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Abstract

Video deblurring for hand-held cameras is a challeng-

ing task, since the underlying blur is caused by both cam-

era shake and object motion. State-of-the-art deep networks

exploit temporal information from neighboring frames, ei-

ther by means of spatio-temporal transformers or by recur-

rent architectures. In contrast to these involved models, we

found that a simple baseline CNN can perform astonish-

ingly well when particular care is taken w.r.t. the details

of model and training procedure. To that end, we conduct

a comprehensive study regarding these crucial details, un-

covering extreme differences in quantitative and qualitative

performance. Exploiting these details allows us to boost

the architecture and training procedure of a simple base-

line CNN by a staggering 3.15dB, such that it becomes

highly competitive w.r.t. cutting-edge networks. This raises

the question whether the reported accuracy difference be-

tween models is always due to technical contributions or

also subject to such orthogonal, but crucial details.

1. Introduction

Blind image deblurring – the recovery of a sharp im-

age given a blurry one – has been studied extensively

[25, 27, 40, 45, 50, 55, 56]. However, more recently and

perhaps with the increasing popularity of hand-held video

cameras, attention has shifted towards deblurring videos

[34, 46]. With the (re-)emergence of deep learning and the

availability of large amounts of data, the best performing

methods today are usually discriminatively trained CNNs

[3], RNNs [51], or a mixture thereof [21, 22]. While the

“zoo” of video deblurring models differs quite significantly,

explanations as to why one network works better than an-

other often remain at an unsatisfactory level. While the

performance of state-of-the-art video deblurring methods is

usually validated by training within-paper models under the

same conditions, the specifics of the training settings be-

tween papers remain rather different.

In this work we show that some of these seemingly small

details in the model setup and training procedure add up to

astonishing quantitative and visual differences. In fact, our

quantitative evaluation raises the question whether the ben-

efit for some state-of-the-art models comes from the pro-

posed architectures or perhaps the setup details. This mir-

rors observations in other areas of computer vision, where

the significance of choosing the right training setup is cru-

cial to achieve highly competitive models [48].

Henceforth, we conduct a study on how the model setup

and training details of a comparatively simple baseline CNN

drastically influence the resulting image quality in video de-

blurring. By finding the right settings, we unlock a signif-

icant amount of hidden power of this baseline, and achieve

state-of-the art results on popular benchmarks.

Our systematic analysis considers the following varia-

tions: (1) We investigate the use of linear output layers in-

stead of the typical sigmoids and consider different initial-

ization methods. Our new fan max initialization combined

with linear outputs already yields a substantial 2dB benefit

over our sigmoid baseline. (2) While recent work proposes

to deblur in YCbCr color space [57], we show that there is

no significant benefit over RGB. Instead, a simple extension

of the training schedule can lead to an additional 0.4dB ben-

efit. (3) We uncover that both photometric augmentations

as well as random image scaling in training hurt deblurring

results due to the mismatch of training vs. test data statis-

tics. The misuse of augmentations can diminish the gener-

alization performance up to a severe 0.44dB. (4) We explore

the benefits of using optical flow networks for pre-warping

the inputs, which yields another 0.4dB gain. Concatenat-

ing pre-warped images to the inputs improves over a sim-

ple replacement of the temporal neighbors by up to 0.27dB.

This is in contrast to previous work, which either claimed

no benefit from using pre-warping [46], or applied a com-

plex spatio-temporal subnetwork with additional trainable

weights [22]. (5) We explore the influence of training patch

size and sequence length. Longer sequences yield only a

minor benefit, but large patch sizes significantly improve

over small ones by up to 0.9dB. Taken together, we improve

our baseline by a striking 3.15dB and the published results

of [46] by 2.11dB, reaching and even surpassing the quality

of complex state-of-the-art networks on standard datasets.



2. Related Work

Classic uniform and non-uniform deblurring. Classic

uniform deblurring methods that restore a sharp image un-

der the assumption of a single blur kernel usually enforce

sparse image statistics, and are often combined with prob-

abilistic, variational frameworks [4, 9, 28, 29, 33]. Less

common approaches include the use of self-similarity [32],

discriminatively trained regression tree fields [43], a dark-

channel prior [37], or scale normalization [17].

Moving objects or a moving camera, on the other hand,

significantly complicate deblurring, since the motion varies

across the image domain. Here, usually restricting as-

sumptions are enforced on the generative blur, either in the

form of a candidate blur model [6, 18], a linear blur model

[10, 19], or a more generic blur basis [12, 14, 54, 58].

Classic video deblurring. Early work on video blurring

[5, 31] proposes to transfer sharp pixels from neighboring

frames to the central reference frame. While Matsushita et

al. [31] apply a global homography, Cho et al. [5] improve

on this by local patch search. Overall, the averaging nature

of these approaches tends to overly smooth results [7]. Del-

bracio et al. [7] overcome this via a weighted average in the

Fourier domain, but rely on a registration of neighboring

frames, which may fail for large blurs. Kim et al. [20] pro-

pose an energy-based approach to jointly estimate optical

flow along a latent sharp image using piece-wise linear blur

kernels. Later, Ren et al. [42] incorporate semantic segmen-

tation into the energy. Both approaches rely on primal-dual

optimization, which is computationally demanding.

Deep image deblurring. Among the first deblurring meth-

ods in the light of the recent renaissance of deep learning

has been the work by Sun et al. [49] who train a CNN to

predict pixelwise candidate blur kernels. Later, Gong et al.

[11] extend this from image patches to a fully convolutional

approach. Chakrabarti [1] tackles uniform deblurring in

the frequency domain by predicting Fourier coefficients of

patch-wise deconvolution filters. Note that, as in the classi-

cal case, all aforementioned methods are still followed by a

standard non-blind deconvolution pipeline. This restriction

is lifted by Schuler et al. [44] who replace both the kernel

and image estimator module of classic pipelines by neural

network blocks, respectively. Noroozi et al. [36] propose

a multi-scale CNN, which directly regresses a sharp image

from a blurry one. Tao et al. [51] suggest a scale-recurrent

neural network (RNN) to solve the deblurring problem at

multiple resolutions in conjunction with a multi-scale loss.

Deep image deblurring via GANs. Other approaches draw

from the recent progress on generative adversarial networks

(GANs). Ramakrishnan et al. [41] propose a GAN for re-

covering a sharp image from a given blurry one; the gen-

erator aims to output a visually plausible, sharp image,

which fools the discriminator into thinking it comes from

the true sharp image distribution. Nah et al. [34] propose

a multi-scale CNN accompanied by an adversarial loss in

order to mimic traditional course-to-fine deblurring tech-

niques. Similarly, Kupyn et al. [26] apply a conditional

GAN, where the content (or perceptual) loss is notably de-

fined in the domain of CNN feature maps rather than output

color space. We do not consider the use of adversarial net-

works here, as we argue that the accuracy of feed-forward

CNNs is not yet saturated on the deblurring task. Note that

despite the simplicity of our baseline, we outperform the

model of [26] by a large margin, c.f . Sec. 4.

Deep video deblurring. Deep learning approaches to video

deblurring have yielded tremendous progress in speed and

image quality. Kim et al. [21] focus on the temporal na-

ture of the problem by applying a temporal feature blending

layer within an RNN. Similarly, Nah et al. [35] apply an

RNN to propagate intra-frame information. While RNNs

are promising, we note that these are often difficult to train

in practice [38]. We do not rely on a recurrent architec-

ture, but a plain CNN, achieving very competitive results.

Zhang et al. [57] use spatio-temporal 3D convolutions in

the early stages of a deep residual network. Chen et al. [3]

extend [26] with a physics-based reblurring pipeline, which

constructs a reblurred image from the sharp predictions

using optical flow, and subsequently enforces consistency

between the reblurred image and the blurry input image.

Wang et al. [52] apply deformable convolutions along an

attention module to tackle general video restoration tasks.

The DBN model of Su et al. [46] serves as baseline

model in our study. DBN is a simple encoder-decoder CNN

with symmetric skip connections; its input is simply the

concatenation of the temporal window of the video input

sequence. Later, Kim et al. [22] extend the DBN model by

a 3D spatio-temporal transformer, which transforms the in-

puts to the reference frame. Note that this requires training

an additional subnetwork that finds 3D correspondences of

the inputs to the reference frame. We find that we can out-

perform [22] based on the same backbone network without

the need of a spatial transformer network. More generally,

we uncover crucial details in the model and training proce-

dure, which strikingly boost the accuracy by several dB in

PSNR, yielding a method that is highly competitive.

3. The Details of Deep Video Deblurring

As has been observed in papers in several areas of deep

learning and beyond, careful choices of the architecture,

(hyper-)parameters, training procedure, and more can sig-

nificantly affect the final accuracy [2, 30, 40, 48]. We show

that the same holds true in deep video deblurring. Specifi-

cally, we revisit the basic deep video deblurring network of

Su et al. [46] and will uncover step-by-step, how choices



(a) Input (b) lin+fan max (c) sigm+fan max (d) sigm+fan in (e) sigm+fan out (f) gt

Figure 1. Varying output layers and initializations. For the input (a), a linear output and fan max initialization (b) visually yields better

results than a sigmoid layer, independent of the fan-type used in the initialization. Note the artifacts on the wheel in (c) – (e).

made in mode, training, and preprocessing affect the de-

blurring accuracy. All together, these details add up to a

very significant 3.15dB difference on the test dataset.

3.1. Baseline network

The basis architecture of our study is the DBN network

of Su et al. [46] (c.f . Table 1 therein), a fairly standard CNN

with symmetric skip connections. We closely follow the

original training procedure in as far as it is specified in the

paper [46]. Since we focus on details including the train-

ing procedure here, we first summarize the basic setup. The

baseline model and all subsequent refinements are trained

on the 61 training sequences and tested on the 10 test se-

quences of the GOPRO dataset [46]. The sum of squared

error (SSE) loss is used for training and minimized with

Adam [23], starting at a learning rate of 0.005. Following

[46], the batch size is taken as 64 where we draw 8 random

crops per example. For all convolutional and transposed

convolutional layers, 2D batch normalization [16] is applied

and initialized with unit weights and zero biases. While this

simple architecture has led to competitive results when it

was published in 2017, more recent methods [3, 22] have

strongly outperformed it. In the following, we explore the

potential to improve this baseline architecture and perform

a step-by-step analysis. Table 1 gives an overview.

3.2. Detail analysis

Output activation. The DBN network [46] uses a

sigmoid output layer to yield color values in the range [0, 1].
Given the limited range of pixel values in real digital im-

ages, this appears to be a prudent choice at first glance. We

question this, however, by recalling that sigmoid nonlin-

earities are a common root of optimization issues due to

the well-known vanishing gradient problem. We thus ask

whether we need the sigmoid nonlinearity.
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Figure 2. Output activation statistics over test dataset. Even

with linear outputs, the SSE loss confines most activations to [0, 1].

To that end, we replace it with a simple linear output. As

we can see in Table 1(a vs. d), this yields a very substantial

1dB accuracy benefit, highlighting again the importance of

avoiding vanishing gradients. In fact, the restriction to the

unit range does not pose a significant problem even with-

out output nonlinearity, since the SSE loss largely limits the

linear outputs to the correct range anyway. This is illus-

trated in Fig. 2, which shows the linear activations on the

test dataset after training with linear output activations un-

der a SSE loss; only very few values lie outside the valid

color value range. This can be easily addressed by clamp-

ing the outputs to [0, 1] at test time.

Initialization. The choice of initialization is not discussed

in [46]. However, as for any nonlinear optimization prob-

lem, initialization plays a crucial role. Indeed, we find

that good initialization is necessary to reproduce the re-

sults reported in [46]. Perhaps, the most popular initial-

ization strategy for relu-based neural networks today is the

msra method of He et al. [13]. It ensures that under relu
activations, the magnitudes of the input signal do not ex-

ponentially increase or decrease. The msra initialization

method typically comes in two variants, msra+ fan in, and

msra+ fan out, depending on whether signal magnitudes

should be preserved in the forward or backward pass. In

practice, fan in and fan out correspond to the number of

gates connected to the inputs and outputs. We additionally

propose fan max, which we define as the maximum num-

ber of gates connected to either the inputs or outputs, pro-

viding a trade-off between fan in and fan out. For hour-

glass architectures, it is typical to increase the number of

feature maps in the encoding part; here, fan max adapts to

the increasing number of feature maps via fan out initial-

ization. The decoder is effectively initialized by fan in to

accommodate the decreasing number of feature maps.

Table 1(a – f) evaluates these initializations in conjunc-

tion with linear and sigmoid outputs layers. Due to the at-

tenuated gradient, all three sigmoid variants are worse than

any linear output layer. On the other hand, linear in con-

junction with fan max initialization works much better than

the traditional fan in and fan out initializations, yielding a

∼0.7dB benefit. The visual results in Fig. 1 also reveal that

the linear output contains fewer visual artifacts.

Verdict: For a color prediction task such as deblurring,



(a) GT Y (b) Blurry CbCr

(c) GT RGB (d) Reconstructed RGB

Figure 3. Oracle experiment in YCbCr color space. Deblurring

in YCbCr color space combines (a) the sharp Y channel (here,

ground truth) with (b) the blurry CbCr channel. The reconstruction

(d) is quantitatively close to the RGB ground truth (c), yet suffers

from halo artifacts for very blurry regions, as highlighted.

sigmoids should be replaced by linear outputs. We recom-

mend considering a fan max initialization as an alternative

to fan in and fan out.

Color space. In classic deblurring color channels are typ-

ically deblurred separately. While this is clearly not nec-

essary in deep neural architectures – we can just output

three color channels simultaneously – the question remains

whether the RGB color space is appropriate. Zhang et al.

[57] propose to convert the blurry input images to YCbCr

space, where Y corresponds to grayscale intensities and

CbCr denotes the color components, c.f . Fig. 3. The sharp

image is subsequently reconstructed from the deblurred Y

channels and the blurry input CbCr channels. This effec-

tively enforces a natural upper bound on the problem, i.e.

computing the average PSNR value of the test dataset yields

PSNR(RGBinput,RGBgt) = 27.23dB (1a)

PSNR(cat(Ygt,CbCrinput),RGBgt) = 56.26dB. (1b)

That is, an oracle with access to the ground truth Y chan-

nel can achieve at most 56.26dB PSNR. Hence, the natu-

ral upper bound does not pose a real quantitative limitation,

since 56.26dB is much better than any current method can

achieve. In practice, however, we found that the benefit of

solving the problem in YCbCr space is not significant. Ta-

ble 1(f, g) show a minimal ∼0.01dB benefit of using YCbCr

over RGB. YCbCr can still be useful as it allows for models

with a smaller computational footprint, since fewer weights

are required in the first and last layer. Here, we want to

raise another problem of YCbCr deblurring: For very blurry

regions, the reconstruction even from the ground truth Y

channel may contain halo artifacts as depicted in Fig. 3(d).

Training schedule. As observed in other works, e.g.

[15], longer training schedules can be beneficial for dense
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(a) Original statistics

-0.6 -0.4 -0.2 0 0.2 0.4

Gradients Magnitudes

0

10

20

L
o
g
 C

o
u
n
t blurry

sharp

(b) Statistics under rescaling

Figure 4. Gradient statistics under rescaling. Rescaling the im-

ages as part of the augmentation is problematic due to the changed

degradation statistics (blue – blurry image statistics, red – sharp

image statistics). The difference between the plots in unscaled (a)

vs. rescaled images (b) is apparent.

prediction tasks. Here, we apply two different train-

ing schedules, a short one with 116 epochs resembling

the original schedule [46] by halving the learning rate at

epochs [32, 44, 56, 68, 80, 92, 104], as well as a long sched-

ule with 216 epochs, halving the learning rate at epochs

[108, 126, 144, 162, 180, 198]. To obtain the long train-

ing schedule, we initially inspected the results of run-

ning PyTorch’s ReduceLROnPlateau scheduler (with

patience=10, factor=0.5) for an indefinite time, where we

subsequently scheduled the epochs in which learning rates

drop in equidistant intervals (here 18). The longer train-

ing schedule improves both the RGB and YCbCr networks

roughly by 0.4dB, c.f . Table 1(f – i). Since the benefit of

YCbCr is rather small for both short and long schedule, we

conduct the remaining experiments in RGB space. Figure 5

shows the visual differences between RGB and YCbCr de-

blurring. While the perceptual differences between RGB

and YCbCr are not significant, the long schedules improve

the readability of the letters over the short ones.

Verdict: YCbCr does not present a significant benefit over

RGB; it is, however, viable for very large models, if model

size is an issue. Very blurry training examples may be sub-

optimal, since even the oracle Y channel yields halo arti-

facts. Similar to other dense prediction tasks, long training

schedules yield significant benefits.

Photometric augmentation and random scales. Data

augmentation plays a crucial role in many dense prediction

tasks such as optical flow [8]. However, it is often disre-

garded from the analysis of deblurring methods. More pre-

cisely, while our baseline [46] and recent work [22, 57] all

train under random rotations (0◦, 90◦, 180◦, 270◦), random

horizontal and vertical flips, and random crops (usually of

size 1282), other types of augmentations such as photomet-

ric transformations and random scaling are not agreed upon.

Su et al. [46] train their model under random image scales

of [1/4, 1/3, 1/2], yet Zhang et al. [57] do not rescale the train-

ing images. Here, we explore the influence of both random

photometric transformations and random scales.

We use four settings: No augmentations (other than ran-

dom orientations and crops, Table 1(h)), random photomet-



(a) Input (b) rgb+short (c) ycbcr+short (d) rgb+long (e) ycbcr+long (f) gt

Figure 5. Color space and training schedule. The difference of RGB deblurring (b) and YCbCr deblurring (c) is minimal. However,

using a long training schedule (d) and (e) significantly boosts performance of both. Note how the last letters of ’HARDWARE’ become

visibly clearer with the long training schedule.

(a) Input (b) photom. (c) scales (d) photom.+scales (e) no augm. (f) gt

Figure 6. Varying photometric augmentations and scales. Both photometric augmentations and random scales (b), (c) have a negative

impact on image quality. The differences are subtle but visually apparent in blobs; compare, e.g., the central part of (d) with (e).

ric transformations (using PyTorch’s popular random color

jitter on hue, contrast, and saturation with p=0.5, Table 1(j)),

random scales (with a random scale factor in [0.25, 1.0], Ta-

ble 1(k)), and with both augmentations (Table 1(l)). We find

that these augmentations significantly hurt image quality;

the quantitative difference between no and both augmen-

tations (Table 1(h vs. l)) amounts to a surprising 0.44dB.

Here, the photometric augmentations alone decrease the ac-

curacy by 0.26dB (Table 1(h vs. j)). While we do not ar-

gue that any photometric augmentation will hurt accuracy,

our results suggest that the common color jitter is counter-

productive in deblurring; we attribute this to the fact that

commonly applied photometric co-transforms obfuscate the

ground truth signal for general non-uniform blur. To illus-

trate this issue, let P be a photometric operator (applied to

sharp images), and K be a non-uniform blur operator, re-

spectively. If P was linear, we could derive the appropriate

photometric operator P̃ for blurry images as

P̃K = KP ⇒ P̃ = KPK
−1. (2)

As there is no ground truth K available for the GOPRO

datasets, the correct photometric transformation P̃ to be ap-

plied to blurry images is not available.

The performance drop induced by random scales roots

in a change of relative image statistics between blurry and

sharp images. To that end, consider the gradient histogram

statistics of 300 training image crops shown in Fig. 4(a) as

well as the statistics for rescaled crops (scale factor 0.25)

in Fig. 4(b). The comparison reveals two points: First,

the original statistics are sparser than the rescaled ones.

Second, rescaling renders the gap of statistics between the

blurry and sharp gradients less pronounced. This differ-

ence manifests in a quantitative difference of 0.22dB, c.f .

Table 1(h vs. k). Visually, the difference is most apparent

for blob-like regions, c.f . the leaves of the tree in Fig. 6.

Not applying any photometric or scale augmentation (e)

yields slightly clearer results than either random photomet-

ric transformations (b), random scales (c), or both (d).

Verdict: In contrast to other dense prediction problems,

where photometric augmentations and random rescaling in

training help to improve generalization, these augmenta-

tions can hurt the generalization performance of deblurring

models. One should thus be careful in choosing augmenta-

tion methods, as they may obfuscate the data statistics.

Optical flow warping. Su et al. [46] experimented with

pre-warping input images based on classic optical flow

methods such as [39] to register them to the reference frame.

Surprisingly, they did not observe any empirical benefit,

hence abandoned flow warping. Yet, Chen et al. [3] use a

flow network after the deblurring network to predict an out-

put sequence of sharp images, which is subsequently reg-

istered to the reference frame. This consistency is worked

into the loss function, which allows them to improve over

the DBN baseline (c.f . Table 2). Kim et al. [22] propose

to put a spatio-temporal transformer network in front of the

DBN baseline to transform 3D inputs (the stack of blurry

input images) to the reference frame; the synthesized im-

ages and the reference frame are then fed into the baseline

network. In contrast to [46], they observed the temporal

correspondence to improve the deblurring accuracy.

While using a spatio-temporal transformer is elegant, we

argue that the underlying correspondence estimation prob-

lem is itself very hard and requires a lot of engineering

to achieve high accuracy [48]. Hence, we consider pre-

warping with the output from standard optical flow net-



(a) Input (b) no flow (c) f1s+rep (d) pwc+rep (e) pwc+cat (f) gt

Figure 7. Optical flow prewarping. Prewarping with optical flow positively influences image quality. We experiment with FlowNet1S (c),

and PWC-Net (d), (e). Concatenating warped images with the inputs (e) produces fewer visual artifacts than just replacing the temporal

neighbors (d). Here all flow variants reconstruct the horizontal structures much better than the baseline without pre-warping (b).

(a) Input (b) 64x64 (c) 128x128 (d) 160x160 (e) 192x192 (f) gt

Figure 8. Varying training crop size. Increasing the size of training patches is a simple, yet effective method to increase image quality.

Here we experiment with square patches of size 64× 64 (b) – 192× 192 (e). The visual gain is biggest for smaller patch sizes. Note how

the left pole becomes sharper with increasing patch size.

works. To avoid any efficiency concerns [22], we rely on

pre-trained flow networks, which obviates backpropagating

through them. We experiment with two different backbones

that we put in front of our baseline: FlowNet1S (denoted

as f1s) [8] and PWC-Net (denoted as pwc) [47]. For both

backbones, we warp the neighboring frames to the refer-

ence frame, and either input the reference frame along the

replaced, warped neighbors (+ rep), or we concatenate the

warped neighbors with the original input (+ cat). Note that

while concatenation allows the network to possibly over-

come warping artifacts using the original inputs, this is not

possible without the original input. Our experiments in Ta-

ble 1(m – p) show that, in contrast to the conclusions in [46],

simple flow warping already helps (0.15dB improvement in

(m – n) over the no-flow baseline (i)). A more substantial

benefit of ∼0.4dB comes from concatenating the warped

images along the original inputs (Table 1(o – p)). Per-

haps surprisingly, the FlowNet1S backbone performs only

slightly worse than PWC-Net. The visual results in Fig. 7

reveal that flow-based methods clearly improve upon the

no-flow variant, which exhibits artifacts at the horizontal

structures of the house. Also note how the PWC-Net back-

bone is clearer in deblurring the horizontal structures than

the FlowNet1S variant, despite the small quantitative dif-

ference. Visually, pwc+cat further improves over pwc+rep,

e.g. note the boundaries of the windows.

Verdict: While previous work proposes a sophisticated treat-

ment of temporal features, we find that pre-trained optical

flow networks perform quite well. Concatenating warped

neighbors to the inputs works significantly better than just

replacing inputs. While a good flow network may not quan-

titatively improve over a simple one, deblurred images may

show subtle improvements upon visual inspection.

Patch size and sequence length. Much of previous work

[3, 22, 46, 57] is trained on random crops of size 1282, yet

the significance of this choice is not further justified. In gen-

eral, larger crops are beneficial as they reduce the influence

of boundaries, given the typically big receptive fields. Here

we explore additional patch sizes of 642, 962, 1602, and

1922, which we apply when training our pwc+cat model.

Table 1(q – t) reveals that the choice of patch size – when

comparing to the baseline patch size of 1282 – is quite

important with a relative performance difference spanning

from −0.68dB when using the smallest patch size 642 to

+0.23dB when using the largest (1922). While the perfor-

mance difference between patch sizes is more significant

for smaller absolute sizes, the performance gain from very

large patches is still substantial. This can also be seen in

the visual results in Fig. 8. Note the clearer poles. Over-

all, the relative visual improvement becomes smaller with

larger patch sizes, yet is still apparent.

[46] proposed to use input sequences with 5 images,

which is kept in follow up work [57, 22]. We include one

more dimension in our case study, and test whether longer

sequences can help. In Table 1(u–v), we increased the num-

ber of input images to 7 and retrained our pwc+cat model

(with patch sizes 1282 and 1922). The results reveal that

5 input images largely suffice; two additional input images

only yield a small benefit of ∼ 0.05dB.

Verdict: Training patches should be chosen as big as the

hardware limitations allow, since larger patch sizes provide

clear benefits in accuracy. Future GPUs may allow train-

ing at full resolution and improve results further. Inputting

more than 5 images currently yields only minimal benefit.



Table 1. Comprehensive ablation study.

# Output

activation

Initialization Color space Schedule Random

photom.

Random

scales

Flow Random

crops

Sequence

length

PSNR

a sigmoid fan out RGB short ✗ ✗ - 1282 5 29.04

b fan in 29.26

c fan max 30.00

d linear fan out RGB short ✗ ✗ - 1282 5 30.09

e fan in 30.31

f fan max 31.07

g linear fan max YCbCr short ✗ ✗ - 1282 5 31.08

h RGB long 31.48

i YCbCr long 31.50

j linear fan max RGB long ✓ ✗ - 1282 5 31.22

k ✗ ✓ 31.26

l ✓ ✓ 31.04

m linear fan max RBG long ✗ ✗ f1s + rep 1282 5 31.62

n pwc + rep 31.67

o f1s + cat 31.89

p pwc + cat 31.91

q linear fan max RBG long ✗ ✗ pwc + cat 642 5 31.23

r 962 31.71

s 1602 32.05

t 1922 32.14

u linear fan max RBG long ✗ ✗ pwc + cat 1282 7 31.94

v 1922 32.19

4. Experiments

Evaluation on GOPRO by Su et al. [46]. As shown in

the previous section, the proposed changes to Su’s baseline

strikingly boosted its deblurring accuracy by over 3dB com-

pared to our basic baseline implementation. We next con-

sider how the improved baseline fares against the state-of-

the-art. We evaluate three variants: Our best model without

an optical flow backbone, trained under the same patch size

(1282) and sequence length (5) as competing methods (Ta-

ble 1(h)), denoted as DBN128,5. Our improved baseline,

which includes optical flow pre-warping (Table 1(p)), de-

noted as FlowDBN128,5. And our best performing model

trained under large patches and two more input images

(Table 1(v)), denoted as FlowDBN192,7. Table 2 shows

the quantitative evaluation on the GOPRO testing dataset

of [46]. Surprisingly, even our DBN128,5 model without

optical flow already beats the highly competitive meth-

ods from Chen et al. [3] by 0.11dB, which utilizes optical

Table 2. Deblurring performance on the GOPRO dataset of [46].

Method PSNR Method PSNR

R2D+DBN1 [3] 30.15 ASL2 [57] 29.10

IFI-RNN1 [35] 30.80 DBN2 [46] 30.08

R2D+DeblurGAN1 [3] 31.37 DBN128,5 (ours) 31.48

STT+DBN1 [22] 31.61 FlowDBN128,5 (ours) 31.91

OVD1 [21, 22] 32.28 FlowDBN192,7 (ours) 32.19

STT+OVD1 [22] 32.53

1 Results as reported. 2 Results from a provided model.

flow. Our variants including optical flow, FlowDBN128,5

and FlowDBN192,7 are also highly competitive w.r.t. the re-

current approach of Nah et al. [35] and the spatio-temporal

transformer (STT) networks [22], i.e. FlowDBN128,5 yields

a higher average PSNR than STT applied to the same

DBN backbone. Finally, we improve the authors’ re-

sults of [46] by more than 2dB. While our best performing

FlowDBN192,7 cannot quite reach the accuracy of methods

based on the OVD backbone [21], the OVD model exploits

a dynamic temporal blending layer and uses recurrent pre-

dictions from previous iterations. In contrast, our model

is based on the conceptually simpler DBN, a plain feed-

forward CNN. We expect similar improvements when ap-

plying our insights in training details to the OVD backbone.

Evaluation on GOPRO by Nah et al. [34]. To see whether

the benefits we gain on our baseline generalize to other

datasets, we also quantitatively evaluate on the GOPRO

dataset of Nah et al. [34]. Note that the training set by [34]

has roughly a third of the size of [46], hence our training

schedule is three times as long, i.e. 608 epochs and halving

the learning rate at epochs [308, 358, 408, 458, 508, 558].
The other details are as described in Sec. 3.2. We com-

pare against DeblurGAN [26], Nah et al.’s DMC baseline

[34], and the two highly competitive scale-recurrent models

SRN+color/lstm by Tao et al. [51]. As these methods do not

exploit multiple images, we additionally include DBN192,1,

a single-image variant of our baseline.

The detailed results are shown in Table 3. Interest-



Table 3. Deblurring performance on the GOPRO dataset of [34] reported as PSNR [24] / MSSIM [53].

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 avg

Reference Input 28.77/.938 27.76/.941 26.58/.881 29.83/.976 26.50/.863 23.48/.802 23.05/.820 22.83/.816 25.03/.818 23.08/.791 25.90/.894 25.79/.868

DeblurGAN1 [26] 31.02/.968 30.37/.969 29.62/.938 31.04/.984 27.71/.906 25.41/.877 24.55/.879 25.24/.899 26.93/.891 25.64/.881 28.88/.942 27.92/.922

DMC1 [34] 31.16/.965 30.94/.971 30.57/.945 31.16/.984 28.81/.922 26.27/.898 25.38/.902 26.24/.916 27.82/.911 26.67/.907 30.62/.958 28.77/.935

SRN+color1 [51] 32.82/.978 32.38/.980 32.21/.962 32.06/.988 29.86/.944 28.57/.946 27.81/.948 28.77/.958 29.65/.946 28.87/.948 32.71/.977 30.56/.961

SRN+lstm1 [51] 32.82/.976 32.45/.980 32.25/.961 32.12/.988 29.82/.943 28.60/.947 27.60/.946 29.03/.962 29.76/.948 28.93/.949 32.83/.978 30.60/.962

DBN192,1 (ours) 32.97/.978 32.51/.980 32.51/.964 32.17/.988 30.99/.955 28.81/.948 28.20/.955 28.88/.961 30.12/.953 29.17/.950 33.14/.978 30.92/.965

FlowDBN128,5 (ours) 33.22/.982 32.71/.982 32.61/.965 32.78/.990 30.92/.955 28.78/.949 28.48/.959 28.81/.963 30.26/.954 29.03/.950 33.10/.978 31.02/.966

FlowDBN192,7 (ours) 33.56/.983 32.95/.983 33.03/.968 32.96/.991 31.32/.960 29.24/.954 28.97/.964 29.31/.968 30.66/.959 29.51/.956 33.58/.981 31.42/.969

1 Results from a provided model.

(a) Input (b) DeblurGAN [26] (c) DMC [34] (d) SRN+lstm [51] (e) FlowDBN128,5 (f) FlowDBN192,7

Figure 9. Qualitative comparison. (a) denotes the blurry input, (b) – (d) competing methods. Our FlowDBN models (e), (f) exhibit

clearer fonts in texts (1st row), fewer artifacts for small-scale details in face deblurring (2nd row), and uncover more texture from blob-like

structures (orange advertisement in the 3rd row).

ingly, DBN192,1 already outperforms the highly competitive

SRN+lstm model, a multiscale recurrent neural network,

despite being trained on a smaller crop size (Tao et al. [51]

apply 2562 crops). Both FlowDBN128,5 and FlowDBN192,7

perform even better, outperforming the best competing

method by a very significant ∼0.8dB in PSNR.

Qualitative results are shown in Fig. 9. When inspect-

ing the visual results, we find that both our FlowDBN mod-

els show perceptually better results, e.g. they exhibit clearer

text deblurring (c.f . the plates in the 1st row). For moving

people, faces can be problematic due to their small-scale de-

tails, as for instance shown in the results of the 2nd row, i.e.

DeblurGAN, DMC, and SRN+LSTM all show artifacts in

the face of the person. While the results for both FlowDBN

models are far from perfect, they show significantly fewer

artifacts. We observe another subtle improvement in blob-

like structures such as the orange repetitive structure in the

advertisement (last row). Here, our FlowDBN models re-

construct a sharper texture than all competing methods.

5. Conclusion

In this paper we demonstrated how to create a highly

competitive video deblurring model by revisiting details of

an otherwise fairly standard CNN baseline architecture. We

show that despite a lot of effort being put into finding a good

video deblurring architecture by the community, some ben-

efits could possibly be even due to seemingly minor model

and training details. The resulting difference in terms of

PSNR is surprisingly significant: In our study we improve

the baseline network of [46] by over 2dB compared to the

original results in the paper, and 3.15dB over our initial im-

plementation, which allows this simple network to outper-

form more recent and much more complex models. This

poses the question whether existing experimental compar-

isons in the deblurring literature actually uncover system-

atic accuracy differences from the architecture, or whether

the differences may be down to detail engineering. Future

work thus needs to shed more light on this important point.
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