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Abstract

Recently, deep convolutional neural networks (CNNs)

have been widely used in image super-resolution (SR). Most

state-of-the-art CNN-based SR methods focus on improv-

ing the performance by designing deeper and wider net-

works. However, 1) using deeper networks makes the net-

work difficult to train; 2) the relationships of features have

not been thoroughly explored, therefore hindering the rep-

resentational power of CNNs. In this paper, we investi-

gate an effective end-to-end neural structure for more pow-

erful feature expression and feature correlation learning.

Specifically, we propose a residual block attention networks

(RBAN) framework, which consists of two types of attention

modules to efficiently exploit the feature correlations in spa-

tial and channel dimensions for stronger feature expression.

The proposed RBAN framework is constituted of a series

of residual attention groups, which is further composed of

several repeated residual block attention block to not only

fully exploit the hierarchical features from different convo-

lutional layers but also efficiently capture the contextual

information and interdependencies among channels. Ex-

perimental results demonstrate the superiority of our RBAN

network over state-of-the-art SR methods in terms of both

quantitive and visual quality.

1. Introduction

Single image super-resolution (SISR) [5] recently has

received much attention, whose goal is to produce a vi-

sually high-resolution (HR) output from its low-resolution

(LR) input. SISR is widely used in a wide range of ap-

plications, such as medical imaging [19], face recognition
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[32], and depth map estimation [9]. However, image SR

is an ill-posed problem, since multiple HR solutions can

map to any LR input. To handle such an inverse problem,

a great number of SR methods have been proposed, rang-

ing from early interpolation-based [29] and reconstruction-

based [4], to recent learning-based methods [23]. In recent

years, due to the powerful feature representation and data

inference ability, deep convolution neural networks (CNNs)

[2, 10, 28, 31] have achieved significant performance im-

provement in image SR. These methods generally learn to

map an interpolated or LR input to its HR output in an

end-to-end manner. Most existing CNN-based SR meth-

ods focus on designing a deeper and wider neural network.

Among them, Dong et al. [2] firstly introduced a shallow

CNN with three layers into image SR and obtained impres-

sive results over traditional SR methods. Later, deeper net-

works VDSR [10] and DRCN [11] were then proposed and

obtained significant performance gain over SRCNN, mainly

due to the deeper network depth (up to 20 layers). However,

increasing the depth directly makes the network difficult to

train. To ease this problem, He et al. [7] proposed effective

residual learning strategy, which significantly eases the dif-

ficulty of training a very deep network. Such residual learn-

ing strategy was then widely used in many CNN-based SR

algorithms [12, 15, 21]. Based on residual learning, Lim

et al. [15] designed a very deep network EDSR (about 165

layers) by stacking simplified residual blocks. Zhang et al.

[31] built a very deep residual dense network (RDN) to uti-

lize the hierarchical features from different convolutional

layers. The great performance gain on EDSR and RDN in-

dicates the crucial importance of the depth representation

for image SR.

On the other hand, many CNN-based methods exploit

the effect of attention in CNNs to improve the performance

[27, 24, 17, 25, 30, 8]. Wang et al. [24] proposed non-local

neural network to compute the response at a position as a

weighted sum of the features at all spatial positions. Liu

et al. [16] later applied non-local neural network to image

restoration task. Unlike these works that exploit the spatial

correlations of features, some other work [8, 30, 25, 14] at-
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Figure 1. Zoom visual results for 4× SR on “barbara” from Set14.

tempt to explore the channel correlation in CNNs. In [14],

Li et al. proposed feedback blocks to improve feature ex-

pression. In [8], Hu et al. proposed squeeze-and-excitation

(SE) block to model channel-wise relationships to obtain

remarkable performance gain in image classification task.

Later in [30], a very deep residual channel attention net-

work (RCAN) based on SE block was proposed to obtain

remarkable results. In [1], second-order channel attention

was proposed to improve feature expression by exploiting

feature statistics higher than first-order.

Inspired by the above methods, we investigate the effect

of attention in CNNs, and propose a deep residual block at-

tention network (RBAN) that explores feature correlations in

both spatial and channel dimensions. Specifically, to fully

utilize the representational power of CNNs, our RBAN net-

work consists of a series of residual attention groups to for-

mulate a deep network. To further enhance feature corre-

lation learning, each residual attention group can be further

composed of several repeated residual block attention mod-

ules to capture the spatial and channel-wise feature corre-

lations efficiently. As shown in Fig. 1, our RBAN obtains

sharper results and achieves better visual quality compared

with other state-of-the-art SR methods.

2. Related Work

During the past decade, many image SISR methods have

been proposed in the image processing community, in-

cluding interpolation-based [29] and CNN-based methods

[2, 20, 12, 11, 20, 13, 21, 31, 30]. Here, we briefly re-

view works related to CNN-based SR methods and attention

mechanism.

CNN-based SR models. In recent years, CNN-based meth-

ods have been widely studied in image SR, due to their

strong power of feature expression. In general, such meth-

ods treat SR as a regression problem, and learn an end-

to-end mapping from low resolution (LR) to high reso-

lution (HR) directly. Most existing CNN-based methods

mainly focus on designing a deeper or wider network struc-

ture [2, 10, 11, 6, 31, 30]. For example, Dong et al. [2]

first introduced a shallow three-layer convolutional network

(SRCNN) for image SR. Later, Kim et al. designed deeper

VDSR [10] and DRCN [11] (more than 16 layers). To fur-

ther improve the performance, Lim et al. [15] proposed very

deep and wide networks EDSR/MDSR by stacking modi-

fied residual blocks. The significant performance gain in-

dicates the depth and width of representation plays a key

role in image SR. In addition to focusing on increasing the

depth of the network, some other networks, such as NLRN

[16] and RCAN [30], improve the performance by consid-

ering feature correlations in spatial or channel dimension.

Attention mechanism. Attention in human perception gen-

erally means that human visual systems adaptively process

visual information and focus on salient regions. In recent

years, several trials have embedded attention processing to

improve the performance of CNNs for various tasks, such as

classification tasks [8, 24]. Wang et al. [22] proposed resid-

ual attention network via trunk-and-mask attention for im-

age classification. Another attention-based network , called

non-local neural network [24], incorporates non-local oper-

ations for spatial attention in video classification. On the

contrary, Hu et al. [8] proposed SENet to exploit channel-

wise relationships to achieve significant performance gain

for image classification. Some other works explore feature

correlations in both spatial and channel dimensions for bet-

ter performance. For example, Woo et al. [25] further pro-

posed convolutional block attention module (CBAM) by ex-

ploiting both spatial and channel-wise feature relationships

for better performance in object detection. Therefore, spa-

tial and channel attention contribute to enhancing the dis-

criminative ability of the network.



Motivated by the above observations, we propose a deep

residual block attention network (RBAN) for better feature

correlation for image SR.

3. Residual Block Attention Network

3.1. Network Framework

As shown in Fig. 2, our RBAN mainly consists of three

parts: shallow feature extraction, residual attention group

based deep feature extraction and upscaling part. Given ILR

and ISR as the input and output of RBAN. As explored in

[15, 30], we apply only one convolutional layer to extract

the shallow features F0 from the LR input

F0 = HSF (ILR), (1)

where HSF (·) stands for convolution operation. Then the

extracted features F0 is used for deep feature extraction by

residual attention group (RAG) based module. Thus the

deep features can be obtained via

FDF = HRAG(F0), (2)

where HRAG represents the RAG based deep feature ex-

traction module, which consists of G RAG modules (see

Fig. 2). The upscale module first upsamples the deep fea-

ture FDF , followed by reconstructing super-resolution (SR)

image with a convolutional layer

ISR = HR(HUP (FDF )) = HRBAN (ILR), (3)

where HR(·), HUP (·) and HRBAN represent the recon-

struction layer, upsample layer and the function of the pro-

posed RBAN, respectively.

During training, our RBAN is optimized with loss func-

tion. To verify the effectiveness of our RBAN, we adopt the

same loss functions as previous works (e.g., L1 loss func-

tion). Given a training set with N LR images and their HR

counterparts denoted by {IiLR, I
i
HR}

N
i=1, the goal of train-

ing RBAN is to optimize the L1 loss function

L(Θ) =
1

N

N∑

i=1

||HRBAN(Ii
LR

) − I
i
HR||1, (4)

where Θ denotes the parameter set of RBAN. The loss func-

tion is optimized by stochastic gradient descent algorithm.

Our RBAN is composed of residual attention group (RAG)

based deep feature extraction to enhance feature expression,

which will be shown in the next section.

3.2. Residual Attention Group (RAG)

As shown in Fig. 2, residual attention group (RAG) is the

basic component of RBAN, which is further composed of

several repeated residual block attention modules (RBAM).

A single RAG in the g-th group is represented as

Fg = Hg(Fg−1) = Hg(Hg−1(· · ·H1(F0) · · · )), (5)

where Hg denotes the function of g-th RAG; Fg and Fg−1

are the output and input of the g-th RAG. To stabilize the

training of our deep network, we introduce residual learning

via

FDF = F0 + FG. (6)

To make better use of the abundant information from the

LR inputs and intermediate features, we make a further step

towards residual learning. As shown in Fig. 2, we stack

M residual block attention modules (RBAM) in each RAG.

The m-th RBAM in the g-th RAG is represented as

Fg,m = Hg,m(Fg,m−1) = Hg,m(Hg,m−1(· · ·Hg,1(Fg−1) · · · )),

where Fg,m, Fg,m−1 and Hg,m are the output, input and

the corresponding function of the m-th RBAM in the g-th

RAG. To make the network focus on more informative fea-

tures, a skip connection is also introduced in each RAG,

thus producing the output of g-th RAG as

Fg = Fg−1 + Fg,M . (7)

With such skip connection, more abundant low-frequency

information can be bypassed during training.

3.3. Spatial and Channel Attention Modules

Apart from depth and width, attention also plays a key

role in the architecture design, which has been widely stud-

ied in previous works [22, 27, 30]. Attention not only tells

where to focus, but also improves the representation of in-

terests, i.e., concentrating on more informative features and

suppressing unnecessary ones. For example, Zhang et al.

[30] proposed a deep CNN-based SR method to explore

channel-wise feature correlations. To further enhance dis-

criminative learning of our network, we simultaneously ex-

ploit spatial and channel feature correlations with two types

of attention modules.

Given an intermediate feature map F ∈ RH×W×C of the

m-th RBAM in the g-th RAG as input, our RBAM sequen-

tially infers a spatial attention map Ms ∈ RH×W×1 and a

channel attention map Mc ∈ R1×1×C . The main attention

process can be formated as

F
s = Ms(F)⊗ F, F

sc = Mc(F
s)⊗ F

s, (8)

where ⊗ denotes element-wise multiplication. Fig. 3 illus-

trates the computation process of each attention map.

Spatial attention (SA) module. We produce a spatial

attention map Ms(F) by utilizing the intra-spatial relation-

ships of features. SA focuses on which part is more in-

formative. It is known that using contextual information



Figure 2. Network framework of our residual block attention network (RBAN)

Figure 3. Diagram of residual block attention module (RBAM), which consists of a spatial and channel attention module.

is crucial to determine which spatial locations should be

emphasized [26], and a large receptive field is helpful to

extract much contextual information. Thus, dilated con-

volution is to have a larger receptive filed. To reduce the

number of parameters and facilitate network training, we

adopt the “bottleneck” structure as in ResNet [7]. Specifi-

cally, the feature F ∈ RH×W×C is projected into a lower

dimension RH×W×C/r with 1× 1 convolution to combine

and compress the feature map across the channel dimen-

sion. After the reduction, we use two 3× 3 dilated convolu-

tion to acquire contextual information effectively. Finally,

the features are then projected into our spatial attention map

RH×W×1 with 1 × 1 convolution. In summary, the spatial

attention map can be computed as

Ms(F) = h1×1
3 (h3×3

2 (h3×3
1 (h1×1

0 (F)))), (9)

where h represents a convolution, and the superscripts de-

notes the convolutional filter size.

Channel attention (CA) module. In our RBAN, the

channel attention module takes the output Fs of spatial at-



tention module as input. Unlike spatial attention focusing

on exploiting intra-spatial relationship of features, channel

attention module attempts to exploit inter-channel relation-

ship of features. To compute the channel attention map effi-

ciently, we first aggregate spatial information of a feature

Fs by average pooling, thus generating a channel vector

Fc ∈ R1×1×C . Then we take the channel vector Fc as

the input of a multi-layer perceptron MLP) to estimate the

channel attention map. To reduce the parameter overhead,

the hidden activation size is set to R1×1×C/r, where r is the

reduction ratio. In summary, the channel attention map is

formated as

Mc(F) = f(W1(W0AvgPool(Fs))), (10)

where f denotes the sigmoid function, W1 and W0 are the

weight set of MLP.

Arrangement of two attention modules. Given an in-

put image, our SA and CA modules produce complemen-

tary attention maps, which focus on intra-spatial and inter-

channel relationships of features, respectively. In RBAN,

we found that sequential arrangement of such attention

modules achieves better results. More results about the ef-

fects of two attention modules can be found in the following

sections.

4. Experiments

Table 1. Effects of different attention methods. We report the best

PSNR (dB) values on Set5 (4×) in 5.6× 105 iterations.

a b c d e f

CA � � � � �

SA � � � � �

CA→SA � � � � �

SA→CA � � � � �
31.86 31.92 31.94 31.81 32.00

Datasets. Following [15, 31, 1], we use 800 images from

DIV2K dataset [15] as training set. During training, we

randomly crop RGB patches from the HR images and aug-

ment the HR patches with randomly rotation and horizontal

flip. The LR patches are obtained by downsampling the HR

patches with bicubic interpolation. For testing, we use five

benchmark datasets: Set5, Set14, BSD100, and Urban100.

We set the number of RAG and RBAM as R = 10,M =
10. We train our model with Adam optimizer with β1 =
0.9, β2 = 0.999, and ǫ = 10−8. The initial learning rate is

set to 10−4, and decreases to half every 200 epochs of back-

propagation. Our model is implemented with Pytorch[18]

framework with a NVIDIA 1080Ti GPU.

We compare our RBAN with several state-of-the-art SR

methods: SRCNN [2], FSRCNN [3], VDSR[10], LapSRN

[12], MemNet [21], EDSR [15], SRMD[28], DBPN [6],

Table 2. Results of various SR methods. The best and second best

values are highlighted in bold and underline in italic.

Method
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.66/.9299 30.24/.8688 29.56/.8431 26.88/.8403

SRCNN ×2 36.66/.9542 32.45/.9067 31.36/.8879 29.50/.8946

FSRCNN ×2 37.05/.9560 32.66/.9090 31.53/.8920 29.88/.9020

VDSR ×2 37.53/.9590 33.05/.9130 31.90/.8960 30.77/.9140

LapSRN ×2 37.52/.9591 33.08/.9130 31.08/.8950 30.41/.9101

MemNet ×2 37.78/.9597 33.28/.9142 32.08/.8978 31.31/.9195

EDSR ×2 38.11/.9602 33.92/.9195 32.32/.9013 32.93/.9351

SRMD ×2 37.79/.9601 33.32/.9159 32.05/.8985 31.33/.9204

DBPN ×2 38.09/.9600 33.85/.9190 32.27/.9000 32.55/.9324

RDN ×2 38.24/.9614 34.01/.9212 32.34/.9017 32.89/.9353

RCAN ×2 38.27 .9614 34.12 .9216 32.41 .9027 33.34 .9384

SAN ×2 38.31 .9620 34.07 .9213 32.41 .9027 33.10 .9370

RBAN ×2 38.28/.9616 34.29/.9234 32.45/.9032 33.48/.9400

RBAN+ ×2 38.35/.9619 34.44/.9244 32.50/.9038 33.73/.9416

Bicubic ×3 30.39/.8682 27.55/.7742 27.21/.7385 24.46/.7349

SRCNN ×3 32.75/.9090 29.30/.8215 28.41/.7863 26.24/.7989

FSRCNN ×3 33.18/.9140 29.37/.8240 28.53/.7910 26.43/.8080

VDSR ×3 33.67/.9210 29.78/.8320 28.83/.7990 27.14/.8290

LapSRN ×3 33.82/.9227 29.87/.8320 28.82/.7980 27.07/.8280

MemNet ×3 34.09/.9248 30.01/.8350 28.96/.8001 27.56/.8376

EDSR ×3 34.65/.9280 3.52/ .8462 29.25/.8093 28.80/.8653

SRMD ×3 34.12/.9254 30.04/.8382 28.97/.8025 27.57/.8398

RDN ×3 34.71/.9296 30.57/.8468 29.26/.8093 28.80/.8653

RCAN ×3 34.74 .9299 30.65 .8482 29.32 .8111 29.08 .8702

SAN ×3 34.75 .9300 30.59 .8476 29.33 .8112 28.93 .8671

RBAN ×3 34.83/.9302 30.66/.8485 29.32/.8111 29.09/.8703

RBAN+ ×3 34.89/.9306 30.77/.8498 29.38/.8121 29.29/.8730

Bicubic ×4 28.42/.8104 26.00/.7027 25.96/.6675 23.14/.6577

SRCNN ×4 30.48/.8628 27.50/.7513 26.90/.7101 24.52/.7221

FSRCNN ×4 30.72/.8660 27.61/.7550 26.98/.7150 24.62/.7280

VDSR ×4 31.35/.8830 28.02/.7680 27.29/.0726 25.18/.7540

LapSRN ×4 31.54/.8850 28.19/.7720 27.32/.7270 25.21/.7560

MemNet ×4 31.74/.8893 28.26/.7723 27.40/.7281 25.50/.7630

EDSR ×4 32.46/.8968 28.80/.7876 27.71/.7420 26.64/.8033

SRMD ×4 31.96/.8925 28.35/.7787 27.49/.7337 25.68/.7731

DBPN ×4 32.47/.8980 28.82/.7860 27.72/.7400 26.38/.7946

RDN ×4 32.47/.8990 28.81/.7871 27.72/.7419 26.61/.8028

RCAN ×4 32.63 .9002 28.87 .7889 27.77 .7436 26.82 .8087

SAN ×4 32.64 .9003 28.92 .7888 27.78 .7436 26.79 .8068

RBAN ×4 32.64/.9003 28.93/.7907 27.80/.7447 27.03/.8132

RBAN+ ×4 32.70/.9013 29.05/.7921 27.86/.7457 27.23/.8169

Bicubic ×8 24.40/.6580 23.10/.5660 23.67/.5480 20.74/.5160

SRCNN ×8 25.33/.6900 23.76/.5910 24.13/.5660 21.29/.5440

FSRCNN ×8 20.13/.5520 19.75/.4820 24.21/.5680 21.32/.5380

SCN ×8 25.59/.7071 24.02/.6028 24.30/.5698 21.52/.5571

VDSR ×8 25.93/.7240 24.26/.6140 24.49/.5830 21.70/.5710

LapSRN ×8 26.15/.7380 24.35/.6200 24.54/.5860 21.81/.5810

MemNet ×8 26.16/.7414 24.38/.6199 24.58/.5842 21.89/.5825

MSLap ×8 26.34/.7558 24.57/.6273 24.65/.5895 22.06/.5963

EDSR ×8 26.96/.7762 24.91/.6420 24.81/.5985 22.51/.6221

DBPN ×8 27.21/.7840 25.13/.6480 24.88/.6010 22.73/.6312

RCAN ×8 27.31/.7878 25.23/.6511 24.98/.6058 23.00/.6452

RBAN ×8 27.33/.7863 25.24/.6492 25.00/.6033 22.94/.6399

RBAN+ ×8 27.41/.7888 25.35/.6521 25.05/.6051 23.12/.6448

RDN [31], RCAN [30] and SAN [1]. The SR results are

evaluated with PSNR and SSIM on Y channel of YCbCr

space. Similar to [15, 30], we introduce self-ensembled one

as RBAN+.



BSD100 (4×):

78004

HR Bicubic FSRCNN LapSRN SRMD

PSNR/SSIM 23.25/0.7375 24.33/0.7824 24.88/0.8059 26.86/0.8049

EDSR DBPN RCAN SAN RBAN

26.04.35/0.8392 25.61.93/0.8280 26.08/0.8408 26.00/0.8386 26.08/0.8408

Urban100 (4×):

img 062

HR Bicubic FSRCNN [3] LapSRN [12] SRMD [28]

PSNR/SSIM 19.91/0.6521 20.62/0.7263 20.86/0.7551 21.01/0.7671

EDSR [15] DBPN [6] RDN [31] SAN [1] RBAN

22.54/0.8499 21.81/0.8239 22.34/0.8424 22.54/0.8520 22.45/0.8670

Urban100 (4×):

img 067

HR Bicubic FSRCNN [3] LapSRN [12] SRMD [28]

PSNR/SSIM 17.02/0.7101 18.21/0.7994 18.66/0.8406 18.93/0.8500

EDSR [15] DBPN [6] RDN [31] SAN [1] RBAN

21.17/0.9052 20.31/0.8910 20.87/0.9023 21.34/0.9081 21.28/0.9091

Figure 4. Visual comparison for 4× SR with BI model on BSD100 and Urban100 datasets. The best results are highlighted

Effects of block attention. To verify the effect of the

spatial attention (SA) and channel attention (CA) modules,

we test our model with/without attention modules. In Ta-

ble 1, when no attention modules are added, the PSNR value

on Set (4×) is relatively low. When only SA or CA is used,

the performance of our model can be improved, which indi-



cates the effect of attention modules. When CA and SA are

used simultaneously, the arrangement of the two attention

modules is crucial. As shown in Table 1, when SA is placed

before CA (“e” in Table 1), the performance even decreases

a little, when CA is placed before SA (“f” in Table 1), the

performance is at its maximum. Thus, we use both SA and

CA in our network, and arrange the SA and CA modules as

“f” in Table 1. More results are reported in Table 2.

Quantitative Results. Table 2 shows the quantitative

results of PSRN/SSIM values of various SR methods for

×2,×3,×4, and ×8 SR. From Table 2 we can see that

RCAN, SAN and our RBAN obtain similar results and

have much better performance than other SR methods.

Specifically, Compared with previous RCAN and SAN, our

RBAN+ obtains the best on all the datasets for all scaling

factors. Even without self-ensemble, our RBAN achieves

best results in most cases and outperforms RCAN and SAN.

This is mainly because RCAN and SAN only explores fea-

ture correlations in channel dimension (channel attention),

while our RBAN effectively exploits the feature correlations

in both the spatial and channel dimensions for stronger fea-

ture expression (spatial and channel attention).

Visual results. In Fig. 4, we show zoomed visual results

on scale 4× on images “78004”, ”img 062” and ”img 067”

from BSD100 and Urban100 datasets, from which we can

observe that most early proposed methods (e.g., FSRCNN

and LapSRN and SRMD) suffer from blurring artifacts.

The main reason is that these networks are shallow and do

not explore the feature correlations. Recently developed

attention-based methods (e.g., RCAN, SAN and RBAN)

obtain much better visual quality, since these networks

are very deep and consider inter-channel correlations with

channel attention. Further compared with RCAN and SAN,

our RBAN generates sharper output and recover more im-

age details. For example, our RBAN restore the main out-

lines and have more faithful results (e.g., window regions

in ”img 62” and ”img 67”), which is mainly because our

RBAN explores both intra-spatial and inter-channel corre-

lations simultaneously. These observations verify the effec-

tiveness of our RBAN.

5. Conclusion

We propose deep residual block attention network

(RBAN) for accurate image SR. Specifically, residual at-

tention group (RAG) structure formulate our RBAN to be a

very deep network. Meanwhile, RAG with skip connection

allows abundant low-frequency information to be bypassed,

making our RBAN concentrate on learning high-frequency

information. For more powerful feature correlation learn-

ing, we propose spatial and channel attention modules to

exploit intra-spatial and inter-channel correlations of fea-

tures. Extensive experiments demonstrate the effectiveness

of our RBAN.
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