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Abstract

Light-field cameras have enabled a new class of digital

post-processing techniques. Unfortunately, the sampling re-

quirements needed to capture a 4D color light-field directly

using a microlens array requires sacrificing spatial resolu-

tion and SNR in return for greater angular resolution. Be-

cause recovering the true light-field from focal-stack data is

an ill-posed inverse problem, we propose using blind uni-

tary transform learning (UTL) as a regularizer. UTL at-

tempts to learn a set of filters that maximize the sparsity of

the encoded representation. This paper investigates which

dimensions of a light-field are most sparsifiable by UTL

and lead to the best reconstruction performance. We apply

the UTL regularizer to light-field inpainting and focal stack

reconstruction problems and find it improves performance

over traditional hand-crafted regularizers.

1. Introduction

1.1. Light­field Imaging

In optical imaging, it is often sufficient to characterize

light from a geometric optics perspective that treats all light

as rays. If one can characterize all the rays of light within

a space, then one can simulate all possible images taken

within that space. A ray r = (x, y, z, θ, φ, λ, t) is param-

eterized by its spatial position, its angular orientation, and

its spectral color, as a function of time. We would like to

know the value of the plenoptic function that assigns a non-

negative scalar irradiance P (x, y, z, θ, φ, λ, t) for every ray

in ray space, where P : R3 × S
2 × R++ × R 7→ R+.

Characterizing the plenoptic function over an arbitrary

space is difficult and rarely undertaken in practice. To sim-

plify, often one considers only the rays in a space bounded

by two planes that is free of occluders or light-sources,

where light propagates freely in one general direction (see

Fig. 1). In this context, one can reparameterize the 5-D

spatio-angular coordinates of the plenoptic function in 4 di-
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Figure 1. Parameterization of all light rays within a camera using

the sensor and aperture planes. All rays of interest must intersect

these two planes.

mensions: the (u, v) coordinate where rays intercept the en-

try plane, and the (x, y) coordinate where they intercept the

exit plane. A scalar function over these free space parame-

terizations is called a light-field L(x, y, u, v), and one gen-

erally drops the spectral and temporal dimensions when not

needed.

While this context may seem restrictive at first, it is ex-

actly the situation that arises for light rays inside a cam-

era. Every ray of interest in a camera must enter the camera

through the aperture plane and terminate at the sensor plane.

These two planes provide a natural parameterization for the

rays in the camera. A light-field, once acquired, can be used

to simulate different focal settings by a simple rebinning of

rays to the spatial locations where they would have termi-

nated.

Hand-held light-field cameras, such as those made by

Lytro and Ratrix, acquire the 4D light-field by multiplex-

ing angular coordinates with spatial coordinates using a mi-

crolens array. In effect, each microlens acts as a miniature

camera that takes a picture of the aperture plane from within

the camera, so unique rays are determined by which mi-

crolens picture they end up in and where in said picture

they terminate. For a fixed sensor size, this configuration

reduces the measured spatial resolution by a factor of the
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Figure 2. The anatomy of a light-field. (Left) An intuitive interpretation of light-field is a matrix of subaperture images. (Bottom) Two

subaperture images, highlighted in red and cyan, exhibit a shift in perspective of the scene. Theses differences are highlighted in red and

cyan in the enlarged image, and a 2D diagram shows how the perspective shift relates to the camera geometry. (Top) An epipolar image is

a 2D slice of the 4D light-field in an angular and spatial dimension. Non-specular or Lambertian points in the scene, that emit the same ray

information in all directions, draw out lines as they shift through the perspective dimension.

angular resolution, leading to an undesirable trade-off.

Another way to capture a light-field is through a camera

array or camera gantry. In this setup, a camera is placed at

different locations along a virtual aperture plane. Images

acquired at each location represent the (x, y) coordinates

for some fixed (u, v). For a fixed array size, camera arrays

are limited in their aperture plane resolution by the physical

size of the camera. Increasing the array size adds both bulk

and expense. Camera gantries suffer from poor temporal

resolution, due to the requirement to physically move the

camera.

While this capture method may not be applicable to all

situations, it provides an intuitive interpretation of a light-

field as a 2D array of images, each with a slight shift in

perspective. Each of these subaperture images (SAI) pro-

vides a view of the scene through a specific point in the

real or simulated aperture. If instead of fixing both angular

coordinates, we fix one spatial coordinate and one angular

coordinate, we get what is called an epipolar image (EPI).

Figure 2 shows an example light-field in terms of both its

SAI slices as well as an EPI slice.

Despite the redundant structure of these light-field di-

mensions, traditional light-field imaging methods are bur-

dened with capturing the full 4D light-field structure di-

rectly. Microlens based light-field cameras must trade

off spatial resolution, and camera arrays must add addi-

tional bulk and expense. In response to this sampling bur-

den and the apparent redundancy in the light-field between

SAI views, several compressive light-field imaging meth-

ods have been proposed. One method is focal stack recon-

struction where the light-field is recovered from a series of

images captured with different focal settings. While allevi-

ating some of the sampling burden, reconstructing a light-

field from a focal stack presents an additional challenge:

information about the light-field is invariably lost due to the

dimensionality gap [14]. The full 4D light-field can not be

directly recovered from a 1D set of 2D measurements with-

out enforcing additional assumptions.

1.2. Inverse Problems

Reconstructing a light-field from a set of compressed or

subsampled measurements is an underdetermined inverse

problem. There can be many possible light-fields that will

perfectly match our data. Thus a model is needed to se-

lect one of the many candidate light-fields, by choosing one

that is consistent with our assumptions about the true light-

field’s properties. A common paradigm that we use in this

work is to include the model as regularization in a mini-

mization problem

x̂ = argmin
x

λ‖Ax− y‖22 +R(x) (1)

where A is a wide matrix encoding the linear operation re-

lating the unknown light-field x to the measurement y, λ is

a hyperparameter representing our confidence in the mea-

surements, and R(x) is a regularization function represent-

ing our signal model.

A number of previous works attempt to restore a light-

field from a set of compressed or corrupted measurements,



such as view inpainting, focal stack reconstruction, coded

aperture reconstruction, super-resolution, denoising, and in-

painting. A majority of these approaches can be divided into

linear filtering based methods [6, 7, 14], depth-estimation-

dependent methods [15, 18, 21], deep learning methods

[10, 13, 19, 31, 32, 33], and low-rank or sparse methods

[2, 3, 5, 8, 9, 11, 12, 16, 17, 25, 26, 27, 28]. Most of the

sparsity based methods assume a hand-crafted transform,

such as the discrete cosine transform (DCT) [17] or shear-

lets [27, 28]. A notable exception is [16] that applies K-

SVD to learn a dictionary for light-field patches from train-

ing data apriori. While using hand-crafted transforms, LF-

BM5D [2] does employ instance-adaptive thresholding and

filtering.

Transform sparsity models data as being locally sparsifi-

able. In other words, we assume WPjx is sparse, where Pj

is a matrix of 0 and 1 elements that extracts the jth, for ex-

ample, px×py×pu×pv×pc patch or window from the data,

and W is a transform that sparsifies the patch. Compared to

dictionary methods, that generally synthesize a signal vec-

tor from a set of sparse codes, transform sparsity encourages

a signal to be sparsifiable. These conditions are not neces-

sarily equivalent, except in the uncommon case when the

dictionary and transform are inverses of each other.

In transform learning, we attempt to learn a transform

from data, instead of using a hand-crafted transform such

as wavelets or the DCT. There are multiple modes of trans-

form learning. One mode is to use a set of training signals

{x1, . . . ,xK} and learn a transform W that is effective for

sparsifying patches drawn from those signals. In words, we

want W such that WPjxk is typically sparse. One way

this can be done is by minimizing the following cost func-

tion

Ŵ = argmin
W∈U

min
{zj,k}

K
∑

k=1

∑

j

‖WPjxk−zj,k‖
2
2+γ

2‖zj,k‖0,

(2)

where U denotes the set of unitary matrices. This approach

bears many similarities to a standard dictionary learning for-

mulation

D̂ = argmin
D

min
{zj}

K
∑

k=1

∑

j

‖Pjxk −Dzj,k‖
2
2 + γ2‖zj,k‖0.

(3)

Transform learning methods have been applied in the con-

text of 2D image denoising [23], MR image reconstruction

from undersampled k-space measurements [24], and video

denoising [30].

1.3. Contributions

Because of the unitary invariance of the ℓ2 norm, unitary

transform learning is equivalent to a formulation of unitary

dictionary learning. Thus our proposed method is most sim-

ilar to that of Marwah et al. [16]. The work proposed here

differs in two major aspects.

First, we do not learn our transforms from training data

a priori. We instead opt for a blind UTL method that

learns sparsifying transforms blindly in a instance-adaptive

fashion. To the authors’ knowledge, this is the first time

instance-adaptive transform or dictionary sparsity has been

applied to light-field imaging.

Second, we investigate the sparsifiability of different di-

mensions of the light-field. [16] used a 5D (4D + color)

light-field patch in learning and fitting their dictionary.

While dictionary atoms describing epipolar patches or spa-

tial patches could, in theory, be learned inside of a 5D patch,

often dense patches are learned. Due to the non-convexity

of these learning methods, it is unclear if the learned dense

5D patches are optimal. Indeed much of the prior work can

be divided among epipolar methods such as [27, 28, 31] and

4D+ methods [2, 11, 17, 19].

This work explores multiple approaches to choosing

light-field patches for transform and dictionary learning, in-

cluding subaperture image (SAI) patches (x, y, c), epipolar

image (EPI) patches in both the horizontal (x, u, c) and ver-

tical (y, v, c) directions as well as full dimensional light-

field (LF) patches (x, y, u, v, c). In a hand-crafted and

pre-learned setting, applying a method only spatially along

subaperture images completely ignores light-field structure.

In contrast, in the blind setting, features can in theory be

learned more effectively due to the light-field redundancy.

As different light-field imaging applications may benefit

more from different types of patches, we compare different

patch dimension choices on a couple of inverse problems

in light-field imaging: inpainting and reconstruction from

focal stack images.

Section 2 provides a general description of unitary trans-

form learning (UTL) as used in this work. For a more de-

tailed description of UTL, including a convergence analy-

sis, see [24]. Section 3 applies UTL with different patch

structures to inverse problems in light-field imaging. Sec-

tion 4 compares the performance of the different methods

and analyzes the learned transforms.

2. Methods

We apply blind unitary transform learning as a regular-

izer for the problem of recovering a light-field x from mea-

surements y by minimizing the following cost function us-

ing block coordinate descent (BCD):

x̂ = argmin
x∈RN

min
{zj∈RN}

min
W∈U

λ‖Ax− y‖22 +
∑

j

‖WPjx− zj‖
2
2 + γ2‖zj‖0. (4)

We let A ∈ R
M×N represent our system model that gen-

erated vectorized measurements y ∈ R
M . Here Pj ∈



{0, 1}n×N is a matrix that extracts the jth px × py × pu ×
pv × pc patch from a vectorized light-field x and we sum

over all such j with overlapping windows of stride 1. Here,

‖·‖0 denotes the so-called zero “norm” or counting measure

(number of nonzero vector elements).

While (4) is a nonconvex cost function, due both to the

nonconvex zero “norm” and product between W and x,

applying BCD to it is globally convergent, i.e., BCD con-

verges to a local minima from any initial starting point [24].

Note that without a constraint on W , a trivial minimizer

would be W = 0, zj = 0. A unitary constraint avoids this

problem and has an efficient closed-form update.

We alternate between minimizing the sparse codes {zj},

the unitary transform W , and the light-field x. Minimiz-

ing (4) with respect to zj leads to the following proximal

problem with known closed-form solution:

ẑj = argmin
zj

‖WPjx− zj‖
2
2 + γ2‖zj‖0 (5)

ẑj = Hγ(WPjx) (6)

where Hγ(·) is element-wise hard-thresholding by thresh-

old γ

Hγ(a) =

{

0 |a| ≤ γ

a |a| > γ.
(7)

Compared to dictionary learning, where sparse coding is

NP-Hard and requires an expensive step such as Orthogo-

nal Matching Pursuit (OMP), transform learning provides a

simple closed-form sparse code update.

Defining X = [P1x . . .PJx] and Z = [z1 . . . zJ ], we

rewrite the W update as a Procrustes problem with known

closed-form solution:

Ŵ = argmin
W∈U

∑

j

‖WPjx− zj‖
2
2

= argmin
W∈U

‖WX −Z‖2F = UV T (8)

where U ,Σ,V T denotes the SVD of ZXT . Because W

is an n × n matrix, where n is the number of elements in a

patch, this SVD is performed on a relatively small matrix.

The light-field update is then a standard quadratic mini-

mization problem

x̂ = argmin
x

λ‖Ax− y‖22 +
∑

j

‖WPjx− zj‖
2
2

= (λATA+
∑

j

P T
j Pj)

−1(λATy +
∑

j

P T
j W Tzj)

(9)

Because
∑

j P
T
j Pj is a diagonal matrix, system models

that have a diagonizable Hessian matrix ATA, such as de-

noising, inpainting or deblurring, are efficiently computed

Algorithm 1 Blind UTL

Require: x(0), W (0) y, A, λ, γ > 0
Let G =

∑

j P
T
j Pj

for i = 1, . . . , I do

Construct X = [P1x
(i−1) . . .Pjx

(i−1) . . .PJx
(i−1)]

U ,Σ,V T = svd(Z(i−1)XT )
W (i) = UV T

Z(i) = Hγ(W
(i)X)

Construct x̄ =
∑

j P
T
j W (i)TZ

(i)
:,j

x(i) = (λATA+G)−1(λATy + x̄)
end for

x x*
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Figure 3. Regularization based on transform learning can be in-

terpreted as a filter bank followed by a data update term. A filter

bank can be interpreted as a shallow Convolutional Neural Net-

work (CNN). The red and yellow regions correspond to (6) and

the green and blue regions correspond to (9). (The update of the

transform W in (8) each iteration is not pictured.)

in closed-form. For all other cases, running a few iterations

of conjugate gradient provides a suitable approximation.

Algorithm 1 summarizes a patch-wise implementation of

blind unitary transform learning as described above. An-

other interpretation can be understood by examining the re-

lationship of the rows of W with the original light-field x.

Each row of W performs an inner-product with a sliding

window in x, which is equivalent to filtering [22]. Thus the

set of sparse codes Z represent the thresholded output of

a filter bank of n filters, where n is the number of rows of

W . Applying the inverse transform W T and aggregating

is equivalent to filtering with matched filters and summing



Figure 4. Central subaperture images from The (New) Stanford

Light Field Archive [1]. From left to right, (Top) amethyst, Lego

knights, crystal ball, (Middle) bracelet, jelly beans, bunny, eu-

calpytus, (Bottom) treasure chest, Lego truck, Lego bulldozer.

Images resized independently.

the channels. Figure 3 shows a diagram of the flow of x

in one iteration. (Note that it does not show the update of

the filters W ). Thus we can interpret each iteration of blind

unitary transform learning as an instance-adaptive shallow

CNN, where the filters are learned dynamically in an un-

supervised fashion, followed by a data update that incorpo-

rates our prior knowledge on y and A.

3. Experiments

We validated the proposed method on 10 light-fields

from the Stanford Light-field Dataset [1]; see Figure 4.

From each light-field, we extracted the central 5 × 5 views

and spatially downsampled by a factor of 3 for testing our

method. For each patch shape, we tuned all hyperparame-

ters, unless otherwise stated, using the Tree of Parzen Esti-

mators as implemented in the hyperopt Python package

[4]. For hyperparameter tuning, we used smaller 5 × 5 ×
192× 192 light-fields cropped from the bunny, crystal ball,

and Lego bulldozer light-fields to reduce tuning time. We

used peak signal-to-noise ratio (PSNR) as the criterion for

tuning and for method evaluation.

We investigated light-field inpainting and light-field re-

construction from focal stack images. In all cases, we ini-

tialized the transform W with the px × py × pu × pv × pc-

point DCT and ran UTL for 120 iterations.

s = 1.5 s = -0.5

Figure 5. An example 2-image focal stack and the amount of pixel

shift, s, applied to light-field before summing. Different jelly

beans come into focus as the focal plane passes through the scene

Method n
Patch Shape

(px, py, pu, pv, pc)
γ

SAI UTL 108 (6, 6, 1, 1, 3) 0.0625

EPI UTL 135 (9, 1, 5, 1, 3) 0.0582

LF UTL 243 (3, 3, 3, 3, 3) 0.0454

Table 1. Patch Shape and Thresholds for inpainting problem. For

brevity, we only list (x, u) patch dimension for EPI UTL, although

we learn filters for the corresponding patches in (y, v) as well.

3.1. Inpainting light­fields

We apply blind UTL to light-field inpainting by mini-

mizing (4) with A = diag(vec(M)) where

M [i, j, k, l, c] =

{

1 (i, j, k, l, c) ∈ Ω

0 otherwise
(10)

and Ω is the set of samples taken of the light-field. In our

experiments, Ω is such that only 20% of all samples are kept

at random. Samples in Ω were drawn independently for

each light-field tested. We used spatial cubic interpolation

to initialize x.

For the inpainting problem, we let λ = 108 and tuned

the patch shape and sparsity threshold, γ, for all three patch

shapes. In all cases, we used the full color patch dimen-

sion of 3. For SAI UTL and LF UTL, patch dimensions

in x and y were constrained to be equal, while in LF UTL

patch dimensions in u and v were similarly constrained. All

methods had an upper bound on the largest patch that could

be chosen due to memory constraints, as updating W in a

blind setting precludes computing Z on-the-fly. While SAI

UTL and EPI UTL did not reach that bound, and instead set-

tled on smaller patch sizes, LF UTL did, due to its increased

dimensionality. Table 1 lists the tuned hyperparameters for

the three cases.

We applied each of the three methods with their tuned

hyperparameters to the 10 light-field datasets. Table 2

shows the PSNR of each of the reconstructions. LF UTL

surpassed EPI UTL by 1.5dB and SAI UTL by 6.2dB on

average. Figure 6 compares the performance of each of the

methods on a zoomed in section of the Lego truck light-

field. LF UTL is able to preserve fine features more accu-

rately than any of the other methods.



Truth Zero-Filled SAI Cubic Interpolation

SAI UTL EPI UTL LF UTL

Figure 6. Zoomed in view of the central perspective of inpainted Lego truck light-fields.

Inpainting Cubic Interpolation Proposed blind UTL methods

SAI EPI SAI UTL EPI UTL LF UTL

amethyst 28.50 dB 26.74 dB 31.72 dB 37.67 dB 39.79 dB

crystal ball 21.56 dB 21.29 dB 25.68 dB 30.22 dB 30.71 dB

Lego bulldozer 26.69 dB 23.95 dB 29.94 dB 34.02 dB 35.63 dB

bunny 32.21 dB 28.71 dB 35.21 dB 39.49 dB 42.04 dB

bracelet 23.28 dB 22.84 dB 27.99 dB 34.70 dB 34.90 dB

eucalyptus 29.32 dB 28.15 dB 32.24 dB 37.85 dB 39.69 dB

Lego knights 26.40 dB 24.16 dB 31.29 dB 34.00 dB 36.68 dB

treasure chest 24.57 dB 23.19 dB 27.86 dB 32.92 dB 32.46 dB

jelly beans 35.82 dB 32.35 dB 38.16 dB 40.41 dB 41.81 dB

Lego truck 28.95 dB 27.86 dB 32.17 dB 38.25 dB 40.62 dB

Average 27.73 dB 25.92 dB 31.23 dB 35.95 dB 37.43 dB

Table 2. PSNR for each recovered light-field using different inpainting methods.

3.2. Reconstruction from Focal Stack Images

The capture of a photograph in a particular focal setting

can be modeled by:

I(x, y, c) =

∫

A

L(x+ su, y + sv, u, v, c) du dv, (11)

where A is the support set of the aperture, and s is a pa-

rameter determined by the focus setting. Thus we can col-

lect photographs with a varying focal plane by appropriately

adjusting s; see for example Figure 5. For further informa-

tion regarding photograph capture and its relation to Fourier

subspaces, see [20, 14].

We apply As by shifting subaperture images by s times

their u, v coordinates and summing. A then represents the

application of each As in a stack. We used linear interpo-

lation to shift the subaperture images. Our measurement

model is then

y = Ax+ η (12)

where η denotes additive white Gaussian noise with stan-

dard deviation σ. In our experiments, we retrospectively

added η with σ = 1% of the peak value of the photographs

y. We used shift parameters s ∈ {−1,−0.5, 0, 0.75, 1.5} to

simulate 5 photographs taken with our model.

We compare our proposed method against an edge-



Truth Back Projection Edge-Preserving SAI UTL EPI UTL LF UTL

Figure 7. Zoomed in view of the central perspective of Lego knight light-fields reconstructed using different methods.

Focal Stack Scaled Back Edge Proposed

Reconstruction Projection Preserving SAI UTL EPI UTL LF UTL

amethyst 28.94 dB 33.39 dB 29.11 dB 36.19 dB 37.23 dB

crystal ball 20.33 dB 23.30 dB 21.83 dB 24.65 dB 24.73 dB

Lego bulldozer 23.07 dB 28.70 dB 25.36 dB 30.01 dB 29.35 dB

bunny 29.94 dB 35.40 dB 31.57 dB 38.40 dB 39.59 dB

bracelet 18.23 dB 24.46 dB 23.18 dB 26.26 dB 24.51 dB

eucalyptus 30.40 dB 33.83 dB 30.37 dB 36.72 dB 37.56 dB

Lego knights 21.93 dB 25.73 dB 24.72 dB 28.10 dB 27.75 dB

treasure chest 24.85 dB 29.63 dB 25.77 dB 32.13 dB 32.15 dB

jelly beans 25.08 dB 35.96 dB 32.90 dB 37.92 dB 38.44 dB

Lego truck 24.75 dB 34.24 dB 29.68 dB 37.44 dB 38.42 dB

Average 24.75 dB 30.46 dB 27.45 dB 32.78 dB 32.97 dB

Table 3. PSNR for each light-field using different focal stack reconstruction methods

preserving regularizer of the form:

x̂ = argmin
x

1

2
‖Ax− y‖22

+ βx,y
∑

i

ψ([Cx,yx]i; δx,y)

+ βu,v
∑

j

ψ([Cu,vx]j ; δu,v), (13)

where ψ(·, δ) denotes the Huber potential function, a

smooth approximation of an absolute value function. δk,l is

a hyperparameter controlling the function curvature. Ck,l

applies finite differences along dimensions k and l. We

tuned βx,y, δx,y, βu,v, δu,v on the same set as the UTL

methods, which resulted in 7.47, 98.9, 3 × 10−2, 6 × 10−4

for each parameter respectively.

For each of the UTL methods, we used the patch shape

and threshold learned during inpainting and tuned λ, which

resulted in 4.14× 10−2, 2.61× 10−1, 2.27× 10−1 for SAI,

EPI, and LF UTL respectively. For the data update, we used

5 conjugate gradient iterations. Table 3 shows the PSNR

of each of the methods applied to the 10 light-fields in our

dataset. For this problem, LF UTL only out performed EPI

UTL by 0.19dB on average. Figure 7 shows zoomed in

views from the Lego knights light-field.

4. Discussion

Figure 8 shows the reshaped rows of the transform

learned on the epipolar patches of amethyst during blind

inpainting. Each of these transform patches is effectively

convolved with the light-field for regularization. The fil-

ters have learned the mostly vertical linear structure of the

epipolar domain by learning vertical finite-difference-like

operations. We also see the slight tilt in some of the struc-

tures, reflecting the skew in out-of-focus pixels. As ex-

pected, most of this vertical structure is captured in lumi-

nance rather than color channels.

Figure 9 shows the filters learned using SAI UTL during

blind inpainting. Similar to the EPI case, we find finite-

difference like structures in the luminance channels, but

with less vertically aligned structure. In both cases, UTL

learned shifted versions of the same filter. This is a weak-

ness of the unitary constraint, because shifted versions of

the same filter can be orthogonal, but provide no new in-

formation for regularizing the reconstruction. The unitary

constraint also forces one to learn a low-pass filter, which

one does not expect to induce sparsity in general. We leave

it as future work to investigate more effective constraints

on the learned filters, such as Fourier magnitude incoher-



Learned EPI Transform3D DCT

Figure 8. Comparison of the filters learned using EPI UTL (right) with those of the 3D DCT (left) used to initialize the blind inpainting

method. The learned filters adapt to the vertical linear structure of the EPI light-field slices.

3D DCT
Learned Spatial
Transform

Figure 9. Comparison of the filters learned using SAI UTL (right)

with those of the 3D DCT (left) used to initialize the method.

ence [22] or tight-frame conditions on a wide transform, or

some other consideration of light-field physics.

We found that full dimensional patches best represented

our data, but their increased dimensionality limited their

receptive field in any one dimension due to memory con-

straints in storing Z. As we assume many (but not all) of

the rows of Z to be sparse, we believe UTL can be opti-

mized for more efficient storage. An alternative may be to

store a subsampled or sketch of Z, and only approximate

the W update. This work focused on maximally overlap-

ping patches with a stride of 1, but larger strides could be

used. We leave it as future work to investigate how these

memory saving techniques impact reconstruction accuracy.

Because EPI patches were able to regularize the data

nearly as well as full LF patches, presumably because of

the shifting structure of the EPI dimensions, it would be in-

teresting to see if a union of SAI and EPI transforms could

capture the light-field structure as well as full LF patches.

Such unions have been effective in other inverse problems

[34]. Combining adaptive sparsity with other regularizers

such as low-rank models may also be effective [29].

5. Conclusion

This work investigated the effectiveness of using learned

sparsifying transforms for different patch structures to reg-

ularize light-field inverse problems. We found that full-

dimensional patches provided the best data model, but EPI

patches could capture most of the signal model with a lower

dimensionality. We validated our proposed light-field mod-

els on two inverse problems: light-field inpainting and fo-

cal stack reconstruction. In both cases, regularization using

transform learning yielded better reconstruction PSNR than

simple hand-crafted methods.
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