
Recurrent Convolutions for Causal 3D CNNs

Gurkirt Singh Fabio Cuzzolin

Visual Artificial Intelligence Laboratory (VAIL), Oxford Brookes University

gurkirt.singh-2015@brookes.ac.uk

Abstract

Recently, three dimensional (3D) convolutional neural

networks (CNNs) have emerged as dominant methods to

capture spatiotemporal representations in videos, by adding

to pre-existing 2D CNNs a third, temporal dimension. Such

3D CNNs, however, are anti-causal (i.e., they exploit infor-

mation from both the past and the future frames to produce

feature representations, thus preventing their use in online

settings), constrain the temporal reasoning horizon to the

size of the temporal convolution kernel, and are not tem-

poral resolution-preserving for video sequence-to-sequence

modelling, as, for instance, in action detection. To address

these serious limitations, here we present a new 3D CNN

architecture1 for the causal/online processing of videos.

Namely, we propose a novel Recurrent Convolutional

Network (RCN), which relies on recurrence to capture the

temporal context across frames at each network level. Our

network decomposes 3D convolutions into (1) a 2D spatial

convolution component, and (2) an additional hidden state

1× 1 convolution, applied across time. The hidden state at

any time t is assumed to depend on the hidden state at t− 1
and on the current output of the spatial convolution compo-

nent. As a result, the proposed network: (i) produces causal

outputs, (ii) provides flexible temporal reasoning, (iii) pre-

serves temporal resolution. Our experiments on the large-

scale large Kinetics and MultiThumos datasets show that

the proposed method performs comparably to anti-causal

3D CNNs, while being causal and using fewer parameters.

1. Introduction

Convolutional neural networks (CNN) are starting to de-

liver gains in action recognition from videos similar to those

previously observed in image recognition [26, 42] thanks to

new 3D CNN architectures [12, 7, 55, 51, 15, 54]. For in-

stance, Hare et al. [15] have shown that this is the case for

1This work is partly supported by the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 779813

(SARAS).

Figure 1. Illustration of 3D architectures used on sequences of

input frames. (a) Standard 3D convolution, as in I3D [7] or

C3D [50]. (b) 3D convolution decomposed into a 2D spatial

convolution followed by a 1D temporal one, as in S3D [55]. In

R(2+1)D [51] the number Mi of middle planes is increased to

match the number of parameters in standard 3D convolution. (c)

Our proposed decomposition of 3D convolution into 2D spatial

convolution and recurrence (in red) in the temporal direction, with

a 1× 1× 1 convolution whh as hidden state transformation.

the 3D version of residual networks (ResNets) [17]. Other

recent works [12, 55, 51] show that 3D convolutions can

be decomposed into 2D (spatial) and 1D (temporal) convo-

lutions, and that these ‘decomposed’ architectures not only

have fewer parameters to train [55], but also perform better

than standard 3D (spatiotemporal) ones.

All such 3D CNNs, however, have significant issues.

First and foremost, they are not causal [6], for they process

future frames to predict the label of the current one. Causal

inference is essential in many video understanding settings,

e.g., online action prediction [37, 45, 47], future action label

prediction [25], and future representation prediction [53].

Secondly, the size of temporal convolution needs to be spec-

ified by hand at every level of network depth, and is usu-

ally set to be equal to the spatial convolution size [7, 51, 6].

Whatever the choice, the temporal reasoning horizon or ‘re-

ceptive field’ is effectively constrained by the size of the

temporal convolution kernel(s). Varol et al. [52] have sug-

gested that using long-term temporal convolution could en-

able long-term reasoning. However, setting the size of the

convolution kernel at each level is a non-trivial task, which

requires expert knowledge and extensive cross-validation.



Lastly, 3D CNNs do not preserve temporal resolution, as

the latter drops with network depth. Preserving temporal

resolution (i.e., ensuring that a prediction is made for each

input frame), in fact, is essential when predicting, e.g., each

individual video frame label for temporal action segmenta-

tion [58, 40, 36, 5], or in video segmentation [57].

Our proposal: combining implicit and explicit tempo-

ral modelling. An alternative to the implicit modelling of

a video’s temporal characteristics via 3D CNNs is the use

of models which encode these dynamics explicitly. Hid-

den state models, such as Markov ones [4], recurrent neu-

ral networks (RNN) [21, 11], and long short-term memory

(LSTM) networks [18] can all be used to model temporal

dynamics in videos [10, 34], allowing flexible temporal rea-

soning without any need to specify a temporal window size.

In an approach which aims to combine the representation

power of explicit dynamical models with the discriminative

power of 3D networks, in this work we propose a recur-

rent alternative to 3D convolution illustrated in Figure 1(c).

In this new architecture, spatial reasoning expressed in the

form of a mapping from the input to a hidden state, is per-

formed by 2D convolution (with kernel size 1 × d × d),

whereas temporal reasoning (represented by hidden state-

to-hidden state transformations) is performed by a 1D con-

volution (with kernel size 1 × 1 × 1) taking place at every

point in time and at each level (depth-wise) of the network.

In a setting which merges the effects of both operators, the

hidden state at time t (denoted by ht) is a function of the

outputs of both the spatial and the temporal (hidden) con-

volutions, with ht−1 as an input. The resulting temporal

reasoning horizon is effectively unconstrained, as the hid-

den state ht is a function of the input in the interval [0, t].

Causality. 2D CNNs [41] are causal and preserve tempo-

ral resolution, but cannot perform temporal reasoning. Nev-

ertheless, they can be combined with LSTMs [18] to gener-

ate causal representations, as in [10, 58]. However, such 2D

CNN plus LSTM combinations perform much worse than

3D CNNs, as shown by Carreira et al. [7]. In a work related

to ours, Carreira et al. [6] have proposed to make 3D CNNs

causal via a network which uses present and past frames for

predicting the action class of the present frame. However,

performance is observed dropping in both its sequential and

its parallel versions, as compared to the 3D CNN counter-

part [7] of the same network [6]. Our proposed method,

in opposition, solves the above-mentioned problems via a

Recurrent Convolutional Network (RCN) which explicitly

performs temporal reasoning at each level of the network by

exploiting recurrence, while maintaining temporal resolu-

tion and being causal, without any decline in performance.

Tranfer learning and initialisation. The ability of a net-

work to be conferred knowledge acquired by solving other

tasks has been proved to be crucial to performance. Fa-

mously, when Tran et al. [50] and Ji et al. [19] first pro-

posed 3D CNNs for video action recognition, their observed

performance turned out to be merely comparable to that of

2D CNNs [41], e.g., on the Sports1M dataset [23]. For

these reasons, Carreira et al. [7] have later suggested us-

ing transfer learning to boost 3D CNN performance. There,

2D CNNs are inflated into 3D ones by replacing 2D con-

volutions with 3D ones: as a result, 2D network weights as

pre-trained on ImageNet [9] can be used to initialise their

3D CNNs. This makes using the latter much more practical,

for training a full 3D CNN is a computationally expensive

task: 64 GPUs were used to train the latest state-of-the-art

3D nets [7, 51, 6], a kind of firepower not accessible to ev-

eryone. That makes ImageNet-based initialisation crucial

for speeding up the training process of parameter-heavy 3D

networks.

Our Recurrent Convolutional Network exhibits similar

performance gains when it comes to ImageNet initialisa-

tion. Interestingly, Le et al. [27] have shown that simple

RNNs can exhibit long-term memory properties if appro-

priately initialised, even more so than LSTMs. In our work

we thus follow [27] and initialise our recurrent convolution

(kernel size N × N × 1 × 1 × 1) by the identity matrix,

where N is number of hidden state kernels.

Contributions. We present a new approach to video fea-

ture representation based on an original Recurrent Convo-

lutional Network, in which recurrent convolution replaces

temporal convolution in 3D CNNs. Our approach:

• generates output representations in a causal fashion;

• allows flexible temporal reasoning, as it exploits in-

formation coming from the entire input sequence ob-

served up to time t, at each level of network depth;

• is designed to directly benefit from model initialisation

via ImageNet pre-trained weights, as opposed to state-

of-the-art approaches, and in line with clear emerging

trends in the field.

In our experiments we show that our proposed RCN out-

performs baseline I3D [7] and (2+1)D [51] models, while

displaying all the above desirable properties.

2. Related Work

As mentioned in the Introduction, initial 3D CNNs mod-

els [19, 50], which promised to be able to perform spatial

and temporal reasoning in parallel but with limited suc-

cess, were improved by Carreira et al. [7] using ImageNet

based initialisation and training on the large scale Kinetics

dataset [24]. The resulting models outperformed 2D ones.

Nevertheless, 3D CNNs remain heavy, very expensive to

train, and anti-causal.

In alternative, the concept of factorising 3D convolu-

tional networks was explored by Sun et al. [48]. This in-

spired [55, 35, 51, 12] to decompose 3D convolutions into



2D (spatial) and 1D (temporal) convolutions. Recent work

by Xie et al. [55] has promised to reduce complexity (num-

ber of parameters), while making up for the lost perfor-

mance via a gating mechanism. Tran et al. [51] would keep

the number of parameters equal to that of 3D convolutions,

but boost performance by increasing the number of kernels

in the 2D layer. Varol et al. [52] have proposed the use of

long-term convolutions to capture long-range dependencies

in the data. Wang et al. [54], instead, have introduced non-

local blocks in existing 3D CNN architectures, to capture

the non-local context in both the spatial and the temporal

(present, past and future) dimensions.

The way temporal convolution is used in all the above meth-

ods is, however, inherently anti-causal. Moreover, the tem-

poral horizon is limited by the size of the temporal convo-

lution kernel or the size of the non-local step. Relevantly,

Carreira et al. [6] have proposed to address the anti-causal

nature of 3D CNNs by predicting the future and utilising

the flow of information in the network. They would train

their causal network to mimic a 3D network. The resulting

performance drop, however, is significant.

Additionally, temporal resolution is not preserved in

temporal convolutions with strides. To address the issue,

[39, 36] have used temporal deconvolution layers on top

of a C3D network [50] to produce a one-to-one mapping

from the input frames to the corresponding frame-level la-

bel predictions for temporal action detection. Here we show

that RCN preserves temporal resolution and performs better

than state-of-the-art methods [32], while being causal.

Recurrence has been used in the past to better capture

temporal information, for instance by employing LSTMs

[10, 43, 58] on top of 2D CNN features. Carreira et al. [7],

however, have shown that the joining of convolutional and

LSTM layers performs much worse than 3D CNNs.

Shi et al. [56] have proposed a convolutional LSTM (C-

LSTM) solution, in which multiple C-LSTM layers are

stacked for precipitation forecasting. Their framework,

however, requires all the parameters to be trained from

scratch, and has not been empirically compared to 3D

CNNs. In contrast, motivated by the success of transfer

learning in 3D CNNs [7], and by the reported positive effect

on RNNs of better initialisation [27, 29], especially when

compared with more complex LSTMs, here we choose to

replace temporal convolutions with simple recurrent convo-

lutions. C-LSTM has also been applied to video recogni-

tion [28] as an attention mechanism. Its performance, how-

ever, has turned out to be much below-par when compared

with that of 2D [13] or 3D [12] CNNs. The same can be ob-

served in [3], in which convolutional gated recurrent units-

based networks cannot rival traditional 3D CNNs [50].

The use of recurrence has also been proposed for image or

video generation [22, 31, 30], scene labeling [33], scene

text recognition [38] and video representation [56]. None of

these approaches, however, have been tested on a large scale

video recognition problem. More recently, Bai et al. [2]

have shown that temporal convolutions are still better than

the above recurrence-based methods [31, 30].

In opposition to previous recurrence-based attempts [28,

30, 3] we demonstrate, for the first time, that recurrent net-

works can compete with 3D CNNs while holding on to their

desirable properties such as causality, temporal flexibility,

and temporal resolution preservation. We also show that

such a performance improvement in recurrent convolutional

networks cannot be achieved without the proper initialisa-

tion, even on a large scale dataset such as Kinetics [24].

3. Baseline 3D CNNs

We first recall the two basic types of 3D CNNs that can

be built upon a 2D CNN architecture. We then use them

as baselines in our experiments, as they are currently state-

of-the-art [51, 54, 55] in video recognition. As observed in

Section 2, 3D CNNs are far superior to recurrence-based 2D

CNN+LSTM [10, 43, 58], C-LSTM [28] or convolutional-

GRU [3] architectures. Our goal in this work is to create a

causal version of such 3D CNNs.

Layers Output Sizes

Names n, d, number of kernels I3D RCN

conv1 3, 7, 64; stride 1, 2, 2 16× 56× 56 16× 56× 56
res2 [3, 3, 64 & 3, 3, 64]× 2 16× 56× 56 16× 56× 56
res3 [3, 3, 128 & 3, 3, 128]× 2 8× 28× 28 16× 28× 28
res4 [3, 3, 256 & 3, 3, 256]× 2 4× 14× 14 16× 14× 14
res5 [3, 3, 512 & 3, 3, 512]× 2 2× 7× 7 16× 7× 7
pool spatial pooling 2× 1× 1 16× 1× 1

convC classification; 1, 1, C 2× C 16× C

mean temporal pooling C C

Table 1. I3D ResNet-18 model architecture with its output sizes

vs RCN’s output sizes for input of size 16 × 112 × 112. Each

convolutional layer of the network is defined by the temporal (n)

and the spatial (d) size of the kernels and by the number of kernels.

The ConvC layer uses the number of classes as number of kernels.

Tran et al. [51]’s work is the most recent on pure 3D

CNNs, meaning that no additional operations such as gat-

ing [55] or non-local operators [54] are applied on top of a

3D CNN architecture. Following their work, we convert a

2D CNN into an inflated 3D CNN (I3D) by replacing a 2D

(d × d) convolution with a 3D (n × d × d) one, as shown

in Figure 1(a). In particular, in this work we inflate the 18-

layer ResNet [17] network into an I3D one. This is shown

in Table 1, in which each 2D convolution is inflated into a

3D convolution. As in the I3D network architecture in [7],

a convolutional layer is used for classification in place of

the fully connected layer used in [51, 54]. A convolutional

classification layer allows us to evaluate the model on se-

quences of arbitrary length at test time.



conv_C

BN,ReLU

conv_Cconv_C

RCU RCU

BN,ReLU BN,ReLU

Figure 2. An unrolled Recurrent Convolutional Network (RCN)

composed by a single RCU layer followed by a batch normlisation

(BN) layer, a ReLU activation layer, and a final convolutional layer

used for classification.

As an additional baseline we also implement a (2+1)D [51]

model, by replacing every 3D layer in Table 1 with a decom-

posed version, as shown in Figure 1(b). Namely, we decom-

pose the original (n× d× d) convolution into a (1× d× d)

spatial convolution and a (n× 1× 1) temporal convolution.

Similarly to [51], n is set equal to d.

4. Recurrent Convolutional 3D Network

We are now ready to describe the architecture of our Re-

current Convolutional (3D) Network (RCN) and its proper-

ties in detail. Firstly, we show how Recurrent Convolutional

Units (RCUs) (§ 4.1) are used to replace every 3D convolu-

tions in the I3D network (§ 3), resulting in our RCN model

(§ 4.2). Next, we show how RCUs preserve temporal reso-

lution in § 4.3. In § 4.4 we show how our network behaves

causally. Lastly, in § 4.5 and § 4.6, we illustrate the initiali-

sation process for RCN and RCU.

4.1. Recurrent Convolutional Unit

A pictorial illustration of our proposed Recurrent Con-

volutional Unit (RCU) is given in Figure 1(c). At any time

instant t 3D spatial convolution (with kernel of size 1×d×d,

denoted by wxh) is applied to the input. The result is added

to the output of a recurrent convolution operation, with ker-

nel denoted by whh, of size 1× 1× 1.

The result is termed the hidden state ht of the unit. Analyti-

cally, a recurrent convolutional unit can be described by the

following relation:

h(t) = ht−1 ∗ whh + xt ∗ wxh, (1)

where whh and wxh are parameters of the RCU, and ∗ de-

notes the convolution operator.

4.2. Unrolling a Recurrent Convolutional Network

Figure 2 represents a simple recurrent convolutional net-

work composed by a single RCU unit, unrolled up to time

t. At each time step t, an input xt is processed by the RCU

and the other layers to produce an output yt.

The unrolling principle allows us to build an RCN from

2D/3D networks, e.g., by replacing 3D convolutions with

RCUs in any I3D network. Indeed, the network architec-

ture of our proposed model builds on the I3D network ar-

chitecture shown in Table 1, where the same parameters (d,

number of kernels) used for 3D convolutions are used for

our RCU. Unlike I3D, however, our RCN does not require

a temporal convolution size n (cfr. Table 1) as a parameter.

As in 2D or I3D ResNet models [17, 51, 15], our proposed

RCN also has residual connections. The hidden state ht at

time t is considered to be the output at that time instant – as

such, it acts as input to next hidden state and to the whole

next depth-level layer. Table 1 describes the network archi-

tecture of ResNet-18 [17] with 18 layers. Similarly, we can

build upon other variants of ResNet.

4.3. Temporal Resolution Preservation

The output sizes for both I3D and our proposed RCN are

shown in Table 1. Our RCN only uses spatial pooling and a

convolutional layer for classification, unlike the spatiotem-

poral pooling of [7, 54, 51]. It can be seen from Table 1

that, unlike I3D, RCN produces classification score vectors

of size 16 in response to an input sequence of length 16.

This one-to-one mapping from input to output is essen-

tial in many tasks, ranging from temporal action segmen-

tation [39, 36], to temporal action detection [44], to action

tube detection [45]. In all such cases video-level accuracy is

not enough, but we need frame-level results in terms, e.g., of

detection bounding boxes and class scores. Temporal con-

volution behaves in a similar way to spatial convolution: it

results in lower resolution feature maps as compared to the

input as the depth of the network increases.

Unlike the temporal deconvolution proposed in [39, 36],

our RCN inherently addresses this problem (see Table 1).

For a fair comparison, in our tests we adjusted our base-

line I3D model for dense prediction, by setting the tempo-

ral stride to 1 (§ 5.4). The resulting I3D model can produce

dense predictions: given T frames as input, it will generate

T predictions in 1-1 correspondence with the input frames.

4.4. Causality and Long-Term Dependencies

A size-n temporal convolution operation uses a sequence

xt−n/2, ..., xt, ..., xt+n/2 as input to generate an output yt
at time t. In our Recurrent Convolutional Network, instead,

yt is a function of only the inputs x0, x1, ..., xt from the

present and the past (up to the initial time step), as shown

in Figure 2. Its independence from future inputs makes the

output yt at time t causal. Thus RCN, as presented here, is

not only causal but poses no constraints on the modelling of

temporal dependencies (as opposed to an upper bound of n

in the case of temporal convolutions). Temporal dependen-



cies are only limited by the input sequence length at training

time.

As in traditional RNNs, we have the option to unroll the

same network to model arbitrary input sequence lengths at

test time, thus further extending the temporal horizon being

modelled, and show a substantial gain in performance.

4.5. ImageNet Initialisation for the 2D Layers

The I3D model proposed by Carreira et al. [7] greatly

owes its success to a good initialisation from 2D models

trained on ImageNet [9]. By inflating these 2D models,

we can benefit from their ImageNet pre-trained weights,

as in most state-of-the-art 3D models [7, 55, 54]. We fol-

low the same principle and initialise all 2D layers using the

weights of available pre-trained 2D ResNet models [17]. It

is noteworthy that the other state-of-the-art (2+1)D model

by Tran et al. [51] cannot, instead, exploit ImageNet initial-

isation, because of the change in the number of kernels.

4.6. Identity Initialisation for the Hidden Layers

The presence of a hidden state convolution layer (whh,

see Figure 2) at every depth level of the unrolled network

makes initialisation a tricky issue. A random initialisation

of the hidden state convolution component could destabilise

the norm of the feature space between two 2D layers. In

response to a similar issue, Le et al. [27] have proposed a

simple way to initialise RNNs when used with ReLU [14]

activation functions. Most state-of-the-art 2D models [17,

49] make indeed use of ReLU as the activation function of

choice, for fast and optimal convergence [14].

Following the example of Le et al. [27] and others [29,

46], we initialise the weights of the hidden state convolu-

tion kernel (whh) with the identity matrix. Identity matrix

initialisation is shown [27, 29] to capture longer term de-

pendencies. It also helps inducing forgetting capabilities in

recurrent models, unlike traditional RNNs.

5. Experiments

In this section, we evaluate our RCN on the challenging

Kinetics [24] and Multithumos [58] datasets to answer the

following questions: i) How does our training setup, which

uses 4 GPUs, compare with the 64 GPU training setup of

[50] (Section 5.2)? ii) How do recurrent convolutions com-

pare against 3D convolutions in the action recognition prob-

lem (§ 5.3)? iii) How does our RCN help solving the dense

prediction task associated with action detection (§ 5.4)? Fi-

nally, iv) we validate our claims on the temporal causality

and flexibility of RCN, and check whether those features

help with longer-term temporal reasoning (§ 5.5).

The Kinetics dataset comprises 400 classes and 260K
videos; each video contains a single atomic action. Ki-

netics has become a de facto benchmark for recent action

Network #Params Initialisation Clip % Video %

I3D [15] 33.4M random – 54.2

I3D [51] 33.4M random 49.4 61.8

(2+1)D [51] 33.3M random 52.8 64.8

I3D† 33.4M random 49.7 62.3

RCN [ours]† 12.8M random 51.0 63.8

(2+1)D† 33.4M random 51.9 64.8

I3D† 33.4M ImageNet 51.6 64.4

RCN [ours]† 12.8M ImageNet 53.4 65.6

† trained with our implementation and training setup.

Table 2. Clip-level and video-level action recognition accuracy on

the validation set of the Kinetics dataset for different ResNet18

based models, trained using 8-frame-long clips as input.

recognition works [6, 55, 51, 7, 54]. The average duration

of a video clip in Kinetics is 10 seconds. The MultiThu-

mos[58] dataset is a multilabel extension of THUMOS[20].

It features 65 classes and 400 videos, with a total duration

of 30 hours. On average, it provides 1.5 labels per frame,

10.5 action classes per video. Videos are densely labeled,

as opposed to those in THUMOS [20] or ActivityNet [5].

MultiThumos allows us to show the dense prediction capa-

bilities of RCN on long, real-world videos.

5.1. Implementation Details

In all our experiments we used sequences of RGB frames

as input for simplicity and computational reasons. We used

a batch size of 64 when training ResNet18-based models

and 32 for models based on ResNet-34 and -50. The ini-

tial learning rate was set to 0.01 for batches of 64, and to

0.005 for batches of 32. We reduced the learning rate by a

factor of 10 after both 250K and 350K iterations. More-

over, training was stopped after 400K iterations (number of

batches). We used standard data augmentation techniques,

such as random crop, horizontal flip with 50% probability,

and temporal jittering. More details about training parame-

ters are provided in the supplementary material.

GPU memory consumption plays a crucial role in the de-

sign of neural network architectures. In our training pro-

cesses, a maximum of 4 GPUs was used. Given our GPU

memory and computational constraints, we only considered

training networks with 8-frame long input clips, except for

ResNet34 which was trained with 16 frames long clips.

Evaluation: For fair comparison, we computed clip-level

and video-level accuracy in the way described in [51, 54].

Ten regularly sampled clips were evaluated per video, and

scores were averaged for video-level classification. On

videos of arbitrary length we averaged all the predictions

made by the unrolled versions of both our RCN and of I3D.

5.2. Fair Training Setup

As explained above, we have GPU memory constrained,

we will report results of previous basic 3D models [51, 7]

re-implemented and trained by using the same amount of



Model Clip-length Initialisation Acc%

ResNet34-(2+1)D [51]† 16 random 67.8

ResNet34-I3D [7] † 16 ImageNet 68.2

ResNet34-RCN [ours]⋆† 16 ImageNet 70.3

ResNet50-I3D [7] † 8 ImageNet 70.0

ResNet50-RCN [ours]⋆† 8 ImageNet 71.2

ResNet50-RCN-unrolled [ours]⋆† 8 ImageNet 72.1

⋆ causal model; † trained with our implementation and training setup.

Table 3. Video-level action classification accuracy of different

models on the validation set of the Kinetics dataset.

resources as our RCN. The main hyperparameters involved

in the training of a 3D network are learning rate, batch size,

and the number of iterations. These parameters are inter-

dependent, and their optimal setting depends on the com-

putational power at disposal. For instance, Tran et al. [51]

would use 64 GPUs, with the training process distributed

across multiple machines. In such a case, when vast com-

putational resources are available[51, 7, 6], training takes

10-15 hours [51], allowing for time to identify the optimal

parameters. The availability of such computational power,

however, is scarce.

In a bid to reproduce the training setup of [51] on 4

GPUs, we re-implemented the I3D and (2+1)D models us-

ing ResNet18 and ResNet34 as a backbone. The ResNet18-

I3D architecture is described in Table 1. Based on the latter,

we built a (2+1)D [51] architecture in which we matched

the number of parameters of separated convolutions to that

of standard 3D convolutions, as explained in [51].

The results of the I3D and (2+1)D implementations re-

ported in Tran et al. [51] are shown in the top half of Ta-

ble 2. When comparing them with our implementations of

the same networks in the bottom half, it is clear that our

training is as performing as that of Tran et al. [51]. This

allows a fair comparison of our results.

Why smaller clips as input: training a ResNet18-based

model on Kinetics with 8 frame clips as input takes up to

2-3 days on 4 GPUs. Training a ResNet50-based model

would take up to 4-5 days. In principle, one could train the

same model for longer input clip sizes, but the amount of

GPU memory and time required to train would grow lin-

early. As an estimate, it would take more than two weeks

to train a ResNet50 model on 64 long frame clips, assum-

ing that all the hyperparameters are known (i.e., batch size,

learning rate, step size for learning rate drop, and whether

batch normalisation layers should be frozen or not).

For these reasons we stick to smaller input clips to train

our models in a fair comparison setting, using the hyperpa-

rameter values from § 5.1.

5.3. Results on Action Recognition

We compared our RCN with both I3D and (2+1)D

models in the action recognition problem on the Kinet-

ics dataset. A fair comparison is shown in Table 2 with

ResNet18 as backbone architecture. Table 3 shows the re-

sults with ResNet34 and ResNet50 as backbone, trained on

16 frame and 8 frame clips, respectively. It is clear from

these figures that RCN significantly outperforms state-of-

the-art 3D networks – e.g. our network outperforms the

equivalent I3D network by more than 2% across the board.

The ability to model long-term temporal reasoning of

RCN is attested by the performance of the unrolled ver-

sion (last row of Table 3). It shows that, even though the

network is trained on input clip of 8 frames, it can reason

over longer temporal horizons at test time. The correspond-

ing unrolled I3D version (the last classification layer is also

convolutional, see Table 1) showed no substantial improve-

ment in performance – in fact, a slight drop.

Comparison with I3D variants: the main variants of

the I3D model are separated 3D convolutions with gating

(S3Dg) [55] and with non-local operators (NL) [54]. We

think it appropriate to take a closer look at these variants of

I3D as they provide state-of-the-art performance, albeit be-

ing all anti-causal. In [55, 54] the application of non-local

or gating operations to I3D yields the best performances to

date, mainly thanks to training on longer clips given a large

amount of GPU memory at their disposal (S3Dg [55] mod-

els are trained using 56 GPUs, [54] uses 8 GPUs with 16GB

memory each). The best version of I3D-NL achieves an ac-

curacy of 77.7%, but uses 128 frames and ResNet101 as

backbone network; hence we do not deem fair to compare

it with our models (which only use 8 frame long clips). It

would take almost a month to train such a network using 4

GPUs. What needs to be stressed is that gating and NL op-

erations are not at all constrained to be applied on top of I3D

or S3D models: indeed, they can also be used in conjunc-

tion with (2+1)D and our own RCN model. As in this work

we focus on comparing our network with other 3D models,

we chose I3D and (2+1)D as baselines (Sec. 5.3). Please

refer to the supplementary material for more discussion.

We tried training on longer sequences (32 frames) by re-

ducing the batch size to 8 with Resnet50 as base network.

Despite a sub-optimal training procedure, RCN was ob-

served to still outperform I3D by a margin of 1.5%. A closer

to optimal training procedure with Resnet50 (as in [51, 54]),

is very likely to yield even better results.

5.4. Results on Temporal Action Detection

We also evaluate our model on the temporal action de-

tection problem on the MultiThumos [58] dataset. The lat-

ter is a dense label prediction task. As a baseline, we use a

temporal resolution-preserving version of I3D introduced in

Section 4.3. ResNet50 is employed as a backbone for both

our RCN and the baseline I3D. To capture the longer du-

ration, we use 16 frame clips as input; the sampling period

is 4 frames. Both networks are initialised with the respec-

tive models pretrained on Kinetics. The initial learning rate



Network Input mAP@1 % mAP@8 %

Two-stream+LSTM [58]⋆ RGB+FLOW 28.1 -

MultiLSTM [58]⋆ RGB+FLOW 29.7 -

Inception-I3D by [32] RGB+FLOW - 30.1

Inception-I3D + SE [32] RGB+FLOW - 36.2

ResNet50-I3D [baseline] RGB 34.8 36.9

ResNet50-RCN [ours]⋆ RGB 35.3 37.3

ResNet50-RCN-unrolled [ours]⋆ RGB 36.2 38.3

⋆ causal model

Table 4. Action detection/segmentation results on Multithumos

dataset, mAP computed from dense prediction at every frame

(mAP@1) and every 8th frame (mAP@8).

is set to 0.001 and dropped after 14K iterations, a batch

size of 16 is used, and trained up to 20K iterations. Similar

to [32], we use binary cross-entropy as loss function.

We use the evaluation setup of [58] and [32], and

computed both frame-wise mean Average Precision at 1

(mAP@1) (multi-label prediction on each frame) and [32]

mAP@8 (every 8th frame). Table 4 shows the performance

of our models along with that of other state-of-the-art meth-

ods. Two LSTM-based causal models presented by [58] are

shown in rows 1 and 2. Piergiovanni et al. [32] use pre-

trained I3D [7] to compute features, but do not train I3D

end-to-end, hence their performance is lower than in our

version of I3D. Our RCN outperforms all other methods,

including anti-causal I3D+Super-Events (SE) [32] and the

I3D baseline. It is safe to say that RCN is well applicable to

dense prediction tasks as well.

5.5. Causality and Temporal Reasoning

A comparison with other causal methods is a must, as

we claim the causal nature of the network to be the main

contributions of our work, making RCN best suited to on-

line applications such as action detection and prediction. In

Section 5.4 we have already shown that our model excels in

the task of temporal action detection.

Carreira et al. [6] proposed two causal variants of the I3D

network. Their sequential version of I3D, however, shows

a slight drop [6] in performance as compared to I3D. Their

parallel version is much faster than the sequential one but

suffers from an even more significant performance decline

71.8% to 54.5% [6].

In contrast, our causal/online model not only outper-

forms other causal models (see Table 4) but beats as well

strong, inherently anti-causal state-of-the-art 3D networks

on a large scale dataset such as Kinetics (see Table 3).

In addition, as in [37, 45], we can use the early action pre-

diction task to evaluate the sequential temporal reasoning

of RCN. The task consists in guessing the label of an entire

action instance (or video, if containing a single action) af-

ter observing just a fraction of video frames. Accumulated

output scores up to time t are used to predict the label of

the entire video. Figure 3(a) shows that our RCN improves

drastically as more video frames are observed when com-

(a) (b)

0 2 4 6 8 10

Segment number

-2

0

2

4

6

8

10

12

R
e
la

ti
v
e
 A

c
c
u
ra

c
y
 %

I3D-clip-wise

RCN-clip-wise

I3D-unrolled

RCN-unrolled

0 20 40 60 80 100

video observation percentage %

50

55

60

65

70

75

A
c
c
u
ra

c
y
 %

I3D

proposed-RCN

Figure 3. (a) Online/early action prediction task: accumulated

scores are used to compute the video accuracy as a function of

the video observation percentage. (b) relative accuracy of each of

10 regularly sampled segments.

(a) (b)

0 5 10 15

Network Depth

-0.05

0

0.05

0.1

0.15

0.2

0.25

Mean

Std

Diagonal-Mean

Diagonal-Std

0 5 10 15

Network Depth

-0.05

0

0.05

0.1

0.15

0.2

0.25

Eigenvalues-Mean

Eigenvalues-Std

Figure 4. (a) Mean and standard deviation (Std) of all the entries of

the weight matrices (whh) of the hidden state at every RCU layer

of RCN, as well as those of just the diagonal elements. (b) Mean

and Std of the eigenvalues of the hidden state weight matrices at

every RCU layer of a 18-layer RCN.

pared to I3D. It indicates that RCN has superior anticipation

ability, albeit starting slowly in first 10% of the video.

Furthermore, to provide useful cues about casuality and

temporal reasoning, we designed an original segment-level

classification evaluation setting. Namely, the outputs of

the models being tested are divided into ten regularly sam-

pled segments and the difference between the accuracy for

each segment and that for the first segment is computed,

as shown in Figure 3(b). Within this setting, we compared

the I3D baseline with RCN in two different modalities, one

considering clip-wise outputs in a sliding window fashion,

the other obtained by unrolling both I3D and RCN over test

videos of arbitrary length.

Notably, middle segments provide the best relative im-

provement, which is reasonable as it indicates that the mid-

dle part of the video is the most informative. Secondly, the

last segment (no. 10) has the lowest relative accuracy of

all, except for RCN-unrolled. The relative accuracy of a

pure causal system, though, should improve monotonically,

i.e., exploit all it has seen. Instead, all compared models

end up at the same performance they started with, except

for unrolled RCN for which the final accuracy is almost 5%

higher than the initial one. We can conclude that unrolled

RCN has a longer-term memory than unrolled I3D or both

sliding window-based I3D/RCN.

Evolution of Recurrence with Network Depth is another

aspect that can provide clues about RCN’s temporal flex-

ibility. To this purpose, we examine the statistics of the



weight matrices (whh) associated with the hidden state at

every RCU layer in the RCN network. In Figure 4(a) we can

see that the mean of the diagonal elements of the weight ma-

trices increases and their standard deviation decreases with

the depth of the network. This means that the whh matrix

becomes sparser as network depth grows. In our view, this

phenomenon is associated with RCN putting more focus on

feature learning in the early part of the network, and em-

phasising temporal reasoning at later depths as the tempo-

ral reasoning horizon (‘receptive field’) increases. In other

words, RCN learns to select the layers which should con-

tribute towards temporal reasoning automatically.

Arjovsky [1] argue that if the eigenvalues of the recur-

rent layer’s weight matrix diverge from value 1, optimisa-

tion becomes difficult due to the vanishing gradient prob-

lem. Chang et al. [8] explore a similar idea. Taking an or-

dinary differential equation view of RNNs, they argue that

their stability for long-term memory is related to the eigen-

values of the weight matrices. Figure 4(b) shows that in

RCN the mean eigenvalue does rise towards 1 as network

depth increases, suggesting that later layers are more stable

in terms of long-term memory whereas earlier layers are not

concerned with long-term reasoning.

5.6. Discussion

In the light of RCN’s superior results on temporal action

detection (§ 5.4), early action prediction (see Figure 3(a)),

long-term temporal reasoning (in its unrolled incarnation)

at segment-level and for action recognition (§ 5.3, see the

last row of Table 3), it is fair to say that the proposed Recur-

rent Convolutional Network is the best performing causal

network out there. An even more in-depth analysis of this

fact is conducted in the supplementary material.

Layer-wise design: we tried replacing 3D CONV by RCU

(i) only in the last four layers, and (ii) on four regularly

sampled layers of Resnet50. This led to lower performance

(69% and 68% respectively), compared to 71% when RCU

replaces all 18 3D CONVs. This is consistent with previous

findings [54, 55].

The number of parameters in our proposed RCN model

is 12.8 million (M), as opposed to 33.4M in both the I3D

and (2+1)D models, see Table 2. It is remarkable to see

that, despite a 2.6 times reduction in the number of param-

eters, RCN still outperforms both I3D and (2+1)D when

trained using ImageNet initialisation. Further, RCN sur-

passes I3D also under random initialisation, while using 2.6
times fewer model parameters. We measured the floating-

point operations (FLOPs) for I3D, R(2+1)D, and RCN,

recording 41MMac, 120MMac, and 54MMac, respectively.

Thus, RCN requires half the FLOPs as compared to (2+1)D,

and is comparable to I3D because RCN preserves temporal

resolution. We computed the average time taken to process

ten-second long videos of the Kinetics dataset. This takes

wxh init whh init Clip-Acc% Video-Acc%

Random Random 49.3 61.4

Random Identity 49.8 62.1

ImageNet Random 50.5 62.8

ImageNet Identity 53.4 65.6

Table 5. Video-level and clip-level action recognition accuracy on

the Kinetics validation set for different initilisation of 2D layer

(wxh) and recurrent convolution’s weights (whh) in RCU.

0.4s, 0.8s, and 0.9s for I3D, RCN, and (2+1)D respectively.

Effect of weight initialisation. The weights of the 2D lay-

ers (wxh) in the RCU modules (§ 4.1) of our RCN networks

are initialised using weights from a pre-trained ImageNet

model, trained on RGB images. As for the RCU recur-

rent convolution (whh, § 4.1), random initialisation resulted

in suboptimal training. Thus, in all our experiments with

RCN, we adopted identity matrix initialisation instead.

Table 5 shows the results of training RCN with different ini-

tialisation strategies for both recurrent convolution whh and

spatial convolution wxh. In the first row, both wxh and whh

for all the RCUs in RCN are initialised randomly, using the

standard initialisation process described in [16]. From the

last row, it is clear that RCN performs best if wxh and whh

are initialised using ImageNet pre-trained weights and the

identity matrix, respectively. Notably, the performance dif-

ference is relatively small in the first three rows of that table,

when compared to the dramatic jump of the last row. This

proves our point, supported by other recurrence based meth-

ods, that initialisation is important for recurrent convolution

to be able to compete with temporal convolutions.

6. Conclusions

In this work, we presented a recurrence-based convolu-

tional network (RCN) able to generate causal spatiotempo-

ral representations by converting 3D CNNs into causal 3D

CNNs, while using 2.6 times fewer parameters compared to

its traditional 3D counterparts. RCN can model long-term

temporal dependencies without the need to specify temporal

extents. The proposed RCN is not only causal in nature and

temporal resolution-preserving, but was also shown to out-

perform the main baseline 3D CNNs in all the fair compar-

isons we ran. We showed that ImageNet-based initialisation

is at the heart of the success of 3D CNNs. Although RCN

is recurrent in nature, it can still utilise the weights of a pre-

trained 2D network for initialisation. Recurrent convolu-

tion also needs to be carefully initialised to make recurrence

competitive with temporal convolution. The causal nature

of our recurrent 3D convolutional network opens up man-

ifold research directions, (including its combination with

non-local or gating methods), with direct and promising po-

tential applications to areas such as online action detection

and future prediction.



References

[1] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution

recurrent neural networks. In International Conference on

Machine Learning, pages 1120–1128, 2016. 8

[2] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation

of generic convolutional and recurrent networks for sequence

modeling. arXiv preprint arXiv:1803.01271, 2018. 3

[3] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper

into convolutional networks for learning video representa-

tions. arXiv preprint arXiv:1511.06432, 2015. 3

[4] L. E. Baum and T. Petrie. Statistical inference for proba-

bilistic functions of finite state markov chains. The annals of

mathematical statistics, 37(6):1554–1563, 1966. 2

[5] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Car-

los Niebles. Activitynet: A large-scale video benchmark for

human activity understanding. In IEEE Int. Conf. on Com-

puter Vision and Pattern Recognition, pages 961–970, 2015.

2, 5

[6] J. Carreira, V. Patraucean, L. Mazare, A. Zisserman, and

S. Osindero. Massively parallel video networks. In Proc.

European Conf. Computer Vision, 2018. 1, 2, 3, 5, 6, 7

[7] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 4724–4733. IEEE, 2017. 1, 2, 3, 4, 5, 6, 7

[8] B. Chang, M. Chen, E. Haber, and E. H. Chi. Antisymmet-

ricRNN: A dynamical system view on recurrent neural net-

works. In International Conference on Learning Represen-

tations, 2019. 8

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. Ieee, 2009. 2, 5

[10] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 2625–2634, 2015. 2, 3

[11] J. L. Elman. Finding structure in time. Cognitive science,

14(2):179–211, 1990. 2

[12] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal

residual networks for video action recognition. In Advances

in neural information processing systems, pages 3468–3476,

2016. 1, 2, 3

[13] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

two-stream network fusion for video action recognition. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1933–1941, 2016. 3

[14] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse recti-

fier neural networks. In Proceedings of the fourteenth inter-

national conference on artificial intelligence and statistics,

pages 315–323, 2011. 5

[15] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d

cnns retrace the history of 2d cnns and imagenet. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, pages 18–22,

2018. 1, 4, 5

[16] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015. 8

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1, 3, 4, 5

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 2

[19] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. IEEE transactions

on pattern analysis and machine intelligence, 35(1):221–

231, 2013. 2

[20] Y. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,

M. Shah, and R. Sukthankar. Thumos challenge:

Action recognition with a large number of classes.

http://crcv.ucf.edu/THUMOS14, 2014. 5

[21] M. Jordan. Attractor dynamics and parallelism in a connec-

tionist sequential machine. In Proc. of the Eighth Annual

Conference of the Cognitive Science Society (Erlbaum, Hills-

dale, NJ), 1986, 1986. 2

[22] N. Kalchbrenner, A. v. d. Oord, K. Simonyan, I. Danihelka,

O. Vinyals, A. Graves, and K. Kavukcuoglu. Video pixel

networks. arXiv preprint arXiv:1610.00527, 2016. 3

[23] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages

1725–1732, 2014. 2

[24] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-

jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.

The kinetics human action video dataset. arXiv preprint

arXiv:1705.06950, 2017. 2, 3, 5

[25] Y. Kong, Z. Tao, and Y. Fu. Deep sequential context net-

works for action prediction. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1473–1481, 2017. 1

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, 2012.

1

[27] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initial-

ize recurrent networks of rectified linear units. arXiv preprint

arXiv:1504.00941, 2015. 2, 3, 5

[28] Z. Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. Snoek.

Videolstm convolves, attends and flows for action recogni-

tion. Computer Vision and Image Understanding, 166:41–

50, 2018. 3

[29] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ran-

zato. Learning longer memory in recurrent neural networks.

arXiv preprint arXiv:1412.7753, 2014. 3, 5

[30] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.

Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016. 3



[31] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. arXiv preprint arXiv:1601.06759,

2016. 3

[32] A. Piergiovanni and M. S. Ryoo. Learning latent super-

events to detect multiple activities in videos. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5304–5313, 2018. 3, 7

[33] P. H. Pinheiro and R. Collobert. Recurrent convolutional

neural networks for scene labeling. In 31st International

Conference on Machine Learning (ICML), number EPFL-

CONF-199822, 2014. 3

[34] R. Poppe. A survey on vision-based human action recog-

nition. Image and vision computing, 28(6):976–990, 2010.

2

[35] Z. Qiu, T. Yao, and T. Mei. Learning spatio-temporal repre-

sentation with pseudo-3d residual networks. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages

5534–5542. IEEE, 2017. 2

[36] C. L. M. D. F. René and V. A. R. G. D. Hager. Temporal

convolutional networks for action segmentation and detec-

tion. In IEEE International Conference on Computer Vision

(ICCV), 2017. 2, 3, 4

[37] M. S. Ryoo. Human activity prediction: Early recognition of

ongoing activities from streaming videos. In IEEE Int. Conf.

on Computer Vision, pages 1036–1043. IEEE, 2011. 1, 7

[38] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural

network for image-based sequence recognition and its appli-

cation to scene text recognition. IEEE transactions on pat-

tern analysis and machine intelligence, 39(11):2298–2304,

2017. 3

[39] Z. Shou, J. Chan, A. Zareian, K. Miyazawa, and S.-F. Chang.

Cdc: Convolutional-de-convolutional networks for precise

temporal action localization in untrimmed videos. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pages 1417–1426. IEEE, 2017. 3, 4

[40] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,

and A. Gupta. Hollywood in homes: Crowdsourcing data

collection for activity understanding. In European Confer-

ence on Computer Vision, 2016. 2

[41] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances in

Neural Information Processing Systems 27, pages 568–576.

Curran Associates, Inc., 2014. 2

[42] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1

[43] B. Singh and M. Shao. A multi-stream bi-directional re-

current neural network for fine-grained action detection. In

IEEE Int. Conf. on Computer Vision and Pattern Recogni-

tion, 2016. 3

[44] G. Singh and F. Cuzzolin. Untrimmed video classification

for activity detection: submission to activitynet challenge.

arXiv preprint arXiv:1607.01979, 2016. 4

[45] G. Singh, S. Saha, M. Sapienza, P. Torr, and F. Cuzzolin.

Online real-time multiple spatiotemporal action localisation

and prediction. In IEEE Int. Conf. on Computer Vision, 2017.

1, 4, 7

[46] R. Socher, J. Bauer, C. D. Manning, et al. Parsing with

compositional vector grammars. In Proceedings of the 51st

Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), volume 1, pages 455–465,

2013. 5

[47] K. Soomro, H. Idrees, and M. Shah. Predicting the where and

what of actors and actions through online action localization.

2016. 1

[48] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action

recognition using factorized spatio-temporal convolutional

networks. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 4597–4605, 2015. 2

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015. 5

[50] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. IEEE Int. Conf. on Computer Vision, 2015. 1, 2, 3,

5

[51] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and

M. Paluri. A closer look at spatiotemporal convolutions for

action recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6450–

6459, 2018. 1, 2, 3, 4, 5, 6

[52] G. Varol, I. Laptev, and C. Schmid. Long-term temporal

convolutions for action recognition. IEEE transactions on

pattern analysis and machine intelligence, 40(6):1510–1517,

2018. 1, 3

[53] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipat-

ing the future by watching unlabeled video. arXiv preprint

arXiv:1504.08023, 2015. 1

[54] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural

networks. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 1, 3, 4, 5, 6, 8

[55] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking

spatiotemporal feature learning: Speed-accuracy trade-offs

in video classification. In Proc. European Conf. Computer

Vision, pages 305–321, 2018. 1, 2, 3, 5, 6, 8

[56] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,

and W.-c. Woo. Convolutional lstm network: A machine

learning approach for precipitation nowcasting. In Advances

in neural information processing systems, pages 802–810,

2015. 3

[57] C. Xu, C. Xiong, and J. J. Corso. Streaming hierarchical

video segmentation. In European Conference on Computer

Vision, pages 626–639. Springer, 2012. 2

[58] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori,

and L. Fei-Fei. Every moment counts: Dense detailed

labeling of actions in complex videos. arXiv preprint

arXiv:1507.05738, 2015. 2, 3, 5, 6, 7


