we wish to segment out all moving object instances

in a video stream, including never-before-seen object cate-

gories. Defining the notion of a generic, never-before-seen

object is notoriously challenging [1]. We intentionally fo-

cus on moving objects so as to take advantage of the “com-

mon fate” principle of grouping: pixels that move together

should tend to be grouped together into objects [27].

Indeed, the problem of spatio-temporal grouping is a

classic “mid-level” visual understanding task, dating back

to the iconic work of Marr [23, 41]. Pre-deep learning

solutions tend to follow bottom-up computational strate-

gies for self-organization and clustering, often of long-term

pixel trajectories [26, 19]. In the static image case, pix-

els can grouped by relying on Gestaltian notions of appear-

ance similarity and curvilinear edge continuity [27]. One

long-standing challenge in perceptual organization has been

operationalizing these cues into an accurate algorithm for

spatio-temporal grouping. Our key observation is that many

of the recent advances in closed-world instance segmen-

tation can be repurposed for open-world spatio-temporal



grouping.

We first validate the performance of our proposed ap-

proach on the Freiburg Berkeley Motion Segmentation

benchmark (FBMS). Because the standard measure used in

FBMS does not penalize false positives, we find that triv-

ial solutions can score well. We analyze the official metric

in detail and propose a new, more informative evaluation.

We achieve state-of-the-art results on both measures, and

specifically outperform the next-best method of Keuper et

al. [19] by 11.4% on our proposed measure.

To further study our method, we introduce the DAVIS-

Moving and YTVOS-Moving benchmarks for motion-

based grouping. We create these by selecting videos from

the DAVIS 2017 [31] and YTVOS [43] datasets where all

moving objects are labeled. On these new benchmarks, we

strongly outperform top-down, closed world methods such

as Mask R-CNN, as well as traditional bottom-up grouping

methods. In particular, our approach is competitive with a

top-down method for categories seen during training, but

outperforms both top-down and bottom-up approaches for

unseen categories by 27%.

To sum up, our contributions are three-fold: (1) we

propose the first deep learning-based method for spatio-

temporal grouping; (2) we propose a more informative met-

ric and larger, more diverse benchmarks to enable further

progress; (3) we report state-of-the-art results on the FBMS

dataset and our larger, proposed benchmarks. The code and

trained models will be made publicly available.

2. Related Work

Spatio-temporal grouping: Segmenting and tracking

objects based on their motion has a rich history. An early

work [34] proposed treating this task as a spatio-temporal

grouping problem, a philosophy espoused by a number

of more recent approaches, including [11, 6, 19], as well

as [26], which introduced FBMS. In particular, these meth-

ods track each pixel individually with optical flow, encode

the motion information of a pixel in a compact descriptor

and then obtain an instance segmentation by clustering the

pixels based on motion similarity. Unlike these works, our

approach is driven primarily by a top-down learning algo-

rithm followed by a simple linking step to generate spatio-

temporal segmentations. The most relevant approach in this

respect is [9], which trains a CNN to detect (but not seg-

ment) moving objects, and combines these detections with

clustered pixel trajectories to derive segmentations. By con-

trast, our approach directly outputs segmentations at each

frame, which we link together with an efficient tracker. Very

recently, Bideau et al. [5] proposed to combine a heuristic-

based motion segmentation method [25, 4] with a CNN

trained for semantic segmentation for the task of moving

object segmentation. Their method, however, does not han-

dle discontinuous motion. In addition, the fact that they rely

strongly on heuristic motion estimates allows our learning-

based approach to outperform their method on FBMS by

a wide margin. In very recent work, Xie et al. [42] intro-

duced a deep learning approach for motion segmentation

that segments and tracks moving objects using a recurrent

neural network. By comparison, our method uses a sim-

ple, overlap-based tracker that performs competitively with

the learned tracker from [42] while producing significantly

fewer false positive segmentations (see Supplementary).

Foreground/Background Video Segmentation: Sev-

eral works have focused on the binary version of the video

segmentation task, separating all the moving objects from

the background. Early approaches [8, 28, 40, 21] relied on

heuristics in the optical flow field, such as closed motion

boundaries in [28] to identified moving objects. These ini-

tial estimates were then refined with appearance, utilizing

external cues, such as saliency maps [40], or object shape

estimates [21]. Another line of work focused on building

probabilistic models of moving objects using optical flow

orientations [25, 4]. None of these methods are based on a

robust learning framework and struggle to generalize well to

unseen videos. The recent introduction of a standard bench-

mark, DAVIS 2016 [30], has led to a renewed interest. More

recent approaches propose deep models for directly estimat-

ing motion masks, as in [17, 37, 38]. These approaches are

similar to ours in that they also use a two-stream architec-

ture to separately process motion and appearance, but they

are unable to segment individual object instances, one of

our primary goals. Our method separately segments and

tracks each individual moving object in a video.

Object Detection: The task of segmenting object in-

stances from still images has seen immense success in re-

cent years, bolstered by large, standard datasets such as

COCO [22]. However, this standard task focuses on seg-

menting every instance of objects belonging to a fixed list of

categories, leading to methods that are designed to be blind

to objects that fall outside the categories in the training set.

Two recent works have focused on extending these mod-

els to detect generic objects. [15] aims to generalize seg-

mentation models to new categories, but requires bounding

box annotations for each new category. More relevant to

our approach, [18] aims to detect all “object”-like regions

in an image, outputting a binary objectness mask. While we

share their goal of segmenting unseen objects, our approach

additionally provides instance masks for each object.

3. Approach

We propose a two-stream spatio-temporal grouping

method that uses appearance and motion cues to segment

all moving objects in a video. Our approach, illustrated in

Figure 3, takes a frame together with a corresponding opti-

cal flow as input, and passes them through an “appearance

stream” (top) and a “motion stream” (bottom) respectively.



The resulting features are combined and passed to the joint

region proposal network (RPN), which learn to detect and

segment moving objects irrespective of their category.

Our approach shares inspiration with prior work that

proposes two-stream approaches for object detection [12,

29, 10, 9], with two key differences. First, we design a

novel region proposal module that learns to fuse both ap-

pearance and motion information to generate moving ob-

ject detections. Second, to overcome the dearth of appropri-

ate training data, we develop a stage-wise training strategy

that allows us to leverage synthetic data to train our motion

stream, image datasets to train our appearance stream, and

a small amount of real video data to train the joint model.

We first discuss the architecture and training strategy for

the motion and appearance streams individually, and then

detail how to combine these streams into one coherent ar-

chitecture. Finally, we describe a simple tracker that we use

for linking detections across time, allowing us to produce

spatio-temporal groupings that span across many frames.

3.1. Motion-based Segmentation

We start by training a motion-based instance segmen-

tation model. As mentioned above, this requires videos

with segmentation masks for all moving objects, which

is difficult to obtain. Fortunately, prior work has shown

that synthetic data can be used for some low-level tasks,

such as flow estimation [7] and binary motion segmenta-

tion [37]. Inspired by this, we train our motion stream

on the FlyingThings3D dataset [24], which contains nearly

2,700 synthetically generated sequences of 3D objects trav-

eling in randomized trajectories, captured with a camera

also traveling along a random trajectory. The dataset pro-

vides groundtruth optical flow, as well as segmentations for

both static and moving objects (See Figure 2). We train our

motion-stream using the moving instance labels from [37],

treating all moving objects as a single category, and all other

pixels, including static objects, as background. The result-

ing model learns to segment moving objects irrespective of

their category. In fact, this model is oblivious to the whole

notion of an object and is capable of segmenting parts that

exhibit independent motion (see Figure 5). We discuss more

details and variants of this approach in Section 5.3.1.

3.2. Appearance-based Segmentation

In order to incorporate appearance information, we next

train an image-based object segmentation model that aims

to segment the full extent of generic objects. Fortunately,

large datasets exist for training image-based instance seg-

mentation models. Here, we train on the MS COCO

dataset [22], which contains approximately 120,000 train-

ing images with instance segmentation masks for each ob-

ject in 80 categories. We could train our appearance stream

following the standard Mask R-CNN training procedure,

Figure 2: We train our motion stream on FlyingThings3D [24] (top

left), our appearance stream on COCO [22] (top right), and our

joint model on DAVIS’16 [30] and a YTVOS [43] subset (bottom).

which jointly localizes and classifies each object in an im-

age belonging to the 80 categories. However, this results in

a model that, while proficient at segmenting 80 categories,

is blind to objects from any other, novel category. Instead,

we train an “objectness” Mask R-CNN by combining each

of the 80 categories into a single “object” category. In Sec-

tion 5.3.2, we will show that this “objectness” training (1)

provides a significant improvement over standard training,

and (2) leads to a model that generalizes surprisingly well

to objects that are not labeled in MS COCO.

3.3. Two-Stream Model

Equipped with the individual appearance and motion

streams, we now propose a two-stream architecture for fus-

ing these information sources. In order to clearly describe

our two-stream model, we take a brief detour to describe the

Mask R-CNN architecture. Mask R-CNN contains three

stages: (1) Feature extraction: a “backbone” network,

such as ResNet [14], is used to extract features from an im-

age. (2) Region proposal: A region proposal layer uses

these features to selects regions likely to contain an object.

Finally, (3) Regression: for each proposed region, the cor-

responding backbone features are pooled to a fixed size, and

fed as input to bounding box and mask regression heads.

To build a two-stream instance segmentation model, we

extract the backbone from our individual appearance-based

and motion-based segmentation models. Next, as depicted

in Figure 3, we propose a “two-stream” RPN that uses these

two backbones, instead of a single backbone, to predict pro-

posals from spatio-temporal features, extracted from the

optical flow (blue) and RGB (orange) backbones. These

features are concatenated and fed to a short series of con-

volutional layers to reduce the dimensionality to match that

of Mask R-CNN, allowing us to maintain the architecture

of stages (2) and (3). Intuitively, we expect the appearance

stream to behave as a generic object detector, and our mo-

tion stream to help detect novel objects that the appearance

stream may miss and filter out static objects.



Figure 3: Our model uses an appearance stream (blue) and a motion stream (orange) to extract features from RGB and optical flow frames,

respectively. Our region proposal network fuses features from both streams and passes them to the box and mask regression heads.

Although this may appear similar to prior approaches for

building a two-stream detection model, it differs in a key

detail: prior approaches obtain region proposals either only

from appearance features [12, 10, 9], or from appearance

and motion features individually [29]. By contrast, we pro-

pose a novel proposal module that learns to fuse motion and

appearance features to find object-like regions.

We train our joint model on subsets of the DAVIS and

YouTube Video Object Segmentation datasets (as detailed

in Section 5.1). We experiment with various strategies for

training this joint model in Section 5.3.3.

3.4. Tracking

So far, we have focused on segmenting moving objects

in each frame of a video. To maintain object identities and

to continue segmenting objects after they stop moving, we

implement a simple, overlap-based tracker inspired by [2].

First, we remove all detections with score below αlow. On

the first frame, all high scoring detections (score > αhigh)

are used to initialize a track, which we define simply as a se-

quence of linked detections. At each successive frame, we

compute the mask intersection over union between the most

recent segmentation for each active track and predicted ob-

jects at t + 1, and use Hungarian Matching to assign pre-

dicted objects to tracks. Unmatched predictions are dis-

carded if their score is < αhigh; else, they are used to ini-

tialize a new track. Tracks that have not been assigned a

new object for up to tinactive frames are marked as inactive.

Tracking static objects: To continue tracking moving

objects when they stop moving, we need to be able to detect

static objects. A naı̈ve way to do this is to run the object-

ness model trained in Section 3.2 in parallel with our two-

stream model at every frame. However, this would be com-

putationally expensive. Fortunately, our appearance stream

shares the backbone of the objectness model. Thus, we only

need to apply the (inexpensive) stages (2) and (3) of the ob-

jectness model on the appearance features extracted by our

two-stream network. Using this, we can efficiently output

a set of moving and static object predictions for each frame

in a video. We merge the two outputs by removing any

predicted static object that overlaps with a predicted mov-

ing object. We use the same tracker described above, using

only moving objects to initialize tracks.

4. Evaluation

To evaluate methods for spatio-temporal grouping, we

desire a metric that rewards segmenting and tracking mov-

ing objects, but penalizes the detection of static objects or

background. While there has been a rich line of prior work

related to our goal, standard metrics surprisingly do not sat-

isfy these criterion. We propose a novel metric that does.

The default metric in FBMS [26] was designed for

grouping-based approaches, but does not penalize false pos-

itive predictions. Recently, Bideau et al. [3] tackled this

issue by measuring the difference between the number of

groundtruth moving objects and the number of predicted

moving objects (∆ Obj). However, this complicates method

comparisons by relying on two separate metrics; instead,

we propose a single and intuitive F-measure that evaluates

a method’s ability to detect all and only moving objects.

Figure 4 (middle) visualizes the default FBMS metric

which matches each predicted segment with a groundtruth

segment so as to maximize IoU overlap, ignoring any un-

matched predictions. This means the default F-measure

does not penalize false positive segments, unfairly favor-

ing methods that generate a large number of predictions.

By contrast, our proposed F-measure, depicted in Figure 4

(right), counts unmatched predictions as false positives.

More precisely, we describe our metric roughly follow-

ing the notation in [26]. For each video, let ci be the pixels

belonging to a predicted region i, and gj be all the pix-

els belonging to a groundtruth non-background region j.

While [26] omits unlabeled pixels from evaluation, we in-

clude all pixels in the groundtruth.

Let Pij be the precision, Rij be the recall, and Fij be

the F-measure corresponding to this pair of predicted and

groundtruth regions, as follows:

Pij =
|ci ∩ gj |

|ci|
, Rij =

|ci ∩ gj |

|gj |
, Fij =

2PijRij

Pij +Rij



Figure 4: Left: we visualize a toy example with two predicted (red)

segmentations and one groundtruth (blue) segmentation. While

the original FBMS measure (middle) ignores predicted segments

that do not match a groundtruth segment, such as the dashed circle,

our proposed measure (right) penalizes all false-positives

Following [26], we use the Hungarian algorithm to find

a matching between predictions and groundtruth that max-

imizes the sum of the F-measure over all assignments. Let

g(ci) be the groundtruth matched to each predicted region;

for any ci that is not matched to a groundtruth cluster, g(ci)
is set to an empty region. We define our metric as follows:

P =

∑
i|ci ∩ g(ci)|∑

j |ci|
, R =

∑
i|ci ∩ g(ci)|∑

i|gj |
, F =

2PR

P +R

Any unlabeled pixel in a predicted region ci will reduce

precision and F-measure, penalizing the segmentation of

static or unlabeled objects. In our experiments, we report

results with both the official and our proposed measure.

5. Experiments

We first analyze each component of our proposed model

with experimental results. Next, we compare our approach

to prior work in spatio-temporal grouping on three datasets.

5.1. Datasets

An ideal dataset for training our model would contain

a large number of videos where every moving object has

labeled instance masks, and static objects are not labeled.

Three candidate datasets exist for this task: YouTube Video

Object Segmentation (YTVOS) [43], DAVIS 2016 [30],

and FBMS [26]. While YTVOS contains over 3,000 short

videos with instance segmentation labels, not all objects

in these videos are necessarily labeled, and both moving

as well as static objects may be labeled. The DAVIS

2016 dataset contains instance segmentation masks (pro-

vided with DAVIS 2017) for only the moving objects, but

only contains 30 training videos. Finally, although FBMS

contains a total of 59 sequences with labeled instance seg-

mentation masks for moving objects, prior work evaluates

on the entire dataset, preventing us from training on any se-

quences in the dataset in order to provide a fair comparison.

To overcome this lack of data, we use heterogeneous

data sources to train our model in a stagewise fashion.

As described earlier, we train our appearance stream on

COCO [22]. We train our motion stream on FlyingTh-

ings3D [24], a synthetic dataset of 2,700 videos of ran-

domly moving 3D objects. Finally, we fine-tune our joint

model on DAVIS2016 and the training subset of YTVOS-

Moving. We use a held-out set of 100 YTVOS-Moving se-

quences for evaluation.

5.2. Implementation Details

Network Architecture: Our two-stream model is built

off Mask R-CNN [13] with a ResNet-50 backbone. We will

publicly release the code and exact configuration for train-

ing, highlight some important details here, and note further

details in supplementary. All our models are trained using

the publicly available PyTorch implementation of Detec-

tron [39]. In general, we use the original hyper-parameters

provided by the authors of Mask R-CNN. The backbone for

every model is pre-trained on ImageNet [32]. When con-

structing our two-stream model, we initialize the bounding

box and mask heads from the appearance-only model.

Tracking: We set the confidence threshold for initializ-

ing tracks, as described in Section 3.4, to αhigh = 0.9, and

remove any detections with confidence lower than αlow =
0.7. We allow tracks to stay alive for up to tinactive = 10
frames (approximately 0.33s for most videos), although we

found the final results are fairly insensitive to this param-

eter. To detect objects before they move, we first run our

tracker forwards, and then backwards in time.

5.3. Ablation analysis

Evaluation: We analyze our model by benchmarking

various configurations on the DAVIS 2016 dataset [30]. For

ablation, we found it helpful to use the standard detection

mean average precision (mAP) metric [22] in place of video

object segmentation metrics, which require tracking and ob-

fuscate analysis of our architecture choices. We report both

detection and segmentation mAP at an IoU threshold of 0.5

5.3.1 Motion stream

To begin, we explore training strategies for the motion

stream of our model. We train our motion stream on the

FlyingThings3D dataset, as described in Section 3.1. This

dataset provides groundtruth flow, which we could use for

training. However, at inference time, we only have access

to noisy, estimated flow. In order to match flow in the real

world, we estimate flow on FlyingThings3D using two op-

tical flow estimation methods: FlowNet2 and LiteFlowNet.

For both methods, we use the version of their model that is

trained on synthetic data and fine-tuned on real data.

In Table 1, we compare three strategies for training on

FlyingThings3D. We start by training using only FlowNet2

flow as input (“FlowNet2”). We hypothesize that train-

ing directly on noisy, estimated flow can lead to difficul-



Flow type Det @ 0.5 Seg @ 0.5

FlowNet2 40.5 23.9

FlowNet2 ← Groundtruth 43.2 24.1

LiteFlowNet ← Groundtruth 33.8 24.0

Table 1: Comparing training with different flow estimation meth-

ods on FlyingThings3D, reporting mAP on DAVIS ’16 val. “←

Groundtruth” means we first train with groundtruth (synthetic)

flow. See Section 5.3.1 for details.

Figure 5: Despite being trained for segmentation only on synthetic

data, our motion stream (visualized) is able to separately segment

object parts in real objects. See Sec. 5.3.1 for details.

ties in early training. To overcome this, we train a variant

starting with groundtruth flow, and fine-tune on FlowNet2

flow (“FlowNet2 ← Groundtruth” row). We find that this

provides a significant improvement (2.7%). We also con-

sidered using a more recent flow estimation method, Lite-

FlowNet [16] (“LiteFlowNet ← Groundtruth” row). Sur-

prisingly, we find that FlowNet2 provides significant im-

provements for detection, despite performing worse on

standard flow estimation benchmarks. Qualitatively, we

found that FlowNet2 provides sharper results along bound-

aries than LiteFlowNet, which may aid in localizing objects.

Figure 5 shows qualitative results of the motion stream.

Despite never having seen real images with segmentation

labels, this model is able to group together parts that move

alike, while separating objects with disparate motion.

5.3.2 Appearance Stream

While our motion stream is proficient at grouping similarly-

moving pixels, it lacks any priors for real world objects and

will not hesitate to oversegment common objects, such as

the man in Figure 5. To introduce these useful priors, we

turn our attention to the appearance stream of our model.

As described in Section 3.2, we train our appearance

stream on the COCO dataset [22]. We evaluate two variants

of training. First, we train a standard, “class-specific” Mask

R-CNN, that outputs a set of boxes and masks for each of

the 80 categories in the COCO Dataset. At inference time,

we combine the boxes and masks predicted for each cate-

gory into a single “object” category. Second, we train an

“objectness” Mask R-CNN, by collapsing all the categories

in COCO to a single category before training.

We show results from these two variants in Table 2. Our

COCO Training Det @ 0.5 Seg @ 0.5

Class-specific 42.0 40.2

Objectness 49.8 48.3

Table 2: Comparison of training our appearance stream with and

without category labels on MS COCO (Class-specific and Object-

ness, respectively), reporting mAP on DAVIS ’16 val. Training

without category labels allows the model to generalize beyond the

training categories. See also Figure 6 and Section 5.3.2

Figure 6: Unlike standard object detectors trained on COCO (left),

our objectness model (right) detects objects from categories out-

side of COCO, such as the packet of film, a roll of quarters, a

rubber duck, and a packet of fasteners. Both models visualized at

confidence threshold of 0.7. See Section 5.3.2 for details.

“objectness” model significantly outperforms the standard

“class-specific” model by nearly 8%. We further compare

the two models qualitatively in Figure 6, noting that our ob-

jectness model better generalizes to non-COCO categories.

5.3.3 Joint training

Finally, we combine our appearance and flow streams in a

single two-stream model, depicted in Figure 3 and described

in detail in Section 3.3. We experiment with different strate-

gies for training this joint model. Throughout these experi-

ments, we initialize the flow stream with the “FlowNet2 ←
Groundtruth” model from Section 5.3.1, and use the object-

ness model from Section 5.3.2 to initialize the appearance

stream, the box and mask prediction heads, and the RPN.

We show the results in Table 3.

We start by training this joint model directly on the

DAVIS 2016 training set, which achieves 79.1% mAP.

We note that even with joint-training, using the objectness

model for initialization provides a significant boost over us-

ing a category-specific detector (73.8%). Next, to maintain

the generalizability of the objectness model, we also train

a variant where we freeze the weights of the appearance

stream. This provides nearly a 3% improvement in accu-

racy. Similarly, to maintain the generic “grouping” nature

of the synthetically-trained flow stream, we freeze the flow

stream, providing us with an additional 2% improvement.

Finally, we hypothesize that while features from the flow

stream are helpful for localizing generic moving objects,

appearance information is sufficient for segmentation. We

verify this hypothesis by training one last variant where the



Variant Det @ 0.5 Seg @ 0.5

Joint Training, class-specific 73.8 70.3

Joint Training, objectness 79.1 73.3

+ Freeze appearance 81.9 76.7

+ Freeze motion 83.7 76.4

+ Freeze mask 83.9 77.4

Table 3: Comparing two-stream training strategies, reporting mAP

on DAVIS ’16 val. Preserving knowledge from the individual

streams is critical for good accuracy. See Section 5.3.3 for details.

Joint Training Data Det @ 0.5 Seg @ 0.5

DAVIS 83.9 77.4

YTVOS-moving 79.9 75.8

DAVIS ← YTVOS-moving 85.1 77.9

Table 4: Comparing training sources, reporting mAP on DAVIS

’16 val. The lack of static objects in ‘YTVOS-moving’ leads to

worse performance, but fine-tuning on DAVIS provides the best

model. See Section 5.3.3 for details.

mask head uses only appearance stream features, and freeze

its weights to those of the objectness model. Indeed, this

provides a modest improvement of 1% in segmentation AP.

Training Data: Next, we train our joint model on

YTVOS-Moving (Section 5.1) and show results in Table 4.

Unfortunately, this dataset contains very few static objects,

causing the model to detect both static and moving objects,

leading to a significant (5%) drop in performance. How-

ever, fine-tuning this model on the DAVIS 16 training set

leads to our best model (DAVIS ← YTVOS-moving).

5.4. Comparison to prior work

Official FBMS: We first evaluate our method against

prior work on the standard FBMS benchmark in Table 5. As

discussed in Section 5.1, this metric does not penalize false

positive detections. As expected, our appearance stream

alone, despite segmenting both static and moving objects,

performs best on this metric (‘Ours-A’), outperforming all

prior work by 6.4% in F-measure on the TestSet, and 2.2%

on the TrainingSet 1. For completion, we also report the

performance of our joint model (‘Ours-J’), which compares

favorably to state-of-the-art despite the flawed metric. Our

improvements on this metric are likely driven by improve-

ments in segmentation boundaries (see Figure 7).

Proposed FBMS: Finally, we report results on our pro-

posed metric in Table 6. Recall that our proposed metric

generally follows the official metric, but additionally penal-

izes detection of static objects. We compare to all methods

from Table 5 whose final results on FBMS were accessi-

ble or provided by the authors through personal communi-

cation. On this proposed metric, we first note that, as ex-

1Note that despite the name, we do not use either set for training.

Figure 7: Qualitative results comparing our approach to two state-

of-the-art methods. Prior work frequently exhibits over- or under-

segmentation, such as the cat (middle row, [19]) and the dog (top

row, [5]), respectively. Our method fuses motion and appearance

information to segment the full extent of moving objects.

Training set Test set

P R F N/65 P R F N/69

[36] 83.0 70.1 76.0 23 77.9 59.1 67.3 15

[19] 86.9 71.3 78.4 25 87.6 70.2 77.9 25

[44] 89.5 70.7 79.0 26 91.5 64.8 75.8 27

[20] 93.0 72.7 81.6 29 95.9 65.5 77.9 28

Ours-A 89.2 79.0 83.8 43 88.6 80.4 84.3 40

Ours-J 85.1 78.5 81.7 39 80.8 75.8 78.2 39

Table 5: FBMS 59 results using the official metric [26], which

does not penalize detecting unlabeled objects. We report preci-

sion (P), recall (R), F-measure (F), and the number of objects for

which the F-measure > 0.75 (N). Ours-A is our model’s appear-

ance stream only, and Ours-J is our joint model. Both Ours-A and

Ours-J out-perform all prior work. As expected, since this metric

does not penalize false positives, Ours-A outperforms Ours-J.

pected, the performance of our appearance model baseline

is significantly worse than our final, joint model, by 9.2% on

TestSet and 6% on TrainingSet in F-measure. More impor-

tantly, our final model strongly out performs prior work in

F-measure by 11.3% on the TestSet, and 6.1% on the Train-

ingSet. In addition to improving segmentation boundaries,

our approach effectively removes spurious segmentations of

background regions and object parts (Figure 7).

Qualitative results: We qualitatively compare our ap-

proach with Keuper et al. [19] and Bideau et al. [5] in Fig-

ure 72 In the top row of Figure 7, [19] oversegments the

dog into multiple parts, and [5] merges the dog with the

background, whereas our approach fully segments the dog.

2 [5] only segments objects while they move. We provide an evaluation

using an alternative FBMS labeling they propose in our supplementary.



Training set Test set

P R F P R F

[36] 74.8 61.7 65.5 66.8 49.2 53.6

[19] 68.1 68.5 67.1 70.0 64.6 65.0

Ours-A 61.6 80.4 64.0 66.8 84.7 70.3

Ours-J 75.0 77.8 73.2 77.0 83.0 76.3

Table 6: FBMS 59 results on our proposed metric. Ours-A is our

appearance stream, Ours-J is our joint model. We compare to prior

methods for which we were able to obtain code or results.

P R F

[19] 39.4 53.8 42.3

Mask R-CNN 70.8 75.6 71.6

Ours 78.3 78.8 78.1

Table 7: DAVIS-Moving results on our proposed metric. We com-

pare to the best FBMS method for which we could obtain code.

P R F

[19]3 35.3 28.7 26.6

Mask R-CNN 70.4 49.5 53.6

Ours w/o YTVOS 74.5 66.4 68.3

Table 8: YTVOS-Moving results on our proposed metric. For fair-

ness, we evaluate our method without YTVOS training. We com-

pare to the best FBMS method for which we could obtain code.

Similarly, the cat in the middle row is over-segmented by

[19] and under-segmented by [5], but well-segmented by

our approach. In the final row, both [19] and [5] exhibit

segmentation and tracking errors; the region corresponding

to the man’s foot (colored yellow for Keuper et al. and red

for Bideau et al.) are mistakenly tracked into a background

region thus segmenting part of the background as a moving

object. Meanwhile, our object-based tracker fully segments

the person and the tennis racket with high precision. We

show further qualitative results in supplementary material.

DAVIS-Moving: We further evaluate our method on a

subset of the DAVIS 17 dataset. Unlike DAVIS 2016, the

2017 version provides instance-level masks for objects, but

contains sequences with labeled static or unlabeled moving

objects. For evaluation, we manually select 22 of 30 vali-

dation videos without these issues, and refer to this subset

as DAVIS-Moving. We compare to [19], the best FBMS

method we can obtain code for, with our proposed metric

in Table 7. Surprisingly, we find a much larger gap in per-

formance on this dataset; while [19] achieves 42.3% on F-

measure with our proposed metric, our approach improves

significantly to 77.9%. We believe this gap may be due to

faster, more articulated motion and higher resolution videos

in DAVIS 17, which severely affect [19] but not our method.

3[19] errored on some sequences, so we report numbers on a subset. By

comparison, Ours w/o YTVOS achieves 71.9% F-measure on this subset.

COCO Objects Novel objects

P R F P R F

[19] 28.2 25.4 20.6 41.8 31.6 31.9

Mask R-CNN 77.6 60.9 65.1 61.9 37.1 40.6

Ours w/o YTVOS 74.4 66.8 66.8 74.6 66.2 67.6

Table 9: YTVOS-Moving results on seen (COCO) vs. novel ob-

jects using our proposed metric.

YTVOS-Moving: Finally, we evaluate on sequences

from YTVOS-Moving (selected from YTVOS, as described

in Section 5.1). Unlike FBMS and DAVIS, YTVOS con-

tains diverse objects, such as octopuses and snakes. For fair-

ness, we evaluate a version of our final model that was never

trained on YTVOS, and show results in Table 8. We show

that Mask R-CNN struggles to detect such objects, while

our approach strongly improves performance from 53.6%

to 67.7% in F-measure. We further break down these re-

sults by splitting the YTVOS-Moving dataset into two sub-

sets: videos which contain COCO-category objects, which

our model has seen during training, and videos which con-

tain novel objects not from COCO categories in Table 9.

While Mask R-CNN is competitive with our approach on

COCO categories (underperforming our model by 1.7% F-

measure), it significantly underperforms compared to our

approach on novel objects, by 27% F-measure. We show

qualitative results in supplementary material.

6. Conclusion

We proposed a simple learning-based approach for

spatio-temporal grouping. Our method provides two key

insights. First, learning based approaches are able to gener-

alize to never-before-seen objects (Section 5.3.2). Second,

synthetic data can be used to train a truly generic grouping

method with little priors on real world objects. As a result,

our approach achieves state-of-the-art results on the FBMS

benchmark dataset. Finally, to enable further research in

this direction, we introduced a new metric as well as two

new benchmarks (DAVIS-Moving, YTVOS-Moving).

Acknowledgements: We thank Pia Bideau for provid-

ing evaluation code, Nadine Chang, Kenneth Marino and

Senthil Purushwalkam for reviewing drafts and discussions.

Supported by the Intelligence Advanced Research Projects

Activity (IARPA) via Department of Interior/Interior Busi-

ness Center (DOI/IBC) contract number D17PC00345. The

U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes not withstanding any

copyright annotation theron. Disclaimer: The views and

conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the of-

ficial policies or endorsements, either expressed or implied

of IARPA, DOI/IBC or the U.S. Government.



References

[1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari.

What is an object? In CVPR. IEEE, 2010. 1

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In ICIP,

2016. 4

[3] Pia Bideau and Erik Learned-Miller. A detailed rubric for

motion segmentation. arXiv preprint arXiv:1610.10033,

2016. 4

[4] Pia Bideau and Erik Learned-Miller. It’s moving! a prob-

abilistic model for causal motion segmentation in moving

camera videos. In ECCV, 2016. 2

[5] Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, and

Erik Learned-Miller. The best of both worlds: Combining

CNNs and geometric constraints for hierarchical motion seg-

mentation. In CVPR, 2018. 2, 7, 8

[6] Thomas Brox and Jitendra Malik. Object segmentation by

long term analysis of point trajectories. In ECCV, 2010. 2

[7] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In ICCV,

2015. 3

[8] Alon Faktor and Michal Irani. Video segmentation by non-

local consensus voting. In BMVC, 2014. 2

[9] Katerina Fragkiadaki, Pablo Arbelaez, Panna Felsen, and Ji-

tendra Malik. Learning to segment moving objects in videos.

In CVPR, 2015. 2, 3, 4

[10] Georgia Gkioxari and Jitendra Malik. Finding action tubes.

In CVPR, 2015. 3, 4

[11] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan

Essa. Efficient hierarchical graph-based video segmentation.

In CVPR, 2010. 2

[12] Chunhui Gu, Chen Sun, Sudheendra Vijayanarasimhan, Car-

oline Pantofaru, David A Ross, George Toderici, Yeqing Li,

Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, et al.

AVA: A video dataset of spatio-temporally localized atomic

visual actions. In CVPR, 2017. 3, 4

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017. 5

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3

[15] Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, and

Ross Girshick. Learning to segment every thing. In CVPR,

2018. 2

[16] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Lite-

FlowNet: A lightweight convolutional neural network for

optical flow estimation. In CVPR, 2018. 6

[17] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. Fusion-

seg: Learning to combine motion and appearance for fully

automatic segmention of generic objects in videos. In CVPR,

2017. 2

[18] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. Pixel

objectness. arXiv preprint arXiv:1701.05349, 2017. 2

[19] Margret Keuper, Bjoern Andres, and Thomas Brox. Mo-

tion trajectory segmentation via minimum cost multicuts. In

ICCV, 2015. 1, 2, 7, 8

[20] Naeemullah Khan, Byung-Woo Hong, Anthony Yezzi, and

Ganesh Sundaramoorthi. Coarse-to-fine segmentation with

shape-tailored continuum scale spaces. In CVPR, 2017. 7

[21] Yong Jae Lee, Jaechul Kim, and Kristen Grauman. Key-

segments for video object segmentation. In ICCV. IEEE,

2011. 2

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV. Springer, 2014. 2, 3, 5, 6

[23] David Marr. Vision: A computational investigation into the

human representation and processing of visual information.

mit press. Cambridge, Massachusetts, 1982. 1
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