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Abstract

Building correspondences across different modalities,

such as video and language, has recently become criti-

cal in many visual recognition applications, such as video

captioning. Inspired by machine translation, recent mod-

els tackle this task using an encoder-decoder strategy. The

(video) encoder is traditionally a Convolutional Neural Net-

work (CNN), while the decoding (for language generation)

is done using a Recurrent Neural Network (RNN). Current

state-of-the-art methods, however, train encoder and de-

coder separately. CNNs are pretrained on object and/or

action recognition tasks and used to encode video-level fea-

tures. The decoder is then optimised on such static features

to generate the video’s description. This disjoint setup is ar-

guably sub-optimal for input (video) to output (description)

mapping.

In this work, we propose to optimise both encoder and

decoder simultaneously in an end-to-end fashion. In a two-

stage training setting, we first initialise our architecture us-

ing pre-trained encoders and decoders – then, the entire

network is trained end-to-end in a fine-tuning stage to learn

the most relevant features for video caption generation. In

our experiments, we use GoogLeNet and Inception-ResNet-

v2 as encoders and an original Soft-Attention (SA-) LSTM

as a decoder. Analogously to gains observed in other com-

puter vision problems, we show that end-to-end training

significantly improves over the traditional, disjoint training

process. We evaluate our End-to-End (EtENet) Networks

on the Microsoft Research Video Description (MSVD) and

the MSR Video to Text (MSR-VTT) benchmark datasets,

showing how EtENet achieves state-of-the-art performance

across the board.

1. Introduction

Video captioning is the problem of generating textual

descriptions based on video content, a key functionality to

pave the way for, e.g., talking cars, surgical robots or fac-

tories. The task is particularly challenging for approaches

should capture not only the objects, scenes, and activities

present in the input video (i.e. address video tagging, object

and action recognition), but also express how these objects,

scenes, and activities relate to each other in a spatial and

temporal fashion using a natural language construction.

Two major approaches to video captioning exist [31]:

template-based language models and sequence learning-

based ones. The former class of methods detect words from

the visual content (e.g. via object detection) to then gener-

ate the desired sentence using grammatical constraints such

presence of a subject, verbs, object triplets, and so on. In-

teresting studies in this sense were conducted in [7, 20, 35].

The latter group of approaches, instead, learn a probability

distribution from a set of feature vectors extracted from the

video to flexibly generate a sentence without using any spe-

cific language template. Examples of this second category

of approaches are [28, 36, 30].

Encoder-decoder frameworks. Thanks to the recent

developments of deep learning frameworks such as Long

Short-Term Memory (LSTM) [9] networks and Gated Re-

current Units (GRU) [4], as well as of machine translation

techniques such as [23], the currently dominant approach

to video captioning is based on sequence learning in an

encoder-decoder framework. In this setting, the encoder

represents the input video sequence as a fixed-dimension

feature vector, which is then fed to the decoder to generate

the output sentence one word at a time. At each time step in

the decoder, the current input (the word) and the previously

generated hidden states of the output sequence are used to

predict the next word and the hidden state.

One of the most severe drawbacks of such models, how-

ever, is that the underlying video content feature space is

static and does not change during the training process. More

specifically, an encoder (typically, a Convolutional Neural

Network, CNN) is pre-trained on datasets designed for dif-

ferent tasks, to be then used as feature extractor for video-

captioning. Although this makes some sense given the

multi-task nature of the video captioning process illustrated

above, the resulting disjoint training process, in which the

decoder is trained on the captioning task with static features

as input, is inherently suboptimal. Recent state-of-the-art

methods [36, 17, 38] try to address this issue by capturing



dynamic temporal correspondences between feature vectors

corresponding to different video frames. However, these

works do not address the basic fact that video captioning

may well require the system to learn task-specific features

that will necessarily differ from those learned for the ac-

tion classification, video tagging or object detection tasks

for which the CNN encoder was trained.

From complex decoders to learning task-specific fea-

tures. Our view is that a decoder designed for video cap-

tioning should instead be able to learn from task-specific

features. As shown in Figure 1 (A) in all previews architec-

tures the encoder is never trained, (e.g., the gradient is not

updated during the learning of the encoder part). In addi-

tion, the CNN implementing the encoding is trained using a

different loss function aimed at solving a different task.

In order to compensate for this fundamental flaw, new

decoding mechanisms must be implemented to learn bet-

ter video features. As a result decoders (and the associated

training procedures) have consistently increased in com-

plexity over the years. To illustrate this point: Venugopalan

et al. [28] (2015) used a vanilla LSTM; Yu et al. [37] (2016)

multiple Gate Recurrent Units with two attention mecha-

nisms; Pan et al. [15] (2017) implemented a Transfer Unit in

combination with two LSTMs; finally, PickNet [3] (2018)

achieved excellent results using reinforcement learning to

train a deep net able to identify the most relevant frames.

Our approach is in radical contrast with these previous

attempts. Rather than designing new, expensive decoding

mechanisms to learn better video features, we force the en-

coder’s feature extractor to focus its attention on ’signifi-

cant’ objects in order to generate good textual descriptions,

exploiting the ability of convolutional networks to extract

relevant features from images or videos.

Our proposal: end-to-end training. We propose to

address this problem by bringing forward the end-to-end

training of both encoder and decoder as a whole, as shown

in Figure 1 (B). Our philosophy is inspired by the suc-

cess of end-to-end trainable network architectures in im-

age recognition [10], image segmentation [12], object de-

tection [19] and image-captioning [13, 29], but was never

before adopted in a video captioning setting.

The reason is that, if done naively, training end-to-end

the resulting large scale, heterogeneous network has a pro-

hibitive computational cost, especially on machines with a

limited number of GPUs. Introducing the technique into

video captioning, however, is quite imperative for end-to-

end training allows for simple inference [29] and can han-

dle complex, multi-task problems best described by multi-

ple losses [16].

Two-stage learning for efficient end-to-end training.

An efficient training procedure is then crucial to unlock the

potential of end-to-end training for video captioning.

In this paper we address this issue in two ways.

Figure 1. Gradient flow comparison between the disjoint training

of the RNN decoder and the CNN encoder (A) and the end-to-

end training of both encoder and decoder (B). In the first case (A),

the CNN encoder does not update its parameters in dependence

of the captioning loss, but as a function of just the classification

loss. Only the decoder updates its parameters as a function of the

gradient of the captioning loss (blue arrow). In the end-to-end

case considered here (B), the parameters of both CNN and RNN

are updated according to the evolution of the gradients from the

captioning loss. Gradient flow is again depicted by a blue arrow.

Firstly, we propose a two-stage learning process, in which

encoder and decoder are first trained separately, after ini-

tialisation from disjoint models, to leave fine tuning to be

conducted in the second stage in a fully end-to-end fashion.

In second place, during training we accumulate gradients

over multiple steps in order to update parameters only after

the required effective batch size is achieved. This leads to

an increased number of iterations, which is however miti-

gated by our two-stage approach.

Additionally, to further improve performance, we propose

significant changes to the Soft-Attention decoder by Yao et

al. [36], while preserving its simplicity of concept. The ma-

jor improvements we propose are presented in Section 3.2,

and encompass structural architectural changes, a different

computational graph and an averaged loss applied to the at-

tention coefficients for caption generation, inspired by [34].

Contributions. Summarising, to the best of our knowl-

edge: (1) our work presents the first End-to-End trainable

framework (EtENet) for video captioning, designed to learn

task-specific features, based on a new two-stage efficient

training strategy. Our approach propagates the gradient

from the last layer of the RNN decoder to the first layer

of the CNN encoder as illustrated in Figure 1 (B). Un-

like [38, 30, 15, 36] which all use more than 25 frames per

video clip, our model only uses 16 frames, a significant con-

tribution in terms of resource economics.

(2) Performance-wise, training our network architecture in

the traditional, disjoint way produces comparable results to

the current state-of-the-art, whereas our end-to-end train-

ing framework delivers significant performance improve-

ments no matter the choice of the base encoder network.

This sets a new benchmark for the field of video captioning,



upon which further progress can be made. Notably, this is

achieved without using any 3D CNN encoding.

Finally (3), inspired by [36], we present and plug into our

end-to-end framework an overhauled version of the Soft-

Attention decoder characterised by improved performance

compared to the original version.

2. Related work

Inspired by the latest computer vision and machine trans-

lation techniques [23], recent efforts in the video captioning

field follow a sequence learning approach. The commonly

adopted architecture, as mentioned, is an encoder-decoder

framework [31] that uses either 2D or 3D CNNs to collect

video features in a fixed-dimension vector, which is then

fed to a Recurrent Neural Network to generate the desired

output sentence, one word at a time.

The first notable work in this area was done by Venu-

gopalan et al. [28]. They represented an entire video using

a mean-pooled vector of all features generated by a CNN

at frame level. The resulting fixed-length feature vector

was then fed to an LSTM for caption generation. Although

state-of-the-art results were achieved at the time, the tem-

poral structure of the video was not well modelled in this

framework. Since then, alternative views have been sup-

ported on how to improve the visual model in the encoder-

decoder pipeline. The same authors [27] have later pro-

posed a different method which exploits two-layer LSTMs

as both encoder and decoder. In this setting, compared to

the original pipeline [28], each frame is used as input at

each time step for the encoder LSTM, which takes care of

encoding the temporal structure of the video into a fixed size

vector. This model, however, still leaves room for a better

spatiotemporal feature representation of videos, as well as

calling for improved links between the visual model and the

language model.

To address this problem, 3D CNNs and attention mod-

els have been since introduced. Inspired by [34], Yao et

al. [36] employ a temporal Soft Attention model in which

each output vector of the CNN encoder is weighted before

contributing to each word’s prediction. The spatial compo-

nent is extracted using the intermediate layers of a 3D CNN

which is used in combination with the 2D CNN. On their

part, [37] have proposed a spatiotemporal attention scheme

which includes a paragraph generator and sentence genera-

tor. The paragraph generator is designed to pick up the sen-

tence’s ordering, whereas the sentence generator focuses on

specific visual elements from the encoder.

A distinct line of research has been brought forward by

Pam and his team in [15] and subsequently in [17]. The

first work tries, in addition to using features from both 2D

and 3D CNNs, to introduce a visual semantic embedding

space for enforcing the relationship between the semantics

of the entire sentence and the corresponding visual content.

Multiple Instance Learning models have been used in [5] for

detecting attributes to feed to a two-layer LSTM controlled

by a transfer unit.

In the last two years, numerous relevant papers have been

published. Similarly to [17], Zhang et al. [38] use a task-

driven dynamic fusion across the LSTM to process the dif-

ferent data types. The model adaptively chooses different

fusion patterns according to task status. Xu et al. [33] test

on the MSR-VTT dataset a Multimodal Attention LSTM

Network that fuses audio and video features before feed-

ing the result to an LSTM multi-level attention mechanism.

In [6], the authors create a Semantic Compositional Net-

work plugging into standard LSTM decoding the probabil-

ities of tags extracted the frames, in addition to the usual

video features, merged in a fixed-dimension vector. Chen et

al. [3] show that it is possible to get good results using just

∼6-8 frames. An LSTM encoder takes a sequence of visual

features while a GRU decoder helps generate the sentence.

The main idea of this interesting work is to use reinforce-

ment learning, while a CNN is used to discriminate whether

a frame must be encoded or not. A recent work [30] im-

proves the performance of [36] and its model architecture

by inserting a reconstruction layer on top that aims to repli-

cate the video features, starting from the hidden state of the

LSTM cell.

Unlike all previous work, in which the weights of the en-

coder part do not change, our study focusses on end-to-end

training. This strategy, which has been proven successful in

various applications, encourages the encoder to capture fea-

tures which are actually discriminant for caption generation.

Our training process is divided into two stages: while in the

first stage only the decoder is trained, in the second one

the whole model is fine-tuned. In this work, in particular,

we test two different 2D CNN encoders: GoogLeNet [25]

and Inception-ResNet-v2 [24], thus showing how end-to-

end training is beneficial no matter the choice of the base

encoder. This also demonstrates that our training strategy is

not linked to any particular encoder network. As decoder,

we present a modified version of the Soft-Attention model

defined by [36]. Nevertheless, the approach is entirely gen-

eral and can be applied to other decoding architectures.

3. Approach

This section describes in detail our end-to-end trainable

encoder-decoder architecture for video-captioning. The

overall framework is depicted in Figure 2. Section 3.1 illus-

trates the chosen encoder, based on the Inception-ResNet-

v2 [24] architecture. The decoder, based on our original

Soft-Attention LSTM (SA-LSTM) design inspired by [36],

is discussed in § 3.2. Difference with [36] and initialisation

details are also discussed there. Note that our framework is

also tested using GoogLeNet [25] as the encoder.

The training process is explained in § 3.3. Firstly, gradi-



Figure 2. Diagram of our EtENet-IRv2 architecture. Each frame

is processed individually using Inception-ResNet-v2 (IRv2). All

resulting vectors v1, ..., vn are concatenated (⊕) to represent their

collection V . At each decoding time step t a single word is pre-

dicted by SA-LSTM, based on the vector V , the previous word

yt−1 and the hidden states (ht−1, ct−1).

ent accumulation is used to achieve the desired high batch

size for the training of the decoder. Secondly, the proposed

two-stage training process is described. Lastly, the pro-

posed averaged loss functions are defined and justified.

3.1. Encoder

A common strategy [28] is to use a 2D CNN pre-trained

on the ImageNet dataset [21] as an encoder. Typically, fea-

ture vectors are generated before the first fully-connected

layer of the neural network, for each frame of the video.

This is done as a preprocessing step, and many versions

of 2D CNN were brought forward over the course of the

years for video captioning. For instance, Venugopalan et

al. [28, 27] would use variants of AlexNet [10], 16 layer

VGG [22] and GoogLeNet [25]. Yao et al. [36] would also

use GoogLeNet, in combination with a 3D CNN. Gan et

al. [6], instead, preferred ResNet-152 [8] whereas Wang et

al. [30] used Inception-v4 [24].

As noted by Wang et al. [30], deeper networks are more

likely to capture the high-level semantic information about

the video. Thus, in this work we decided to use Inception-

ResNet-v2 [24] as the encoder, among all possible con-

volutional network architectures. The version used in our

experiments is pre-trained on ImageNet, and is publicly

available1. To show the generality of our framework, ad-

ditional tests were conducted using our own PyTorch ver-

sion of GoogLeNet [25], also pre-trained on ImageNet. The

weights were imported from a well known Caffe version2.

Formally, given a video X = {x1, ..., xn} composed by

a sequence of n RGB images, our encoder φ is a func-

1https://github.com/Cadene/pre-trained-models.

pytorch
2https://github.com/BVLC/caffe/tree/master/

models/bvlc_googlenet

tion mapping each frame xi to a feature vector vi using

the average pooling stage after the conv2d_7b layer of

Inception-ResNet-v2 or, in the case of GoogLeNet, the

pool5/7x7 s1 layer. We thus denote by

V = {v1, ..., vn} = φ({x1, ..., xn}) (1)

the output of the encoder, later fed as input to the decoder.

3.2. Decoder: Soft Attention LSTM

Using Inception-v4 as decoder, the Soft-Attention model

developed by Yao et al. [36] achieves good performance

compared to other, more complex systems (e.g., [37]).

For this reason our work builds on the version of [36] devel-

oped in Theano3. The resulting original SA-LSTM frame-

work, implemented in PyTorch, exhibits a number of signif-

icant improvements over [36], explained in detail below.

Formulation. At each decoding step the SA-LSTM ψ

takes as input n vectors generated by the encoder, V =
{v1, ..., vn}, together with the previous hidden state ht−1,

memory cell ct−1 and word yt−1. Its output is composed

by: (i) the probability of the next word P (yt|y<t, V ) based

on the previously observed words y<t and on the feature

vectors V ; (ii) the current hidden state ht, and (iii) the cur-

rent memory cell state ct. Namely:

⎡

⎣

P (yt|y<t, V )
ht

ct

⎤

⎦ = ψ(V, yt−1, ht−1, ct−1). (2)

The algorithm runs sequentially through the output se-

quence, predicting one word at a time.

More in detail, at any given time t the first step is to

create a single vector from V by applying a Soft-Attention

mechanism ϕt to the whole encoder output. Firstly, for each

vector vi a normalised score αt
i is computed:

eti = W⊤
a tanh(Wehht−1 +Wevvi + be) + ba; (3)

αt
i =

exp{eti}
∑|V |

j exp{etj},
(4)

where Wa, Weh, Wev , be, ba are all trainable variables and

eti is the unnormalised score of vector i at time t.

Secondly, a coefficient βt ∈ [0, 1] is computed to measure

the importance of the final vector ϕt(V ) as a function of the

previous hidden state, with parameters Wβ and bβ :

βt = σ(Wβht−1 + bβ), (5)

where σ is a sigmoid activation function. The final output

of the Soft-Attention function is computed as follows:

ϕt(V ) = βt

|V |
∑

i

αt
ivi. (6)

3https://github.com/yaoli/arctic-capgen-vid



The vector (6) is then concatenated with an embedding E

of the previous word yt−1

zt = [ϕt(V ), E[yt−1]], (7)

and fed to a standard LSTM with state vector ht:

(ht, ct) = LSTM(zt, ht−1, ct−1). (8)

The word prediction pt = P (yt|y<t, V ) is a function of

the concatenation of ϕt(V ) and ht, and of the embedding

E[yt−1] of yt−1:

ut = Wu[ϕt(V ), ht] + E[yt−1] + bu; (9)

pt = softmax(Wp tanh(ut) + bp), (10)

where [·, ·] denotes vector concatenation and all weight ma-

trices W and bias vectors b are trainable parameters.

Decoder innovations. Our decoder architecture differs

from [36]’s in a number of ways. (i) In Equation (9),

E[yt−1] is not mapped by a matrix parameter. The effect

of this is that the visual information adapts to the word

embedding, rather than the opposite, as in residual con-

nection frameworks [8]. (ii) In Equation (5), a βt term is

added to reflect the fact that for some connective words in

the sentence (e.g. ’the’) the attention term should weigh

less. (iii) An averaged Doubly Stochastic Attention is used

as attention loss (as discussed in Sec. 3.3), for this has

shown to improve performance. Implementation-wise, (iv)

the LSTM machinery (Equations (7) to (8)) is derived from

torch.nn.LSTMCell, rather than having been imple-

mented from scratch.

Another substantial difference between the two models

lies in their computational graphs at training time. In [36]

Soft-Attention is a sentence-by-sentence model, meaning

that the dimensionality of the decoder input is (batch size,

sequence length, embedding dim+encoder output dim). In

our decoder we use a word-by-word approach with as input

shape: (batch size, embedding dim+encoder output dim).

The latter first computes the entire sequence of the LSTM

hidden states {ht} to then produce a sentence. The former

generates one hidden state vector at a time, and the word is

directly predicted at every step. This difference affects the

gradient upgrading procedure during back-propagation.

Initialization Details. Our framework takes blocks of

16 RGB frames as input. Each frame is processed by our

version of Inception-ResNet-v2 up to the average pooling

stage after the conv2d_7b layer. Thus, the encoder output

V is composed by 16 vectors of 1536 elements each. In the

GoogLeNet case we use the output of the pool5/7x7 s1

layer, so that the vector has 1024 elements.

As explained, at each step the decoder takes as input V ,

the previously observed word yt−1 and the hidden ht−1 and

ct−1 states. The first word of every predicted sentence is the

token <SOS>, while h0 and c0 are initialised as follows:

h0 = tanh(WhV + bh); (11)

c0 = tanh(WcV + bc), (12)

where Wh, Wc, bh, bc, are trainable variables and V is the

mean of all the vectors in V .

The desired video caption is predicted word by word until

<EOS> is produced or after a maximum caption length is

reached (set to 30 for MSVD and to 20 for MSR-VTT).

The input V is the same throughout each iteration. We use

512 as the dimension of the LSTM hidden layer, 486 as

embedding dimension for E[yt−1], while the cardinality of

the word probability vector pt obviously depends on the size

of the vocabulary being considered (∼12,000 for MSVD,

∼200,000 for MSR-VTT).

3.3. Training Process

Accumulate to Optimize. Recurrent networks require a

large (e.g. 64 in [36]) batch size to converge to good local

minima. This is true for our SA-LSTM as well, since it is

based on an LSTM recurrent architecture.

In our initial tests, when using a disjoint training setup

similar to [36]’s, we noticed that increasing the batch size

would indeed boost performance. Unfortunately, Inception-

ResNet-v2 (as other CNNs) is very expensive in term of

memory requirements, hence large batch sizes are difficult

to implement. A single batch, for instance, would use 5 GB

(GigaByte) of GPU memory. The machine our tests were

conducted on comes with 4 Nvidia P100 GPUs with 16 GB

of memory each, allowing a maximum batch size of 12.

To overcome this problem, our training strategy is cen-

tred on accumulating gradients until the neural network has

processed 512 examples. After that, the accumulated gradi-

ents are used to update the parameters of both encoder and

decoder. The pseudocode for this process is provided in Al-

gorithm 1. The standard training process is modified into

one that accumulates gradients for accumulate step size.

As a result, the approach achieves an effective batch size

equal to accumulate step×mini batch size.

Two-Stage Training. Stochastic optimisers require

many parameter update iterations to identify a good local

minimum. Hence, if naively implemented, our gradient ac-

cumulation strategy would be quite slow, as opposed to dis-

joint training in which GPU memory requirements are much

lower. To strike a balance between a closer to optimal but

slower end-to-end training setup and a faster but less opti-

mal disjoint training setting we adopt a two-stage training

process, which is also crucial to allow end-to-end training of

an heterogenous network from a computational standpoint.

In the first stage, we freeze the weights of the pre-trained

encoder to train the decoder. As the encoder’s weights are



Algorithm 1 Training with accumulated gradient.

Require: accumulate step

1: i ← 0
2: Reset gradient to zero

3: for batch size of Examples in Training set do

4: Model forward step using Examples

5: Compute loss

6: Normalise loss using accumulate step

7: Backward step and accumulate gradients

8: if (i mod accumulate step) is 0 then

9: Update model with accumulated gradient

10: Reset gradient to zero

11: end if

12: i ← i+ 1
13: end for

kept constant, this is equivalent to training a decoder on pre-

computed features from the encoder. As a result, memory

requirements are low, and the process is fast. Once the de-

coder reaches a reasonable performance on the validation

set, the second stage of the training process starts.

In the second stage, the whole network is trained end-to-end

while freezing the batch normalisation layer (if the encoder

contemplates it).

In both stages, at each time step SA-LSTM uses the real

target output (i.e., the target word) as input, rather than its

own previous prediction.

Given the heterogeneity of the architecture, we use

Adam [9] as an optimisation algorithm and different pa-

rameter values for encoder and decoder. For the former,

inspired by [25, 24], since the batch size is 512 and each

example has 16 frames, we set the learning rate to 1e − 09
and the weight decay to 4 ∗ 1e− 05 in the experiments with

Inception-ResNet-v2. The version with GoogLeNet uses a

learning rate of 2e− 04 and a weight decay of 2 ∗ 1e− 04.

The decoder is instead updated using 1e − 04 as learning

rate and 1e − 04 as weight decay. To avoid the vanishing

and exploding gradient problems typical of RNNs, we force

the gradient to belong to the range [−10, 10]. At test time a

beam search [14] with size 5 is used for final caption gener-

ation as in [30]. Larger sizes do not improve performance.

Loss Function. Similarly to [36, 34], we adopted as

overall loss of the network the following sum:

Ltot(θ) = L(θ)NLL + λL(θ)aDSA. (13)

The Negative Log-Likelihood loss is given by: L(θ)NLL =

−
∑N

i

∑C

t log p(yit|y
i
<t, xi, θ), where C is the caption

length, N the number of examples. The second component

is an original averaged Doubly Stochastic Attention loss:

L(θ)aDSA =
1

L

L
∑

k

(

1−

C
∑

t

αt
k

)2

, (14)

which we found improves performance over the standard

DSA one, with L the size of the feature vector vi. The (av-

erage) DSA component of the loss can be seen as encour-

aging the model to pay equal attention to every frame over

the course of the caption’s generation process.

Similarly to [36], we set λ to 0.70602.

4. Evaluation

Before discussing our tests, we first describe the metrics

(§ 4.1) and datasets (§ 4.2) used to evaluate our model, and

the pre-processing steps applied to the input data (§ 4.3).

4.1. Metrics

To guarantee a fair quantitative comparison with the state

of the art we used the most common and well known met-

rics: BLEU [18] (4-gram version), METEOR [1], ROUGE-

L [11] and CIDEr [26]. While BLEU and METEOR were

created for machine translation tasks, ROUGE-L’s aim is

to compare a machine-generated summary with the human-

generated sentence. CIDEr is notable as the only metric

created for evaluating image descriptions that use human

consensus.

4.2. Datasets

We evaluated our model and compared it with our com-

petitors on two standard video captioning benchmarks.

MSVD is one of the first such datasets to include multi-

category videos. MSR-VTT, on its side, is based on 20 cat-

egories and is of a much larger scale than MSVD.

MSVD. The most popular dataset for video captioning

systems evaluation is, arguably, the Microsoft Video De-

scription Corpus (MSVD), also known as YoutubeClips [2].

The dataset contains 1970 videos, each video depicting a

single activity lasting about 6 to 25 seconds. Each video

is associated with multiple descriptions in the English lan-

guage, collected via Amazon Mechanical Turk, for a total

of 70,028 natural language captions. We adopted the evalu-

ation setup of [28], and splitted the dataset into three parts:

1,200 videos for training, 100 videos for validation, and the

remaining 670 videos for testing.

MSR-VTT. The MSR Video to Text [32] dataset is a re-

cent large-scale benchmark for video captioning. 10K video

clips from 20 categories were collected from a commercial

video search engine (e.g., music, sports, and TV shows).

Each of these videos was annotated with 20 sentences pro-

duced by 1327 Amazon Mechanical Turk workers, for a to-

tal number of captions of around 200K.

As prescribed in the original paper, we split videos by index

number: 6,513 for training, 497 for validation and 2,990 for

the test. The number of unique words present in the cap-

tions is close to 30K.



4.3. Preprocessing

Following the usual pre-processing of Inception-ResNet-

v2, height and width of each frame of the video were resized

to 314, to then use the central crop patch of 299x299 pix-

els of each frame. Pixel normalisation using a mean and

standard deviation of 0.5 was applied. Training, validation

and test examples were all subject to the same frame pre-

processing steps. For the GoogLeNet encoder, we used the

commonly accepted preprocessing steps for that network:

each frame of the video was resized to 224x224 pixels, and

then normalised by mean subtraction.

Using all frames of a video is very time inefficient – as [3]

shows, it is possible to create an efficient model using fewer

frames. On the other hand, we did not apply any additional

filtering to the frames, as we preferred to leave this task for

the attention mechanism to handle. In agreement with [30]

and with our findings, we decided to represent each video

by 16 equally-spaced features.

As for the captions, we tokenised them by con-

verting all words to lowercase and applying the

TreebankWordTokenizer class from the Natural

Language Toolkit4 to split sentences into tokens. The to-

keniser uses regular expressions as in the Penn Treebank5,

thus adhering to English grammar while maintaining

punctuation in the token.

5. Experiments

We conclude by reporting and discussing the experi-

mental validation of our end-to-end trainable framework

(EtENet) on the datasets described in (§ 4.2).

5.1. SA-LSTM vs Soft Attention

As a first step, we compared the performance of our

SA-LSTMbase decoder (in PyTorch) with that of Soft At-

tention [36] (Theano), with the same parameter values:

learning rate = 0.01, batch size = 64, Adadelta as opti-

mizer, and using the original DSA loss [34] rather than our

bespoke, averaged version. The version of our decoder we

term SA-LSTMbest, instead, improves on SA-LSTMbase by

using different hyperparameter values, optimisation algo-

rithm and loss. Namely, the best results are achieved us-

ing learning rate = 0.0001, batch size = 512, Adam

as optimizer and our averaged DSA loss (14). Note that

the original approach requires a lot of memory, so that the

higher batch size possible on our machines was 64. Using

our model, instead, we could achieve a value of 512. Note

also that we only used one GPU for training for sake of fair

comparison, as Theano does not support multi-GPU train-

ing. The results are shown in Table 1.

4https://www.nltk.org
5http://www.cis.upenn.edu/˜treebank/tokenizer.

sed

For this comparison we used the features extracted from

GoogLeNet stored in the original SA repository [36]. Thus,

the results are not comparable with those of Table 2.

Model B@4 M C R-L

SA 46.6 32.0 67.0 68.0

SA-LSTMbase 46.9 32.1 70.9 69.2

SA-LSTMbest 48.3 32.2 76.4 69.1

Table 1. Comparison between the original Soft-Attention (SA) de-

coder and ours (SA-LSTM), on the test set of the MSVD dataset.

Both versions of our decoder outperform [36] – by a

very significant amount in the optimised (best) version, es-

pecially in the CIDEr metric.

5.2. State-of-the-art Comparison

Tables 2 and 3 clearly show how our approach, both

when using only step 1 of the training, and when applying

both steps, matches or outperforms all the work done pre-

viously using Inception-ResNet-v2 as the encoder (EtENet-

IRv2), except when measured using the BLEU metric. In

fact, as explained by Banerjee et al. [1], BLEU is a metric

that has many weaknesses, e.g., the lack of explicit word-

matching between translation and reference.

In opposition, according to [26], CIDEr was specifically de-

signed to evaluate automatic caption generation from visual

sources, and is thus arguably more relevant. Indeed, our

proposed EtENet-IRv2 outperforms all the existing state-of-

the-art method across both datasets (see Tables 2, 3) when

performance is measured by CIDEr.

5.3. Discussion

The substantial difference between our model and the

others assessed confirms that EtENet-IRv2 succeeds in

achieving excellent results without requiring an overly com-

plex structure, e.g., the addition of new layers as in RecNet

(row 11, Table 2), or the adoption of new learning mecha-

nisms such as reinforcement learning as in PickNet (row 3,

Table 3). Moreover, this shows that it is possible to obtain

excellent results even when using roughly half the frames

used in other competing approaches [36, 33, 38, 30]. Our

framework sets a new standard in terms of top performances

in video captioning and, we believe, can much contribute

to further progress in the field. Additionally, this is done

without resorting to fancy 3D CNN architectures, thus leav-

ing huge scope for further improvements. Moreover, un-

like [38, 30, 15, 36] which all use more than 25 frames per

video clip, our model only uses 16 frames, a significant con-

tribution in terms of memory and computational cost.

The performance of EtENet-GLN, which uses

GoogLeNet as encoder, is comparable to that of all

mechanism using similar or older versions of the decoder



Model B@4 M C R-L

LSTM-YT [28] 33.3 29.1 - -

S2VT [27] - 29.8 - -

SA [36] 41.9 29.6 51.7 -

LSTM-E [15] 45.3 31.6 - -

h-RNN [37] 49.9 32.6 65.8 -

LSTM-TSA [17] 52.8 33.5 74.0 -

SCN-LSTM [6] 51.1 33.5 77.7 -

MA-LSTM [33] 52.3 33.6 70.4 -

TDDF [38] 45.8 33.3 73.0 69.7

PickNet [3] 52.3 33.3 76.5 69.6

RecNet [30] 52.3 34.1 80.3 69.8

EtENet-GLNstep1 48.2 32.0 75.1 68.9

EtENet-GLNstep2 48.9 32.4 78.0 69.4

EtENet-IRv2step1 49.1 33.6 83.5 69.5

EtENet-IRv2step2 50.0 34.3 86.6 70.2

Table 2. Comparison between our architecture (EtENet), using

both GoogLeNet (GLN) and IRv2 as the encoder, and the state-

of-the-art on the MSVD dataset.

(e.g., VGG) [28, 27, 36, 15, 37, 17, 33]. Notably, though, it

does achieve its best results in the CIDEr metric.

5.4. Impact of End-to-End Training

Importantly, for both incarnations of our architecture

(EtENet-GLN e EtENet-IRv2) end-to-end training (step 2)

positively impact the performance across the board (i.e.,

across datasets and metrics), thanks to the additional fine

tuning. Our network is able to match or outperform the

other state-of-the-art models, while very significantly out-

performing the Soft-Attention (SA) approach [36] (third

row of Table 2).

Model B@4 M C R-L

MA-LSTM [33] 36.5 26.5 41.0 59.8

TDDF [38] 37.3 27.8 43.8 59.2

PickNet [3] 41.3 27.7 44.1 59.8

RecNet [30] 39.1 26.6 42.7 59.3

EtENet-IRv2step1 40.3 27.5 46.8 60.4

EtENet-IRv2step2 40.5 27.7 47.6 60.6

Table 3. Comparison between our EtENet-IRv2 architecture and

the state-of-the-art on the MSR-VTT benchmark, using the fol-

lowing metrics: BLEU-4, METEOR, CIDEr and ROUGE-L.

5.5. Qualitative results

From a qualitative point of view, Figure 3 reports both

some positive and some negative examples. Generally, we

can notice that the increase in accuracy achieved by the two-

step training setting leads, in some cases, to a visible im-

provement of the generated sentences.

Figure 3. Qualitative results produced by EtENet-IRv2. In (A) and

(C), which show a video from MSR-VTT and one from MSVD,

respectively, it is possible to observe how end-to-end training can

dramatically improve the quality of the resulting caption. In (B) a

negative example from the MSR-VTT dataset is shown, for which

our network cannot successfully identify the ground truth.

Much more extensive quantitative results are reported in

the Supplementary Material.

6. Conclusions

In this paper, we proposed a simple end-to-end frame-

work for video-captioning. To address the problem with the

large amount of memory required to process video data for

each batch, a gradient accumulation strategy was conceived.

We proposed a training procedure articulated into two steps

to speed up the training process, and allow efficient end-

to-end training. Our evaluation on standard benchmark

datasets showed how our approach outperforms the state of

the art using all the most commonly accepted metrics.

We believe we managed to set a new baseline for future

work thanks to our principled end-to-end architecture, pro-

viding an opportunity to take research in the field forward

starting from a more efficient training framework.
Our model is not exempt from drawbacks. Training a

very deep a neural network end-to-end requires significant
computational resources. Our proposed two-stage training
process is a step towards an efficient training procedure
suited to the task. Further research directions include the
integration of a more formal treatment of language seman-
tics in the model, and spatio-temporal attention mechanisms
based on state of the art action and object tube detectors.



References

[1] S. Banerjee and A. Lavie. Meteor: An automatic metric for

mt evaluation with improved correlation with human judge-

ments. ACLworkshop, pages 358–373, 2005.

[2] D. L. Chen and W. B. Dolan. Collecting highly parallel data

for paraphrase evaluation. ACL HLT, pages 190–200, 2011.

[3] Y. Chen, S. Wang, W. Zhang, and Q. Huang. Less is more:

Picking informative frames for video captioning. ECCV,

pages 358–373, 2018.

[4] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using rnn encoder-decoder for statistical ma-

chine translation. EMNLP, 2014.

[5] H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng,

P.Dollar, J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zit-

nick, and G. Zweig. From captions to visual concepts and

back. CVPR, 2015.

[6] Z. Gan, C. Gan, X. He, Y. Pu, K. Tran, J. Gao, L. Carin,

and L. Deng. Semantic compositional networks for visual

captioning. CVPR, 2017.

[7] S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, S.

Venugopalan, R. Mooney, T. Darrell, and K. Saenko.

Youtube2text: Recognizing and describing arbitrary activ-

ities using semantic hierarchies and zero-shot recognition.

ICCV, pages 2712–2719, 2013.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016.

[9] S. Hochreiter and J. J. J. Schmidhuber. Long short-term

memory. Neural Computation, pages 1–15, 1997.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. NIPS,

2012.

[11] C. Lin. Rouge: A package for automatic evaluation of sum-

maries. ACLworkshop, 2004.

[12] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015.

[13] J. Lu, C. Xiong, D. Parikh, and R. Socher. Knowing when

to look: Adaptive attention via a visual sentinel for image

captioning. CVPR, pages 3242–3250, 2017.

[14] P. Norvig. Paradigms of Artificial Intelligence Program-

ming: Case Studies in Common Lisp, chapter 6, pages 195–

200. Morgan Kaufmann, 1992.

[15] Y. Pan, T. Mei, T. Yao, H. Li, , and Y. Rui. Jointly model-

ing embedding and translation to bridge video and language.

CVPR, pages 4594–4602, 2016.

[16] Y. Pan, Z. Qiu, T. Yao, H. Li, and T. Mei. To create what you

tell: Generating videos from captions. ACM, 2017.

[17] Y. Pan, T. Yao, H. Li, and T. Mei. Video captioning with

transferred semantic attributes. CVPR, 2017.

[18] K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a

521 method for automatic evaluation of machine translation.

ACL, pages 311–318, 2002.

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-

wards real-time object detection with region proposal net-

works. NIPS, 2015.

[20] A. Rohrbach, M. Rohrbach, W. Qiu, A. Friedrich, M. Pinkal,

and B. Schiele. Coherent multi-sentence video description

with variable level of detail. GCPR, pages 184–195, 2014.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Karpathy, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. IJCV, 2015.

[22] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. CoRR, 2014.

[23] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to se-

quence learning with neural networks. NIPS, pages 3104–

3104, 2014.

[24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. AAAI, 2017.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Go-

ing deeper with convolutions. CVPR, 2015.

[26] R. Vedantam, C. Lawrence, and D. Parikh. Cider: consensus-

535 based image description evaluation. CVPR, 2015.

[27] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T.

Darrell, and K. Saenko. Sequence to sequencevideo to text.

ICCV, pages 4534–4542, 2015.

[28] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R.

Mooney, and K. Saenko. Translating videos to natural lan-

guage using deep recurrent neural network. NAACL-HLT,

pages 1494–1504, 2015.

[29] O. Vinyals, A. Tosheva, S. Bengio, and D. Erhan. Show and

tell: Lessons learned from the 2015 mscoco image caption-

ing challenge. TPAMI, 2016.

[30] B. Wang, L. Ma, W. Zhang, and W. Liu. Reconstruction net-

work for video captioning. CVPR, pages 7622–7631, 2018.

[31] Z. Wu, T. Yao, Y. Fu, and Y. Jiang. Deep learning for video

classification and captioning. In S. Chang, editor, Frontiers

of Multimedia Research, pages 3–29. ACM Books, 2018.

[32] J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video

description dataset for bridging video and language. CVPR,

pages 5288–5296, 2016.

[33] J. Xu, T. Yao, Y. Zhang, and T. Mei. Learning multimodal

attention lstm networks for video captioning. ACM, 2017.

[34] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. ICML, 2015.

[35] R. Xu, C. Xiong, W. Chen, and J. J. Corso. Jointly model-

ing deep video and compositional text to bridge vision and

language in a unified framework. AAAI, pages 2346–2352,

2015.

[36] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,

and A. Courville. Describing videos by exploiting temporal

structure. ICCV, pages 4507–4515, 2015.

[37] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video

paragraph captioning using hierarchical recurrent neural net-

works. CVPR, pages 4584–4593, 2016.

[38] X. Zhang, K. Gao, Y. Zhang, D. Zhang, J. Li, and Q. Tian.

Task-driven dynamic fusion: Reducing ambiguity in video

description. CVPR, pages 3713–3721, 2017.


