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Abstract

We identify two pathological cases of temporal inconsis-

tencies in video generation: video freezing and video loop-

ing. To better quantify the temporal diversity, we propose

a class of complementary metrics that are effective, easy to

implement, data agnostic, and interpretable. Further, we

observe that current state-of-the-art models are trained on

video samples of fixed length thereby inhibiting long-term

modeling. To address this, we reformulate the problem of

video generation as a Markov Decision Process (MDP).

The underlying idea is to represent motion as a stochas-

tic process with an infinite forecast horizon to overcome the

fixed length limitation and to mitigate the presence of tem-

poral artifacts. We show that our formulation is easy to in-

tegrate into the state-of-the-art MoCoGAN framework. Our

experiments on the Human Actions and UCF-101 datasets

demonstrate that our MDP-based model is more memory

efficient and improves the video quality both in terms of the

new and established metrics.

1. Introduction

Video synthesis is a very challenging problem [12, 17,

19, 29, 34], arguably even more challenging than the al-

ready difficult image generation task [5, 11, 20]. The tem-

poral dimension of the data introduces an additional mode

of variation, since feasible motions are dependent on the ob-

ject category and the scene appearance. Consequently, the

evaluation of video synthesis methods should account not

only for the quality of individual frames but also for their

temporal coherence, motion realism, and diversity.

In this work, we take a closer look at the temporal quality

of unconditional video generators, represented by the state-

of-the-art MoCoGAN approach [29]. Note that this sub-

category of video generation is different from future frame

prediction [13, 16], which takes a number of initial frames

as input. We only rely on the training data as input instead.1

∗This work was done while VY was at TU Darmstadt.
1Note that the model is still conditioned on the particular training data

distribution, hence not truly “unconditional”. Still, we adhere to the com-

mon terminology used in the literature.

subsequence samples for training

Figure 1. Problem illustration on a Tai Chi sequence. Every

6th frame is shown. Top row: The ground truth video is a non-

repetitive action sequence. Second row: Even when trained only

on one video, MoCoGAN [29] can only reproduce the sequence

until the training length, marked by the red boundary, and the mo-

tion freezes thereafter. Third row: Increasing the training length

comes at increased memory costs and only delays the freezing.

Last row: Our MDP approach uses shorter training sequences yet

extends the movement duration, indicated by the blue boundary.

We find that the common training strategy of sampling a

fixed-length video subsequence at training time often leads

to degenerate solutions. As illustrated in Fig. 1, the MoCo-

GAN model exhibits temporal artifacts as soon as the video

sequence length at inference time exceeds the length of the

temporal window at training time. We establish two com-

mon types of such artifacts. If the model continues to pre-

dict the last frame without change, we refer to that as freez-

ing. On the other hand, looping occurs when the exact sub-

sequence of frames is continually repeated.

To address these limitations, we make two main con-

tributions. First, to tackle the detrimental effect of fixed-

length video training, we reformulate video generation as

a Markov Decision Process (MDP). This reformulation al-

lows approximating an infinite forecast horizon in order to

optimize every generated frame w.r.t. to its long-term effect

on future frames. One benefit of our MDP formulation is

that it is model-agnostic. We evaluate it by applying it to the

state-of-the-art MoCoGAN [29], which requires only a mi-

nor modification of the original design and does not signif-



icantly increase the model capacity. Second, we propose a

family of evaluation metrics to detect and measure the tem-

poral artifacts. Our new metrics are model-free, simple to

implement, and offer an easy interpretation. In contrast to

the Inception Score (IS) [20] or the recent Fréchet Video

Distance (FVD) [30], the proposed metrics do not require

model pre-training and, hence, do not build upon a data-

sensitive prior. Our experiments show that our MDP-based

formulation leads to a consistent improvement of the video

quality, both in terms of the artifact mitigation as well as on

the more common metrics, the IS and FVD scores.

2. Related Work

Video generation models can be divided into two main

categories: conditional and unconditional. Exemplified by

the task of future frame prediction, conditional models his-

torically preceded the latter and some of their features lend

themselves to unconditional prediction. Therefore, we first

give a brief overview of conditional approaches.

Conditional video generation. One of the first network-

based models for motion dynamics used a temporal exten-

sion of Restricted Boltzmann Machines (RBMs) [24, 27]

with a focus on resolving the intractable inference [25]. The

increasing volume of video data for deep learning shifted

the attention to learning suitable representations and en-

abling some control over the generated frames [6]. Sri-

vastava et al. [23] show that unsupervised sequence-to-

sequence pre-training with LSTMs [8] enhances the per-

formance on the supervised frame prediction task. Patch-

based quantization of the output space [18] or predicting

pixel motion [4, 15] can improve the frame appearance at

larger resolutions. In contrast, Kalchbrenner et al. [9] pre-

dict pixel-wise intensities and extend the context model of

PixelCNNs [31] to the temporal domain. A coarse-to-fine

strategy allows to decouple the structure from the appear-

ance [32, 33], or dedicate individual stages of a pipeline to

multiple scales [16].

The frames of a distant future cannot be extrapolated

deterministically due to the stochastic nature of the prob-

lem [1, 13, 36] (i.e. there are multiple feasible futures for a

given initial frame). In practice, this manifests itself through

frame blurring – a gradual loss of details in the frame. To

alleviate this effect, Mathieu et al. [16] used an adversar-

ial loss [5]. Liang et al. [14] further show that adversarial

learning of the pixel flows leads to better generalisation.

Unconditional video generation. These more recent meth-

ods are based on the GAN framework [5] and incorporate

some of the insights from their conditional counterparts.

For example, Vondrick et al. [34] decouple the active fore-

ground from a static background by using an architecture

with two parallel generator streams. Saito et al. [19] use

two generators to disentangle the video representation into

distinct temporal and spatial domains. Following [32], the

state-of-the-art MoCoGAN of Tulyakov et al. [29] decom-

poses the latent representation into content and motion parts

for finer control over the generated scene. In addition, the

discriminator in the MoCoGAN model is separated into im-

age and video modules. While the image module targets the

visual quality of individual frames, the focus of the video

discriminator is the temporal coherence.

Evaluating unconditional video generators. Borrowed

from the image generation literature [20], the Inception

Score (IS) has become one of the established metrics for

quality assessment in videos [19, 29, 34]. IS incorporates

the entropy of the class distributions obtained from a sep-

arately trained classifier. Therefore, it is only meaningful

if the training data distribution of the classifier matches the

one on which it will be evaluated later. Following [7], Un-

terthiner et al. [30] recently proposed the Fréchet Video

Distance (FVD) that compares the distributions of feature

embeddings of real and generated data.

However, these metrics provide only a holistic measure

of the video quality and do not allow for a detailed assess-

ment of its individual properties. One of the desirable qual-

itative traits of video generators is their ability to produce

realistic videos of arbitrary length. Yet, the established ex-

perimental protocol evaluates only on video sequences of a

fixed length. Indeed, some previous work [19, 34] is even

tailored to a pre-defined video length, both at training and

at inference time.

3. MDP for Video Generation

To motivate MDP for video generation, we first review

MoCoGAN [29] and discuss its limitations. After a short

presentation of the MDP formalism (c.f . [26] for a compre-

hensive introduction), we then integrate MDP into MoCo-

GAN to incorporate knowledge of the infinite-time horizon

into the generative process.

3.1. Preliminaries

MoCoGAN. Figure 2a illustrates the main components of

MoCoGAN: the generator, the image discriminator, and the

video discriminator. At every timestep, the stochastic gen-

erator G emits one frame xt and maintains a recurrent state

ht perturbed by random noise. The image discriminator DI

provides feedback for a single image; the video discrimi-

nator DV evaluates a contiguous subsequence of frames xt

of a pre-defined length |xt| = K. The training objective is

specified by the familiar max-min game

max
G

min
DI ,DV

E
xt,xt

[

LI(x
real
t , xfake

t )+LV (x
real
t ,xfake

t )
]

, (1)

where xreal
t and x

real
t are samples from the training data, the

generator provides xfake
t and x

fake
t , and LI and LV are de-

fined by the scalar scores of DI and DV [5, 29].
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Figure 2. The original MoCoGAN architecture (a) and our proposed modification of DV for modeling the MDP (b). Our MDP re-

formulation follows the TCN design [2]: a sequence of 3D-convolutional layers with layer-specific dilations and strides. The input to the

next convolutional layer is the output of the previous one. The last layer produces the {rt}1≤t≤K and the {Qt}1≤t≤K , i.e. the Q-values

are produced by the same network, DV .

We find that MoCoGAN’s samples exhibit looping and

freezing patterns (see Sec. 5.4 for results and analyses). The

intuitive reason comes from the specifics of training: to save

memory, the training samples contain only subsequences of

the complete video. As a result, the gradient signal from

the video discriminator is unaware of the frames following

the subsequence. The predefined length of the subsequence

ultimately determines the maximum length of a sample with

a non-repeating pattern.2

MDP. In an MDP defined by the tuple (S,A, T, π, r), the

agent interacts with the environment by performing actions,

at ∈ A, based on the current state, st ∈ S. The environment

specifies the outcome of the action by returning a reward,

r(st, at), and the next state, st+1 = T (st, at). The goal

of the agent is to find the optimal policy π∗ : S → A,

maximizing the discounted cumulative reward

π∗ = argmax
π

∞
∑

t=0

γtr(st, at), at ∼ π(st), (2)

where γ ∈ (0, 1) is the discount factor to ensure the con-

vergence of the sum.

In the context of an MDP the generator G plays the role

of the agent’s policy. The frames predicted by G are the

actions. The hidden recurrent state ht becomes the agent’s

state st. The additive noise at every timestep determines

the transition function T . A frame incurs a reward rt as the

score provided by the discriminators. Due to the determin-

istic mapping st → at, the MoCoGAN’s G corresponds to

a deterministic policy [21] (i.e. the sampling in Eq. (2) be-

comes an equality). The optimization task for the agent is a

2To verify this, we also trained the MoCoGAN model on longer subse-

quences and found the breaking point to occur at a correspondingly later

timestep.

search for the optimal policy π∗:

max
π

r(st, at) + E
a=π(st)

[

∞
∑

i=t+1

γi−tr(si, a)

]

. (3)

Observe that the MoCoGAN objective for DV is equivalent

to only the first term of Eq. (3), the immediate reward, since

the DV computes only a single score for a given video sam-

ple. In contrast, we also consider the future rewards, i.e.

the second term of Eq. (3). To this end, we decompose

the score of the video generator into immediate rewards

associated with individual frames. We then learn a utility

Q-function approximating the expected cumulative reward,

E
[
∑

t γ
trt

]

. Its definition is also known as Bellman’s op-

timality principle:

Q(st, at) = r(st, at) + max
a=π(st)

Q(st+1, a). (4)

By training the generator to maximize the Q-function in-

stead of just the immediate reward, we arrive at an approxi-

mate solution of Eq. (3). In the next section, we detail how

MoCoGAN can be extended to this setup.

3.2. Integrating MDP into MoCoGAN

We need the model implementing the MDP to comply

with two requirements:

(a) The Markov property needs to be fulfilled, i.e. the next

state st+1 given the previous state st is conditionally

independent from the past history si<t.

(b) By causality, the immediate reward rt is a function of

the current state st and the action at and incorporates

no knowledge about future actions.

The MoCoGAN generator already satisfies the Markov

property using a parametrized RNN mapping from the cur-



rent state to the next. However, the video discriminator has

to be modified to satisfy the second requirement. This mod-

ification is straightforward to implement and leads to a vari-

ant of the Temporal Convolutional Network (TCN) [2].

Figure 2b gives an overview of the proposed MDP-

extension for the video discriminator. The key property of

this design is that the tth output – a scalar – corresponds to a

temporal receptive field of the frames up to the tth timestep.

In this way the immediate reward will capture only the rel-

evant motion history. Fortunately, adapting the MoCoGAN

video discriminator to this architecture is straightforward

(c.f . supplemental material for more details).

To implement Eq. (4), alongside rt we also predict an-

other time-dependent scalar, the Q-value. As discussed in

Sec. 3.1, the purpose of the Q-value is to approximate the

expected cumulative reward, E
[
∑

∞

t=0 γ
tr(st, at)

]

. We use

the squared difference loss, defined for each timestep by

LQ,t =

∥

∥

∥

∥

∥

1

K − t+ 1

K
∑

i=t

γi−tri −Qt

∥

∥

∥

∥

∥

2

2

, 1 ≤ t ≤ K, (5)

where γ ∈ (0, 1) is the discounting factor specifying the

lookahead span: larger values encourage the Q-value to ac-

count for the future outcome far ahead; low values focus the

Q-value on the immediate effect of the current frames.

Our TCN-based DV ensures that the parameters for pre-

dicting Qt are now shared for all t. As a result, Eq. (5)

forces even the last QK to incorporate knowledge of re-

wards beyond the temporal window of size K. Hence, by

maximizing QK , the generator will implicitly maximize the

rewards for t > K. Contrast this to the original DV produc-

ing a single score for the complete K-frame sequence: due

to lack of causality, the generator is “unaware” that at infer-

ence time the requested video length may exceed K.

Note that the definition in Eq. (5) is confined to a lim-

ited time window of length K to ensure that the memory

consumption remains manageable. Now, our task is to train

the generator by maximizing the Q-value incorporating the

long-term effects of individual predictions. However, since

we keep K fixed, each consecutive Qt in Eq. (5) will be op-

timized w.r.t. to the sum containing one term fewer. That is,

Q1 will approximate a sum of K immediate rewards, Q2 a

sum of K−1 terms, etc. As a result, Q1 incorporates the ef-

fect of the 1st frame on K−1 future frames, whereas QK−1

will only observe the influence of the (K − 1)
th

frame on

the last prediction. It is therefore evident that the Q-values

are not equally informative for modeling the long-term de-

pendencies as supervision to the generator.

To reflect this observation in our training, we introduce

an additional discounting factor β ∈ [0, 1] that shifts the

weight of the long-term supervision to the first frames, but

offsets the reliance on the Q-value for the last predictions.

Concretely, the new term in the generator loss is

LT =
1

K

K
∑

t=1

βtQt. (6)

To summarize, extending the original MoCoGAN training

objective (Eq. 1) into our MDP-based GAN yields

min
DI ,DV

E
xt,xt

[

LI(x
real
t , xfake

t ) + LV (x
real
t ,xfake

t )

+
K
∑

t=1

(

LQ,t(x
real
t ) + LQ,t(x

fake
t )

)

]

,

(7a)

max
G

E
xt,xt

[

LI(x
fake
t ) + LV (x

fake
t ) + LT

]

. (7b)

Here, we split the original objective in Eq. (1) into the

discriminator- and generator-specific losses for illustrative

purposes although the joint nature of the max-min optimiza-

tion problem remains. Following standard practice [5], we

optimize the new objective by alternately updating the dis-

criminators using Eq. (7a) and the generator using Eq. (7b).

4. Quantifying Temporal Diversity

Motivated by our observation of the looping and freez-

ing artifacts (see Fig. 1), we propose an interpretable way to

quantify the temporal diversity of the video. Here, our as-

sumption is that realistic videos comprise a predominantly

unique sequence of frames. The idea then is to compare the

predicted frame to the preceding ones: if there is a match,

this indicates a re-occurring pattern in the sequence.

Let X = (xt)t=1..N be a sequence of frames predicted

by the model. Our diversity measure relies on a distance

function of choice between arbitrary frames d(xi, xj) as

t-d =
1

N

N
∑

i=2

min
j<i

d(xi, xj), (8)

where we use prefix “t-” for disambiguation. Eq. (8) essen-

tially finds the most similar preceding frame and averages

the distance over all such pairs in the sequence. The ob-

vious dual of this metric is to replace the distance function

d(·, ·) in Eq. (8) with a similarity measure s(·, ·) and sub-

stitute the min for the max operation. In this work, we

use two instantiations of Eq. (8): the t-DSSIM employs the

structural similarity (SSIM) [35] in the distance function

DSSIM = 1
2 (1−SSIM); t-PSNR utilizes the peak signal-to-

noise ratio (PSNR) as a similarity measure. Hence, higher

t-DSSIM and lower t-PSNR indicate higher diversity of

frames within a sequence. We show next that despite its ap-

parent simplicity, our proposed metric effectively captures

deficiencies in frame diversity.



Configuration IS ↑ FVD ↓ t-DSSIM ↑ t-PSNR ↓

T
ai

C
h
i Original 1.63 ± 0.05 115.3 ± 6.9 0.013 36.50

Looping-FWD 2.03 ± 0.03 336.7 ± 13.5 0.0062 ∞
Looping-BWD 1.69 ± 0.03 541.7 ± 19.4 0.0062 ∞
Freezing 1.55 ± 0.05 254.4 ± 15.5 0.0062 ∞

U
C

F
-1

0
1

Original 40.74 ± 0.20 472.8 ± 18.5 0.073 27.10

Original + ǫ 36.69 ± 0.23 444.8 ± 17.2 0.107 25.44

Looping-FWD 38.59 ± 0.22 597.2 ± 13.5 0.034 ∞
Looping-BWD 35.16 ± 0.78 737.7 ± 40.0 0.034 ∞
Freezing 32.45 ± 0.22 667.3 ± 17.8 0.034 ∞

Table 1. Comparison of IS, FVD, t-DSSIM, and t-PSNR metrics for ground-

truth videos and videos with purposely crafted artifacts. The Gaussian noise ǫ

is drawn from N (µ = 0, σ2 = 0.03).

Figure 3. t-PSNR and t-DSSIM decomposed as func-

tions of time. In contrast to the ground truth, the diver-

sity of the MoCoGAN samples vanishes with time.

5. Experiments

5.1. Datasets

Following the established evaluation protocol from pre-

vious studies [19, 29], we use the following benchmarks:

(1) Human actions [3]: The dataset contains 81 videos of

9 people performing 9 actions, e.g. walking, jumping,

etc. All videos are extracted with 25 fps and down-

scaled to 64 × 64 pixels. We also add a flipped copy

of each video sequence to the training set. Follow-

ing Tulyakov et al. [29] we used only 4 action classes,

which amounts to 72 videos for training in total.

(2) UCF-101 [22]: This dataset consists of 13 220 videos

with 101 classes of human actions grouped into 5 cat-

egories: human-object and human-human interaction,

body motion, playing musical instruments, and sports.

This dataset is challenging due to a high diversity of

scenes, motion dynamics, and viewpoint changes.

(3) Tai-Chi: The dataset contains 72 Tai Chi videos taken

from the UCF-101 dataset.3 All videos are centered on

the performer and downscaled to 64×64 pixels. We use

this dataset for our ablation studies as it has moderate

complexity, yet represents real-world motion.

5.2. Overview

We first verify that t-PSNR and t-DSSIM effectively

quantify the temporal artifacts. We then employ these met-

rics to analyze the MoCoGAN model [29] w.r.t. these arti-

facts. Next, we study the effect of the time-horizon hyper-

parameters, γ and β, of our MDP approach. Finally, we val-

idate our approach on the Human Actions dataset and on the

more challenging UCF-101 dataset. We compare our model

to TGAN [19] and MoCoGAN, where we find a consistent

improvement of the temporal diversity over the baseline.

3Note that the Tai Chi subset used in the evaluation of MoCoGAN [29]

is not publicly available and could not be obtained due to licensing restric-

tions.

We compute the IS following Saito et al. [19], who

trained the C3D network [28] on the Sports-1M dataset [10]

and then further finetuned on UCF-101 [22]. For FVD we

use the original implementation by Unterthiner et al. [30].

To manage computational time, we calculate the FVD for

the first 16 frames, sampled from 256 videos, and derive

the FVD mean and variance from 4 trials, similar to IS.

5.3. Metric evaluation

We design a set of proof-of-concept experiments to

study the properties of the newly introduced t-PSNR and

t-DSSIM. Concretely, we synthesize the looping and freez-

ing patterns in the ground-truth videos from UCF-101 and

Tai Chi. We construct 16 frames by sampling 8 frames di-

rectly from the dataset and completing the sequence with an

artifact counterpart. Looping-FWD contains a repeating

subsequence from the original video (Original), whereas

Looping-BWD reverses the frame order. The size of the

re-occurring subsequence in Freezing is one. To put the

results in context, we also compare to the mainstream IS as

well as the recent FVD scores and study the robustness of

all metrics to additive Gaussian noise ǫ ∼ N (µ, σ2). The

results are summarized in Table 1.

We observe that t-PSNR and t-DSSIM correlate well

with the more sophisticated IS and FVD. Recall that both

IS and FVD require training a network on videos of fixed

length, hence (i) can be computed only for short-length

videos, due to GPU constraints; (ii) may be misleading (e.g.

Tai Chi results in Table 1) when the training data for the in-

ception network is different from the evaluated data. By

contrast, t-PSNR and t-DSSIM prove to be faithful in quan-

tifying the artifacts we study, as they are data-agnostic and

accommodate videos of arbitrary length. However, our met-

rics are permutation invariant, do not assess the quality of

the frames themselves, and are not robust to random noise.

Hence we stress their complementary role to IS and FVD as

a measure of the overall video quality.



Metric Tai Chi
MoCoGAN

K = 16
MDP model

γ = 0.0
β = 0.0

γ = 0.7
β = 0.7

γ = 0.7
β = 0.9

γ = 0.9
β = 0.7

γ = 0.9
β = 0.9

IS ↑ 1.63 ± 0.05 4.49 ± 0.04 4.52 ± 0.05 4.15 ± 0.04 4.24 ± 0.06 3.92 ± 0.07 3.99 ± 0.04

FVD ↓ 118 ± 5 828 ± 38 1108 ± 50 787 ± 10 782 ± 40 744 ± 40 809 ± 22

t-DSSIM ↑ 0.0135 0.0031 0.0031 0.0024 0.0037 0.0035 0.0035

t-PSNR ↓ 36.48 45.37 57.34 50.16 44.87 44.39 45.06

Table 2. Results of the ablation study of the MDP approach on the Tai Chi dataset. Our MDP configurations assume a selection of

hyperparameters β and γ. For comparison, we include the results from the MoCoGAN baseline. By leveraging the long-term rewards, our

MDP model improves the temporal diversity (t-PSNR and t-DSSIM) and FVD scores at the cost of a slight drop in IS.

Figure 4. Tai Chi comparison between MoCoGAN (top row)

exhibiting the freezing artifact, and our MDP model (bottom row)

generating perceivable motion (e.g. torso).

5.4. MoCoGAN: a case study

Here, we study the temporal diversity of the MoCoGAN

model [29] using our t-PSNR and t-DSSIM scores.

We train MoCoGAN4 on the UCF-101 dataset with tem-

poral windows of size K = 16, and apply our temporal

metrics to the samples from the generator. To enable a

more detailed view of the temporal dynamics, we inspect

the video samples as a function of time in Fig. 3 by plotting

the values of the summands in Eq. (8) for each timestep. To

rule out the possibility of any degenerate phenomena in the

original data, we also plot the corresponding curves of the

ground-truth sequences alongside. This clearly shows that

MoCoGAN exhibits a vanishing diversity of video frames –

a pattern that is not found in the training data.

5.5. MDP approach: an ablation study

Here, we perform an ablation study of our MDP ap-

proach by varying the time-horizon hyperparameters, γ and

β, introduced in Sec. 3.2. Recall that γ controls the times-

pan of the future predictions modeled by the Q-value: lower

values imply a shorter time horizon, whereas higher val-

ues encourage the model to learn long-term dependencies.

Parameter β, on the other hand, specifies how accounting

for the long-term effect is distributed over the timesteps.

High values specify equal distribution; lower values force

the model to encode the long-term effects more in the ear-

lier than in the later timesteps. As a boundary case, we also

4We use the publicly available code provided by the MoCoGAN au-

thors at https://github.com/sergeytulyakov/mocogan.

consider β = 0 and γ = 0 to gage the effect of the archi-

tecture change in the video discriminator (TCN), which is

needed to implement reward causality (c.f . Sec. 3.2). As

quantitative measures, we use the Inception Score (IS) [20],

the Fréchet Video Distance (FVD) [30], as well our tempo-

ral metrics, t-DSSIM and t-PSNR, introduced in Sec. 4.

The results in Table 2 show that by leveraging the in-

creasing values of the time-horizon hyperparameters, our

model clearly improves the temporal diversity in terms of

t-PSNR and t-DSSIM. Moreover, we also observe that the

TCN baseline (γ = 0, β = 0) performs worse than the

original MoCoGAN in terms of temporal diversity. This

is easily understood when considering that the TCN alone

does not have any lookahead into the future (c.f . Fig. 2b).

However, once we enable taking the future rewards into ac-

count by virtue of our MDP formulation, we not only reach

but actually surpass the temporal diversity of the baseline

MoCoGAN, as expected.

The somewhat inferior IS and FVD scores might be due

to their sensitivity to the data prior, as discussed in Sec. 5.3.

This hypothesis is also supported by a qualitative compar-

ison between MoCoGAN and our MDP model. Figure 4

gives one such example; more results can be found in the

supplemental material. While we observe no notable differ-

ence in per-frame quality, the motion between consecutive

frames from our MDP model is more apparent than the sam-

ples from MoCoGAN (e.g., the torso of the performer).

5.6. Human Actions and UCF-101

We perform further experiments on the Human Actions

and the more challenging UCF-101 datasets.5 We select

γ = 0.9, β = 0.7 for our MDP model, which provide

a good trade-off between the improved t-PSNR, t-DSSIM,

FVD and only a slight drop of IS on Tai Chi (c.f . Sec. 5.2).

For reference, we train the TCN baseline, MDP-0, by set-

ting γ = 0 and β = 0 to decouple the influence of modeling

5To ensure a fair comparison, we use the same inception network for IS

and FVD and train other methods [19, 29] using the authors’ implementa-

tion (c.f . supplemental material for details).



Model K
Human Actions UCF-101

IS ↑ FVD ↓ t-DSSIM ↑ t-PSNR ↓ IS ↑ FVD ↓ t-DSSIM ↑ t-PSNR ↓

Raw dataset – 3.39 ± 0.08 49 ± 2 0.0815 23.35 40.80 ± 0.26 452 ± 49 0.0723 28.34

TGAN (Normal) 16 2.90 ± 0.04 977 ± 31 – – 8.11 ± 0.07 1686 ± 24 – –

TGAN (SVC) 16 3.65 ± 0.10 227 ± 10 – – 11.91 ± 0.21 1324 ± 23 – –

MoCoGAN 16 3.53 ± 0.02 300 ± 8 0.0259 33.76 11.15 ± 0.10 1351 ± 49 0.0337 33.29

MoCoGAN-D+

V
16 3.51 ± 0.02 245 ± 6 0.0243 34.79 11.48 ± 0.15 1314 ± 45 0.0358 33.61

MoCoGAN 24 3.47 ± 0.02 318 ± 9 0.0254 35.72 10.49 ± 0.09 1352 ± 49 0.0387 32.63

MDP-0 (ours) 16 3.55 ± 0.03 1413 ± 15 0.0559 33.31 6.16 ± 0.08 2147 ± 87 0.0160 47.36

MDP (ours) 16 3.55 ± 0.02 641 ± 8 0.0604 30.12 11.86 ± 0.11 1277 ± 56 0.0370 32.77

MDP (ours) 24 3.49 ± 0.03 686 ± 12 0.0661 29.39 12.14 ± 0.18 1293 ± 58 0.0454 31.05

Table 3. Comparison of our two MDP models to the state of the art. Temporal metrics are calculated for 64 frames. Our MDP model

consistently improves the temporal video quality in terms of t-PSNR, t-DSSIM, and IS. Moreover, it is more memory efficient as it is

comparable to MoCoGAN K = 24 and can produce videos of arbitrary length in contrast to TGAN. Note that since TGAN [19] can only

generate videos of 16 frames, we do not compute t-PSNR and t-DSSIM for this model here.

(a)

(b)

(c)

Figure 5. Random samples on Human Actions. (a) MoCoGAN,

(b) MDP-0, (c) MDP. Disabling MDP leads to poorer video qual-

ity in (b), while modelling long-term rewards leads to comparable

per-frame quality of the samples from our MDP model (c) w.r.t.

MoCoGAN baseline (a), also reflected by IS, yet tangibly higher

temporal diversity measured by t-PSNR and t-DSSIM. From the

video sequence of 64 frames, every 8th frame is shown.

the long-term effects from the changes in the MoCoGAN

architecture to comply with reward causality. We also train

our MDP model and MoCoGAN on an extended temporal

window K = 24. Recall that higher K require more GPU

memory, but give the model an advantage, since it observes

longer sequences at training time. Therefore, we aim to mit-

igate the artifacts while keeping K constant.

The quantitative results are summarized in Table 3. For

both the Human Actions and UCF-101 datasets, we ob-

serve a consistent improvement of our MDP model in terms

of temporal diversity measured by t-PSNR and t-DSSIM.

Moreover, our model also outperforms MoCoGAN in terms

of IS on both datasets, as well as FVD on the UCF-101

dataset. This can be explained by the more varied nature of

motion on these datasets compared to the Tai Chi dataset,

which makes taking into account future frames more impor-

tant. On the Human Actions dataset, the FVD score for our

model is inferior to MoCoGAN. Recall from Sec. 5.2, that

for IS and FVD metrics we did not fine-tune the inception

classifiers on the Human Actions dataset, which impedes

the interpretability of the scores on this dataset. A visual in-

spection of the per-frame quality (c.f . Fig. 5 for examples)

reveals no perceptual loss compared to the baseline model.

In contrast, disabling MDP modeling (MDP-0) leads to a

clear deterioration in video quality.

On both datasets, our model with K = 16 is also supe-

rior to MoCoGAN with K = 24 in terms of IS and FVD,

and reaches on par performance in terms of t-PSNR and

t-DSSIM. Yet, our MDP-based formulation is significantly

more memory efficient, since extending the temporal win-

dow at training incurs addition memory costs. Concretely,

at training time the MDP model with K = 16 consumes

roughly 20% more memory than MoCoGAN, whereas set-

ting K = 24 for the original MoCoGAN incurs a 50%
higher memory footprint. Note that simply increasing the

number of parameters of DV in MoCoGAN is less effective

than our proposed MDP approach (see MoCoGAN-D+
V in

Tab. 5.6). Also, our MDP model with K = 24 improves

further over K = 16 on UCF-101 and regarding the tempo-

ral metrics on Human Actions. A visual inspection of the

samples from Human Actions did not reveal any perceptible

difference to MoCoGAN or our MDP with K = 16, despite



(a)

(b)

(c)

Figure 6. Random samples of the MoCoGAN baseline and

MDP models on UCF-101. (a) MoCoGAN with looping artifact.

(b) Our MDP-0 without modeling future rewards exhibits a freez-

ing pattern. (c) Our MDP model. In (c), while the first sample has

some looping, the second does not have temporal artifacts. From

the video sequence of 64 frames, every 8th frame is shown.

the inferior IS and FVD scores; we believe this to be an ar-

tifact of the evaluation specifics. The IS score of our MDP

model is slightly inferior only to TGAN [19]. However,

TGAN can produce video sequences of only fixed length,

whereas our MDP model can generate videos of arbitrary

length, owing to the recurrent generator.

The qualitative results in Fig. 6 show that our model

can generate complex scenes from UCF-101 that are visu-

ally comparable to the MoCoGAN samples. Similar to our

observation on Human Actions, MDP-0 produces poorer

samples, which asserts the efficacy of the underlying MDP.

Since the interpretation of the UCF-101 results is difficult,

we examine a visualization of a pairwise L1-distance be-

tween two frames in the video, shown in Fig. 7. The dis-

tance matrix can be represented as a lower triangular two-

dimensional heatmap, owing to the symmetry of L1. We

observe that while MoCoGAN exhibits a looping pattern,

our MDP approach tends to preserve the temporal qualities

of the ground-truth datasets. Note that some samples in Hu-

man Actions can be naturally periodic (e.g. hand-waving),

hence, we do not expect our model to dispense with the

looping pattern completely. The overall results suggest

that modeling long-term dependencies with an MDP con-

sistently leads to more diverse motion dynamics, which be-

comes more apparent in increasingly complex scenes.

(a)

(b)

(c)

Figure 7. Heatmap comparison between ground truth, MoCo-

GAN, and our MDP models trained on the Human Actions

dataset (left) and UCF-101 (right) (different scales). (a) ground

truth, (b) MoCoGAN, (c) MDP (γ = 0.9, β = 0.7). Our MDP

model alleviates the looping artifact on Human Actions, where it

can still appear natural. On the more complex UCF-101, our MDP

is able to approximate the temporal quality of the ground truth.

6. Conclusions and Future Work

We revealed two pathological cases in the videos syn-

thesized by the state-of-the-art MoCoGAN model, namely

freezing and looping. To quantify the temporal diversity, we

proposed an interpretable class of metrics. We showed that

the SSIM- and PSNR-based metrics, t-PSNR and t-DSSIM,

effectively complement IS and FVD to quantify temporal

artifacts. Next, we traced the artifacts to the limited training

length, which inhibits long-term modeling of the video se-

quences. As a remedy, we reformulated video generation as

an MDP and incorporated it into MoCoGAN. We showed

the efficacy of our MDP model on the challenging UCF-

101 dataset both in terms of our temporal metrics, as well

as in IS and FVD scores. Maintaining the recurrent state be-

tween the training iterations or imposing a tractable prior on

the state suggest promising extensions of this work toward

generating long-sequence videos.
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