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Abstract

Recently, three dimensional (3D) convolutional neural
networks (CNNs) have emerged as dominant methods to
capture spatiotemporal representations in videos, by adding
to pre-existing 2D CNNs a third, temporal dimension. Such
3D CNNs, however, are anti-causal (i.e., they exploit infor-
mation from both the past and the future frames to produce
feature representations, thus preventing their use in online
settings), constrain the temporal reasoning horizon to the
size of the temporal convolution kernel, and are not tem-
poral resolution-preserving for video sequence-to-sequence
modelling, as, for instance, in action detection. To address
these serious limitations, here we present a new 3D CNN
architecture' for the causal/online processing of videos.

Namely, we propose a novel Recurrent Convolutional
Network (RCN), which relies on recurrence to capture the
temporal context across frames at each network level. Our
network decomposes 3D convolutions into (1) a 2D spatial
convolution component, and (2) an additional hidden state
1 x 1 convolution, applied across time. The hidden state at
any time t is assumed to depend on the hidden state att — 1
and on the current output of the spatial convolution compo-
nent. As a result, the proposed network: (i) produces causal
outputs, (ii) provides flexible temporal reasoning, (iii) pre-
serves temporal resolution. Our experiments on the large-
scale large Kinetics and MultiThumos datasets show that
the proposed method performs comparably to anti-causal
3D CNNs, while being causal and using fewer parameters.

1. Introduction

Convolutional neural networks (CNN) are starting to de-
liver gains in action recognition from videos similar to those
previously observed in image recognition [26, 42] thanks to
new 3D CNN architectures [12, 7, 55, 51, 15, 54]. For in-
stance, Hare et al. [15] have shown that this is the case for
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Figure 1. Illustration of 3D architectures used on sequences of
input frames. (a) Standard 3D convolution, as in I3D [7] or
C3D [50]. (b) 3D convolution decomposed into a 2D spatial
convolution followed by a 1D temporal one, as in S3D [55]. In
R(2+1)D [51] the number M; of middle planes is increased to
match the number of parameters in standard 3D convolution. (c)
Our proposed decomposition of 3D convolution into 2D spatial
convolution and recurrence (in red) in the temporal direction, with
al x 1 x 1 convolution wyy as hidden state transformation.

the 3D version of residual networks (ResNets) [17]. Other
recent works [12, 55, 51] show that 3D convolutions can
be decomposed into 2D (spatial) and 1D (temporal) convo-
lutions, and that these ‘decomposed’ architectures not only
have fewer parameters to train [55], but also perform better
than standard 3D (spatiotemporal) ones.

All such 3D CNNs, however, have significant issues.
First and foremost, they are not causal [6], for they process
future frames to predict the label of the current one. Causal
inference is essential in many video understanding settings,
e.g., online action prediction [37, 45, 47], future action label
prediction [25], and future representation prediction [53].
Secondly, the size of temporal convolution needs to be spec-
ified by hand at every level of network depth, and is usu-
ally set to be equal to the spatial convolution size [7, 51, 6].
Whatever the choice, the temporal reasoning horizon or ‘re-
ceptive field’ is effectively constrained by the size of the
temporal convolution kernel(s). Varol et al. [52] have sug-
gested that using long-term temporal convolution could en-
able long-term reasoning. However, setting the size of the
convolution kernel at each level is a non-trivial task, which
requires expert knowledge and extensive cross-validation.



Lastly, 3D CNNs do not preserve temporal resolution, as
the latter drops with network depth. Preserving temporal
resolution (i.e., ensuring that a prediction is made for each
input frame), in fact, is essential when predicting, e.g., each
individual video frame label for temporal action segmenta-
tion [58, 40, 36, 5], or in video segmentation [57].

Our proposal: combining implicit and explicit tempo-
ral modelling. An alternative to the implicit modelling of
a video’s temporal characteristics via 3D CNNss is the use
of models which encode these dynamics explicitly. Hid-
den state models, such as Markov ones [4], recurrent neu-
ral networks (RNN) [21, 1], and long short-term memory
(LSTM) networks [18] can all be used to model temporal
dynamics in videos [10, 34], allowing flexible temporal rea-
soning without any need to specify a temporal window size.
In an approach which aims to combine the representation
power of explicit dynamical models with the discriminative
power of 3D networks, in this work we propose a recur-
rent alternative to 3D convolution illustrated in Figure 1(c).
In this new architecture, spatial reasoning expressed in the
form of a mapping from the input to a hidden state, is per-
formed by 2D convolution (with kernel size 1 X d x d),
whereas temporal reasoning (represented by hidden state-
to-hidden state transformations) is performed by a 1D con-
volution (with kernel size 1 x 1 x 1) taking place at every
point in time and at each level (depth-wise) of the network.
In a setting which merges the effects of both operators, the
hidden state at time ¢ (denoted by h;) is a function of the
outputs of both the spatial and the temporal (hidden) con-
volutions, with h;_; as an input. The resulting temporal
reasoning horizon is effectively unconstrained, as the hid-
den state h; is a function of the input in the interval [0, ¢].

Causality. 2D CNNs [41] are causal and preserve tempo-
ral resolution, but cannot perform temporal reasoning. Nev-
ertheless, they can be combined with LSTMs [ 18] to gener-
ate causal representations, as in [ 10, 58]. However, such 2D
CNN plus LSTM combinations perform much worse than
3D CNNs, as shown by Carreira et al. [7]. In a work related
to ours, Carreira et al. [6] have proposed to make 3D CNN5s
causal via a network which uses present and past frames for
predicting the action class of the present frame. However,
performance is observed dropping in both its sequential and
its parallel versions, as compared to the 3D CNN counter-
part [7] of the same network [6]. Our proposed method,
in opposition, solves the above-mentioned problems via a
Recurrent Convolutional Network (RCN) which explicitly
performs temporal reasoning at each level of the network by
exploiting recurrence, while maintaining temporal resolu-
tion and being causal, without any decline in performance.

Tranfer learning and initialisation. The ability of a net-
work to be conferred knowledge acquired by solving other
tasks has been proved to be crucial to performance. Fa-
mously, when Tran et al. [50] and Ji et al. [19] first pro-

posed 3D CNNss for video action recognition, their observed
performance turned out to be merely comparable to that of
2D CNNs [41], e.g., on the SportsIM dataset [23]. For
these reasons, Carreira et al. [7] have later suggested us-
ing transfer learning to boost 3D CNN performance. There,
2D CNNs are inflated into 3D ones by replacing 2D con-
volutions with 3D ones: as a result, 2D network weights as
pre-trained on ImageNet [9] can be used to initialise their
3D CNNs. This makes using the latter much more practical,
for training a full 3D CNN is a computationally expensive
task: 64 GPUs were used to train the latest state-of-the-art
3D nets [7, 51, 6], a kind of firepower not accessible to ev-
eryone. That makes ImageNet-based initialisation crucial
for speeding up the training process of parameter-heavy 3D
networks.

Our Recurrent Convolutional Network exhibits similar
performance gains when it comes to ImageNet initialisa-
tion. Interestingly, Le ef al. [27] have shown that simple
RNNs can exhibit long-term memory properties if appro-
priately initialised, even more so than LSTMs. In our work
we thus follow [27] and initialise our recurrent convolution
(kernel size N x N x 1 x 1 x 1) by the identity matrix,
where N is number of hidden state kernels.

Contributions. We present a new approach to video fea-
ture representation based on an original Recurrent Convo-
lutional Network, in which recurrent convolution replaces
temporal convolution in 3D CNNs. Our approach:

e generates output representations in a causal fashion;

e allows flexible temporal reasoning, as it exploits in-
formation coming from the entire input sequence ob-
served up to time ¢, at each level of network depth;

e is designed to directly benefit from model initialisation
via ImageNet pre-trained weights, as opposed to state-
of-the-art approaches, and in line with clear emerging
trends in the field.

In our experiments we show that our proposed RCN out-
performs baseline I3D [7] and (2+1)D [51] models, while
displaying all the above desirable properties.

2. Related Work

As mentioned in the Introduction, initial 3D CNNs mod-
els [19, 50], which promised to be able to perform spatial
and temporal reasoning in parallel but with limited suc-
cess, were improved by Carreira et al. [7] using ImageNet
based initialisation and training on the large scale Kinetics
dataset [24]. The resulting models outperformed 2D ones.
Nevertheless, 3D CNNs remain heavy, very expensive to
train, and anti-causal.

In alternative, the concept of factorising 3D convolu-
tional networks was explored by Sun et al. [48]. This in-
spired [55, 35, 51, 12] to decompose 3D convolutions into



2D (spatial) and 1D (temporal) convolutions. Recent work
by Xie et al. [55] has promised to reduce complexity (num-
ber of parameters), while making up for the lost perfor-
mance via a gating mechanism. Tran et al. [51] would keep
the number of parameters equal to that of 3D convolutions,
but boost performance by increasing the number of kernels
in the 2D layer. Varol et al. [52] have proposed the use of
long-term convolutions to capture long-range dependencies
in the data. Wang et al. [54], instead, have introduced non-
local blocks in existing 3D CNN architectures, to capture
the non-local context in both the spatial and the temporal
(present, past and future) dimensions.

The way temporal convolution is used in all the above meth-
ods is, however, inherently anti-causal. Moreover, the tem-
poral horizon is limited by the size of the temporal convo-
lution kernel or the size of the non-local step. Relevantly,
Carreira et al. [0] have proposed to address the anti-causal
nature of 3D CNNs by predicting the future and utilising
the flow of information in the network. They would train
their causal network to mimic a 3D network. The resulting
performance drop, however, is significant.

Additionally, temporal resolution is not preserved in
temporal convolutions with strides. To address the issue,
[39, 36] have used temporal deconvolution layers on top
of a C3D network [50] to produce a one-to-one mapping
from the input frames to the corresponding frame-level la-
bel predictions for temporal action detection. Here we show
that RCN preserves temporal resolution and performs better
than state-of-the-art methods [32], while being causal.

Recurrence has been used in the past to better capture
temporal information, for instance by employing LSTMs
[10, 43, 58] on top of 2D CNN features. Carreira et al. [7],
however, have shown that the joining of convolutional and
LSTM layers performs much worse than 3D CNNs.

Shi et al. [56] have proposed a convolutional LSTM (C-
LSTM) solution, in which multiple C-LSTM layers are
stacked for precipitation forecasting. Their framework,
however, requires all the parameters to be trained from
scratch, and has not been empirically compared to 3D
CNNs. In contrast, motivated by the success of transfer
learning in 3D CNNs [7], and by the reported positive effect
on RNNSs of better initialisation [27, 29], especially when
compared with more complex LSTMs, here we choose to
replace temporal convolutions with simple recurrent convo-
lutions. C-LSTM has also been applied to video recogni-
tion [28] as an attention mechanism. Its performance, how-
ever, has turned out to be much below-par when compared
with that of 2D [13] or 3D [12] CNNs. The same can be ob-
served in [3], in which convolutional gated recurrent units-
based networks cannot rival traditional 3D CNNs [50].

The use of recurrence has also been proposed for image or
video generation [22, 31, 30], scene labeling [33], scene
text recognition [38] and video representation [56]. None of

these approaches, however, have been tested on a large scale
video recognition problem. More recently, Bai et al. [2]
have shown that temporal convolutions are still better than
the above recurrence-based methods [31, 30].

In opposition to previous recurrence-based attempts [28,

, 3] we demonstrate, for the first time, that recurrent net-
works can compete with 3D CNNs while holding on to their
desirable properties such as causality, temporal flexibility,
and temporal resolution preservation. We also show that
such a performance improvement in recurrent convolutional
networks cannot be achieved without the proper initialisa-
tion, even on a large scale dataset such as Kinetics [24].

3. Baseline 3D CNNs

We first recall the two basic types of 3D CNNs that can
be built upon a 2D CNN architecture. We then use them
as baselines in our experiments, as they are currently state-
of-the-art [51, 54, 55] in video recognition. As observed in
Section 2, 3D CNNSs are far superior to recurrence-based 2D
CNN+LSTM [10, 43, 58], C-LSTM [28] or convolutional-
GRU [3] architectures. Our goal in this work is to create a
causal version of such 3D CNNs.

Layers Output Sizes
Names n, d, number of kernels ‘ 13D RCN
convl 3,7,64;stride 1,2,2 16 X 56 X 56 16 X 56 X 56
res2 [3,3,64 & 3,3,64] x 2 16 X 56 X 56 16 X 56 X 56
res3 [3,3,128 & 3,3,128] x 2 8 X 28 X 28 16 x 28 x 28
res4 [3,3,256 & 3,3,256] x 2 4x14x 14 16 x 14 x 14
res5 [3,3,512 & 3,3,512] x 2 2XT7TX7 16 X 7x7
pool spatial pooling 2x1x1 16 x 1 x1
convC classification; 1,1, C 2xC 16 x C
mean temporal pooling C C

Table 1. I3D ResNet-18 model architecture with its output sizes
vs RCN’s output sizes for input of size 16 x 112 x 112. Each
convolutional layer of the network is defined by the temporal (n)
and the spatial (d) size of the kernels and by the number of kernels.
The ConvC layer uses the number of classes as number of kernels.

Tran et al. [51]’s work is the most recent on pure 3D
CNNs, meaning that no additional operations such as gat-
ing [55] or non-local operators [54] are applied on top of a
3D CNN architecture. Following their work, we convert a
2D CNN into an inflated 3D CNN (I3D) by replacing a 2D
(d x d) convolution with a 3D (n x d x d) one, as shown
in Figure 1(a). In particular, in this work we inflate the 18-
layer ResNet [17] network into an I3D one. This is shown
in Table 1, in which each 2D convolution is inflated into a
3D convolution. As in the I3D network architecture in [7],
a convolutional layer is used for classification in place of
the fully connected layer used in [51, 54]. A convolutional
classification layer allows us to evaluate the model on se-
quences of arbitrary length at test time.
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Figure 2. An unrolled Recurrent Convolutional Network (RCN)
composed by a single RCU layer followed by a batch normlisation
(BN) layer, a ReLU activation layer, and a final convolutional layer
used for classification.

As an additional baseline we also implement a (2+1)D [51]
model, by replacing every 3D layer in Table 1 with a decom-
posed version, as shown in Figure 1(b). Namely, we decom-
pose the original (n X d x d) convolution into a (1 X d X d)
spatial convolution and a (n x 1 x 1) temporal convolution.
Similarly to [51], n is set equal to d.

4. Recurrent Convolutional 3D Network

We are now ready to describe the architecture of our Re-
current Convolutional (3D) Network (RCN) and its proper-
ties in detail. Firstly, we show how Recurrent Convolutional
Units (RCUs) (§ 4.1) are used to replace every 3D convolu-
tions in the 13D network (§ 3), resulting in our RCN model
(§ 4.2). Next, we show how RCUs preserve temporal reso-
lution in § 4.3. In § 4.4 we show how our network behaves
causally. Lastly, in § 4.5 and § 4.6, we illustrate the initiali-
sation process for RCN and RCU.

4.1. Recurrent Convolutional Unit

A pictorial illustration of our proposed Recurrent Con-
volutional Unit (RCU) is given in Figure 1(c). At any time
instant ¢ 3D spatial convolution (with kernel of size 1 xd xd,
denoted by w,,) is applied to the input. The result is added
to the output of a recurrent convolution operation, with ker-
nel denoted by wy,,, of size 1 x 1 x 1.

The result is termed the hidden state h; of the unit. Analyti-
cally, a recurrent convolutional unit can be described by the
following relation:

h(t) = hi—1 % Whp + T¢ * Wap, (D

where wp;, and w,j are parameters of the RCU, and * de-
notes the convolution operator.

4.2. Unrolling a Recurrent Convolutional Network

Figure 2 represents a simple recurrent convolutional net-
work composed by a single RCU unit, unrolled up to time

t. At each time step ¢, an input x; is processed by the RCU
and the other layers to produce an output y;.

The unrolling principle allows us to build an RCN from
2D/3D networks, e.g., by replacing 3D convolutions with
RCUs in any I3D network. Indeed, the network architec-
ture of our proposed model builds on the I3D network ar-
chitecture shown in Table 1, where the same parameters (d,
number of kernels) used for 3D convolutions are used for
our RCU. Unlike I3D, however, our RCN does not require
a temporal convolution size n (cfr. Table 1) as a parameter.
As in 2D or I3D ResNet models [17, 51, 15], our proposed
RCN also has residual connections. The hidden state h; at
time ¢ is considered to be the output at that time instant — as
such, it acts as input to next hidden state and to the whole
next depth-level layer. Table | describes the network archi-
tecture of ResNet-18 [17] with 18 layers. Similarly, we can
build upon other variants of ResNet.

4.3. Temporal Resolution Preservation

The output sizes for both I3D and our proposed RCN are
shown in Table 1. Our RCN only uses spatial pooling and a
convolutional layer for classification, unlike the spatiotem-
poral pooling of [7, 54, 51]. It can be seen from Table 1
that, unlike 13D, RCN produces classification score vectors
of size 16 in response to an input sequence of length 16.
This one-to-one mapping from input to output is essen-
tial in many tasks, ranging from temporal action segmen-
tation [39, 36], to temporal action detection [44], to action
tube detection [45]. In all such cases video-level accuracy is
not enough, but we need frame-level results in terms, e.g., of
detection bounding boxes and class scores. Temporal con-
volution behaves in a similar way to spatial convolution: it
results in lower resolution feature maps as compared to the
input as the depth of the network increases.

Unlike the temporal deconvolution proposed in [39, 36],
our RCN inherently addresses this problem (see Table 1).
For a fair comparison, in our tests we adjusted our base-
line I3D model for dense prediction, by setting the tempo-
ral stride to 1 (§ 5.4). The resulting I3D model can produce
dense predictions: given T frames as input, it will generate
T predictions in 1-1 correspondence with the input frames.

4.4. Causality and Long-Term Dependencies

A size-n temporal convolution operation uses a sequence
Tt—n /2y ooy Tty ooy Tt /2 @S input to generate an output y,
at time t. In our Recurrent Convolutional Network, instead,
y; is a function of only the inputs zg, 1, ..., z; from the
present and the past (up to the initial time step), as shown
in Figure 2. Its independence from future inputs makes the
output y; at time ¢ causal. Thus RCN, as presented here, is
not only causal but poses no constraints on the modelling of
temporal dependencies (as opposed to an upper bound of n
in the case of temporal convolutions). Temporal dependen-



cies are only limited by the input sequence length at training
time.

As in traditional RNNs, we have the option to unroll the
same network to model arbitrary input sequence lengths at
test time, thus further extending the temporal horizon being
modelled, and show a substantial gain in performance.

4.5. ImageNet Initialisation for the 2D Layers

The I3D model proposed by Carreira et al. [7] greatly
owes its success to a good initialisation from 2D models
trained on ImageNet [9]. By inflating these 2D models,
we can benefit from their ImageNet pre-trained weights,
as in most state-of-the-art 3D models [7, 55, 54]. We fol-
low the same principle and initialise all 2D layers using the
weights of available pre-trained 2D ResNet models [17]. Tt
is noteworthy that the other state-of-the-art (2+1)D model
by Tran et al. [51] cannot, instead, exploit ImageNet initial-
isation, because of the change in the number of kernels.

4.6. Identity Initialisation for the Hidden Layers

The presence of a hidden state convolution layer (wp,p,,
see Figure 2) at every depth level of the unrolled network
makes initialisation a tricky issue. A random initialisation
of the hidden state convolution component could destabilise
the norm of the feature space between two 2D layers. In
response to a similar issue, Le et al. [27] have proposed a
simple way to initialise RNNs when used with ReLU [14]
activation functions. Most state-of-the-art 2D models [17,

] make indeed use of ReLLU as the activation function of
choice, for fast and optimal convergence [4].

Following the example of Le et al. [27] and others [29,

], we initialise the weights of the hidden state convolu-
tion kernel (wpy) with the identity matrix. Identity matrix
initialisation is shown [27, 29] to capture longer term de-
pendencies. It also helps inducing forgetting capabilities in
recurrent models, unlike traditional RNNs.

5. Experiments

In this section, we evaluate our RCN on the challenging
Kinetics [24] and Multithumos [58] datasets to answer the
following questions: i) How does our training setup, which
uses 4 GPUs, compare with the 64 GPU training setup of
[50] (Section 5.2)? ii) How do recurrent convolutions com-
pare against 3D convolutions in the action recognition prob-
lem (§ 5.3)? iii) How does our RCN help solving the dense
prediction task associated with action detection (§ 5.4)? Fi-
nally, iv) we validate our claims on the temporal causality
and flexibility of RCN, and check whether those features
help with longer-term temporal reasoning (§ 5.5).

The Kinetics dataset comprises 400 classes and 260K
videos; each video contains a single atomic action. Ki-
netics has become a de facto benchmark for recent action

Network #Params  Initialisation Clip %  Video %
I3D[15] 33.4M random - 54.2
13D [51] 33.4M random 49.4 61.8
2+1)D [51] 33.3M random 52.8 64.8
13Df 33.4M random 49.7 62.3
RCN [ours] 12.8M random 51.0 63.8
+1)Df 33.4M random 51.9 64.8
3Df 33.4M ImageNet 51.6 64.4
RCN [ours]t  12.8M ImageNet 53.4 65.6

T trained with our implementation and training setup.
Table 2. Clip-level and video-level action recognition accuracy on

the validation set of the Kinetics dataset for different ResNet18
based models, trained using 8-frame-long clips as input.

recognition works [6, 55, 51, 7, 54]. The average duration
of a video clip in Kinetics is 10 seconds. The MultiThu-
mos|[58] dataset is a multilabel extension of THUMOS[20].
It features 65 classes and 400 videos, with a total duration
of 30 hours. On average, it provides 1.5 labels per frame,
10.5 action classes per video. Videos are densely labeled,
as opposed to those in THUMOS [20] or ActivityNet [5].
MultiThumos allows us to show the dense prediction capa-
bilities of RCN on long, real-world videos.

5.1. Implementation Details

In all our experiments we used sequences of RGB frames
as input for simplicity and computational reasons. We used
a batch size of 64 when training ResNetl8-based models
and 32 for models based on ResNet-34 and -50. The ini-
tial learning rate was set to 0.01 for batches of 64, and to
0.005 for batches of 32. We reduced the learning rate by a
factor of 10 after both 250K and 350K iterations. More-
over, training was stopped after 400K iterations (number of
batches). We used standard data augmentation techniques,
such as random crop, horizontal flip with 50% probability,
and temporal jittering. More details about training parame-
ters are provided in the supplementary material.

GPU memory consumption plays a crucial role in the de-
sign of neural network architectures. In our training pro-
cesses, a maximum of 4 GPUs was used. Given our GPU
memory and computational constraints, we only considered
training networks with 8-frame long input clips, except for
ResNet34 which was trained with 16 frames long clips.

Evaluation: For fair comparison, we computed clip-level
and video-level accuracy in the way described in [51, 54].
Ten regularly sampled clips were evaluated per video, and
scores were averaged for video-level classification. On
videos of arbitrary length we averaged all the predictions
made by the unrolled versions of both our RCN and of I3D.

5.2. Fair Training Setup

As explained above, we have GPU memory constrained,
we will report results of previous basic 3D models [51, 7]
re-implemented and trained by using the same amount of



Model Clip-length  Initialisation ~ Acc%
ResNet34-(2+1)D [51]F 16 random 67.8
ResNet34-13D [7] i 16 ImageNet 68.2
ResNet34-RCN [ours]*T 16 ImageNet 70.3
ResNet50-13D [7] t 8 ImageNet 70.0
ResNet50-RCN [ours]* T 8 ImageNet 71.2
ResNet50-RCN-unrolled [ours]*T 8 ImageNet 72.1

* causal model; T trained with our implementation and training setup.

Table 3. Video-level action classification accuracy of different
models on the validation set of the Kinetics dataset.

resources as our RCN. The main hyperparameters involved
in the training of a 3D network are learning rate, batch size,
and the number of iterations. These parameters are inter-
dependent, and their optimal setting depends on the com-
putational power at disposal. For instance, Tran ez al. [51]
would use 64 GPUs, with the training process distributed
across multiple machines. In such a case, when vast com-
putational resources are available[51, 7, 6], training takes
10-15 hours [51], allowing for time to identify the optimal
parameters. The availability of such computational power,
however, is scarce.

In a bid to reproduce the training setup of [51] on 4
GPUs, we re-implemented the I3D and (2+1)D models us-
ing ResNet18 and ResNet34 as a backbone. The ResNet18-
I3D architecture is described in Table 1. Based on the latter,
we built a (2+1)D [51] architecture in which we matched
the number of parameters of separated convolutions to that
of standard 3D convolutions, as explained in [51].

The results of the I3D and (2+1)D implementations re-
ported in Tran et al. [51] are shown in the top half of Ta-
ble 2. When comparing them with our implementations of
the same networks in the bottom half, it is clear that our
training is as performing as that of Tran et al. [51]. This
allows a fair comparison of our results.

Why smaller clips as input: training a ResNetl8-based
model on Kinetics with 8 frame clips as input takes up to
2-3 days on 4 GPUs. Training a ResNet50-based model
would take up to 4-5 days. In principle, one could train the
same model for longer input clip sizes, but the amount of
GPU memory and time required to train would grow lin-
early. As an estimate, it would take more than two weeks
to train a ResNet50 model on 64 long frame clips, assum-
ing that all the hyperparameters are known (i.e., batch size,
learning rate, step size for learning rate drop, and whether
batch normalisation layers should be frozen or not).

For these reasons we stick to smaller input clips to train
our models in a fair comparison setting, using the hyperpa-
rameter values from § 5.1.

5.3. Results on Action Recognition

We compared our RCN with both I3D and (2+1)D
models in the action recognition problem on the Kinet-
ics dataset. A fair comparison is shown in Table 2 with

ResNet18 as backbone architecture. Table 3 shows the re-
sults with ResNet34 and ResNet50 as backbone, trained on
16 frame and 8 frame clips, respectively. It is clear from
these figures that RCN significantly outperforms state-of-
the-art 3D networks — e.g. our network outperforms the
equivalent I3D network by more than 2% across the board.
The ability to model long-term temporal reasoning of
RCN is attested by the performance of the unrolled ver-
sion (last row of Table 3). It shows that, even though the
network is trained on input clip of 8 frames, it can reason
over longer temporal horizons at test time. The correspond-
ing unrolled I3D version (the last classification layer is also
convolutional, see Table 1) showed no substantial improve-
ment in performance — in fact, a slight drop.

Comparison with I3D variants: the main variants of
the I3D model are separated 3D convolutions with gating
(S3Dg) [55] and with non-local operators (NL) [54]. We
think it appropriate to take a closer look at these variants of
I3D as they provide state-of-the-art performance, albeit be-
ing all anti-causal. In [55, 54] the application of non-local
or gating operations to I3D yields the best performances to
date, mainly thanks to training on longer clips given a large
amount of GPU memory at their disposal (S3Dg [55] mod-
els are trained using 56 GPUs, [54] uses 8 GPUs with 16GB
memory each). The best version of I3D-NL achieves an ac-
curacy of 77.7%, but uses 128 frames and ResNetl101 as
backbone network; hence we do not deem fair to compare
it with our models (which only use 8 frame long clips). It
would take almost a month to train such a network using 4
GPUs. What needs to be stressed is that gating and NL op-
erations are not at all constrained to be applied on top of I3D
or S3D models: indeed, they can also be used in conjunc-
tion with (2+1)D and our own RCN model. As in this work
we focus on comparing our network with other 3D models,
we chose I3D and (2+1)D as baselines (Sec. 5.3). Please
refer to the supplementary material for more discussion.
We tried training on longer sequences (32 frames) by re-
ducing the batch size to 8 with Resnet50 as base network.
Despite a sub-optimal training procedure, RCN was ob-
served to still outperform I3D by a margin of 1.5%. A closer
to optimal training procedure with Resnet50 (asin [51, 54]),
is very likely to yield even better results.

5.4. Results on Temporal Action Detection

We also evaluate our model on the temporal action de-
tection problem on the MultiThumos [58] dataset. The lat-
ter is a dense label prediction task. As a baseline, we use a
temporal resolution-preserving version of I3D introduced in
Section 4.3. ResNet50 is employed as a backbone for both
our RCN and the baseline I3D. To capture the longer du-
ration, we use 16 frame clips as input; the sampling period
is 4 frames. Both networks are initialised with the respec-
tive models pretrained on Kinetics. The initial learning rate



Network Input mAP@1 % mAP@8 %
Two-stream+LSTM [58]* RGB+FLOW 28.1 -
MultiLSTM [58]* RGB+FLOW 29.7 -
Inception-13D by [32] RGB+FLOW - 30.1
Inception-I3D + SE [32] RGB+FLOW - 36.2
ResNetS0-13D [baseline] RGB 34.8 36.9
ResNet50-RCN [ours]* RGB 353 37.3
ResNet50-RCN-unrolled [ours]* RGB 36.2 38.3

* causal model

Table 4. Action detection/segmentation results on Multithumos
dataset, mAP computed from dense prediction at every frame
(mAP@1) and every 8th frame (mAP@8).

is set to 0.001 and dropped after 14K iterations, a batch
size of 16 is used, and trained up to 20K iterations. Similar
to [32], we use binary cross-entropy as loss function.

We use the evaluation setup of [58] and [32], and
computed both frame-wise mean Average Precision at 1
(mAP@1) (multi-label prediction on each frame) and [32]
mAP@8 (every 8th frame). Table 4 shows the performance
of our models along with that of other state-of-the-art meth-
ods. Two LSTM-based causal models presented by [58] are
shown in rows 1 and 2. Piergiovanni et al. [32] use pre-
trained I3D [7] to compute features, but do not train 13D
end-to-end, hence their performance is lower than in our
version of I3D. Our RCN outperforms all other methods,
including anti-causal I3D+Super-Events (SE) [32] and the
I3D baseline. It is safe to say that RCN is well applicable to
dense prediction tasks as well.

5.5. Causality and Temporal Reasoning

A comparison with other causal methods is a must, as
we claim the causal nature of the network to be the main
contributions of our work, making RCN best suited to on-
line applications such as action detection and prediction. In
Section 5.4 we have already shown that our model excels in
the task of temporal action detection.

Carreira et al. [6] proposed two causal variants of the I3D
network. Their sequential version of I3D, however, shows
a slight drop [6] in performance as compared to I3D. Their
parallel version is much faster than the sequential one but
suffers from an even more significant performance decline
71.8% to 54.5% [0].

In contrast, our causal/online model not only outper-
forms other causal models (see Table 4) but beats as well
strong, inherently anti-causal state-of-the-art 3D networks
on a large scale dataset such as Kinetics (see Table 3).

In addition, as in [37, 45], we can use the early action pre-
diction task to evaluate the sequential temporal reasoning
of RCN. The task consists in guessing the label of an entire
action instance (or video, if containing a single action) af-
ter observing just a fraction of video frames. Accumulated
output scores up to time ¢ are used to predict the label of
the entire video. Figure 3(a) shows that our RCN improves
drastically as more video frames are observed when com-
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Figure 3. (a) Online/early action prediction task: accumulated
scores are used to compute the video accuracy as a function of
the video observation percentage. (b) relative accuracy of each of
10 regularly sampled segments.
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Figure 4. (a) Mean and standard deviation (Std) of all the entries of
the weight matrices (wpp) of the hidden state at every RCU layer
of RCN, as well as those of just the diagonal elements. (b) Mean
and Std of the eigenvalues of the hidden state weight matrices at
every RCU layer of a 18-layer RCN.

pared to I3D. It indicates that RCN has superior anticipation
ability, albeit starting slowly in first 10% of the video.

Furthermore, to provide useful cues about casuality and
temporal reasoning, we designed an original segment-level
classification evaluation setting. Namely, the outputs of
the models being tested are divided into ten regularly sam-
pled segments and the difference between the accuracy for
each segment and that for the first segment is computed,
as shown in Figure 3(b). Within this setting, we compared
the I3D baseline with RCN in two different modalities, one
considering clip-wise outputs in a sliding window fashion,
the other obtained by unrolling both I3D and RCN over test
videos of arbitrary length.

Notably, middle segments provide the best relative im-
provement, which is reasonable as it indicates that the mid-
dle part of the video is the most informative. Secondly, the
last segment (no. 10) has the lowest relative accuracy of
all, except for RCN-unrolled. The relative accuracy of a
pure causal system, though, should improve monotonically,
i.e., exploit all it has seen. Instead, all compared models
end up at the same performance they started with, except
for unrolled RCN for which the final accuracy is almost 5%
higher than the initial one. We can conclude that unrolled
RCN has a longer-term memory than unrolled 13D or both
sliding window-based I3D/RCN.

Evolution of Recurrence with Network Depth is another
aspect that can provide clues about RCN’s temporal flex-
ibility. To this purpose, we examine the statistics of the



weight matrices (wy,;,) associated with the hidden state at
every RCU layer in the RCN network. In Figure 4(a) we can
see that the mean of the diagonal elements of the weight ma-
trices increases and their standard deviation decreases with
the depth of the network. This means that the wy; matrix
becomes sparser as network depth grows. In our view, this
phenomenon is associated with RCN putting more focus on
feature learning in the early part of the network, and em-
phasising temporal reasoning at later depths as the tempo-
ral reasoning horizon (‘receptive field’) increases. In other
words, RCN learns to select the layers which should con-
tribute towards temporal reasoning automatically.

Arjovsky [1] argue that if the eigenvalues of the recur-
rent layer’s weight matrix diverge from value 1, optimisa-
tion becomes difficult due to the vanishing gradient prob-
lem. Chang et al. [8] explore a similar idea. Taking an or-
dinary differential equation view of RNNs, they argue that
their stability for long-term memory is related to the eigen-
values of the weight matrices. Figure 4(b) shows that in
RCN the mean eigenvalue does rise towards 1 as network
depth increases, suggesting that later layers are more stable
in terms of long-term memory whereas earlier layers are not
concerned with long-term reasoning.

5.6. Discussion

In the light of RCN’s superior results on temporal action
detection (§ 5.4), early action prediction (see Figure 3(a)),
long-term temporal reasoning (in its unrolled incarnation)
at segment-level and for action recognition (§ 5.3, see the
last row of Table 3), it is fair to say that the proposed Recur-
rent Convolutional Network is the best performing causal
network out there. An even more in-depth analysis of this
fact is conducted in the supplementary material.
Layer-wise design: we tried replacing 3D CONV by RCU
(1) only in the last four layers, and (ii) on four regularly
sampled layers of Resnet50. This led to lower performance
(69% and 68% respectively), compared to 71% when RCU
replaces all 18 3D CONVs. This is consistent with previous
findings [54, 55].

The number of parameters in our proposed RCN model
is 12.8 million (M), as opposed to 33.4M in both the 13D
and (2+1)D models, see Table 2. It is remarkable to see
that, despite a 2.6 times reduction in the number of param-
eters, RCN still outperforms both I3D and (2+1)D when
trained using ImageNet initialisation. Further, RCN sur-
passes I3D also under random initialisation, while using 2.6
times fewer model parameters. We measured the floating-
point operations (FLOPs) for I3D, R(2+1)D, and RCN,
recording 41MMac, 120MMac, and 54MMac, respectively.
Thus, RCN requires half the FLOPs as compared to (2+1)D,
and is comparable to I3D because RCN preserves temporal
resolution. We computed the average time taken to process
ten-second long videos of the Kinetics dataset. This takes

Wgp init  wpp init  Clip-Acc%  Video-Acc%
Random Random 49.3 61.4
Random Identity 49.8 62.1
ImageNet  Random 50.5 62.8
ImageNet  Identity 534 65.6

Table 5. Video-level and clip-level action recognition accuracy on
the Kinetics validation set for different initilisation of 2D layer
(wgp) and recurrent convolution’s weights (wpp) in RCU.

0.4s, 0.8s, and 0.9s for I3D, RCN, and (2+1)D respectively.
Effect of weight initialisation. The weights of the 2D lay-
ers (wgp,) in the RCU modules (§ 4.1) of our RCN networks
are initialised using weights from a pre-trained ImageNet
model, trained on RGB images. As for the RCU recur-
rent convolution (wpp, § 4.1), random initialisation resulted
in suboptimal training. Thus, in all our experiments with
RCN, we adopted identity matrix initialisation instead.
Table 5 shows the results of training RCN with different ini-
tialisation strategies for both recurrent convolution wy,;, and
spatial convolution wyy,. In the first row, both w,; and wyy,
for all the RCUs in RCN are initialised randomly, using the
standard initialisation process described in [16]. From the
last row, it is clear that RCN performs best if w,; and wpyp
are initialised using ImageNet pre-trained weights and the
identity matrix, respectively. Notably, the performance dif-
ference is relatively small in the first three rows of that table,
when compared to the dramatic jump of the last row. This
proves our point, supported by other recurrence based meth-
ods, that initialisation is important for recurrent convolution
to be able to compete with temporal convolutions.

6. Conclusions

In this work, we presented a recurrence-based convolu-
tional network (RCN) able to generate causal spatiotempo-
ral representations by converting 3D CNNs into causal 3D
CNNs, while using 2.6 times fewer parameters compared to
its traditional 3D counterparts. RCN can model long-term
temporal dependencies without the need to specify temporal
extents. The proposed RCN is not only causal in nature and
temporal resolution-preserving, but was also shown to out-
perform the main baseline 3D CNNss in all the fair compar-
isons we ran. We showed that ImageNet-based initialisation
is at the heart of the success of 3D CNNs. Although RCN
is recurrent in nature, it can still utilise the weights of a pre-
trained 2D network for initialisation. Recurrent convolu-
tion also needs to be carefully initialised to make recurrence
competitive with temporal convolution. The causal nature
of our recurrent 3D convolutional network opens up man-
ifold research directions, (including its combination with
non-local or gating methods), with direct and promising po-
tential applications to areas such as online action detection
and future prediction.
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