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Figure 1: Reconstructing faithful estimate of original image (a) from subsampled Fourier ptychography (FP) measurements

are challenging for conventional FP approaches of IERA (b) and CoPRAM (c). Generative prior based Deep Ptych approach

produces visually appealing results as shown in (d) but suffers due to its limited representation capability. Our proposed

approach (e) learns to reconstruct realistic results with fine details.

Abstract

Recently pretrained generative models have shown

promising results for subsampled Fourier Ptychography

(FP) in terms of quality of reconstruction for extremely low

sampling rates. However, the representation capabilities of

these pretrained generators do not capture the full distribu-

tion for complex classes of images, such as human faces or

numbers, resulting in representation error. Moreover, re-

cent studies have shown that these pretrained generative

priors struggle at high-resolution in imaging inverse prob-

lems for reconstructing a faithful estimate of the true image,

potentially due to mode collapse issue. To mitigate the issue

of representation error of pretrained generative models for

subsampled FP, we propose to make pretrained generator

image adaptive by modifying it to better represent a single

image (at test time) that is consistent with the subsampled

FP measurements. Our experimental results demonstrate

the superiority of the proposed approach over recent sub-

sampled FP methods in terms of both quantitative metrics

and visual quality.

1. Introduction

To mitigate the effects of the diffraction blur in long-

distance imaging, recently an emerging computational

imaging technique known as Fourier Ptychography (FP)

has gained much attention in optical and signal process-

ing community [1]. FP replaces the traditional interfero-

metric methods, that require complex and expensive hard-

ware, with computational algorithms [2, 3]. Specifically, FP

works by iteratively stitching together a set of diffraction-

limited and low-resolution images in the Fourier domain to

recover the high-resolution true image. The forward acqui-

sition model of FP for the true signal x ∈ R
n can be written

as

y = |A(x)|+ η, (1)

where y ∈ R
m are observations, A : Rn → C

m is a for-

ward operator (more details in subsequent sections), and

η ∈ R
m denotes noise perturbation. The image formation

at the sensing plane in FP is typically complex in nature,

and since conventional optical sensors can measure only the

magnitude of the signal, phase information is lost [4]. This
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Figure 2: Illustration of limited representation capabilities of pre-

trained generative models. Samples of low-resolution (64 × 64)

face images and digits are shown in top row, generated by pre-

trained generators trained on respective datasets. Second row

shows inability of these pretrained generators to faithfully recon-

struct the estimates ((b) and (d)) of the corresponding test images

((a) and (c)) due to their limited representational power. High-

resolution (1024 × 1024) samples of face images generated by

Progressive GAN (ProGAN) are shown in third row. Despite gen-

erating visually realistic samples, ProGAN fails to find the faithful

estimate (e) of the corresponding true image (f) in its range (fourth

row).

makes (1) highly ill-posed and difficult to solve.

To make the FP problem well-posed, generally addi-

tional measurements (i.e. m ≫ n) are acquired in the

form of high overlapping frequency bands in the frequency

domain [5]. Although effective, these redundant measure-

ments can pose severe limitations in terms of high computa-

tional cost. Recently, by devising realistic sampling strate-

gies, prior information (sparsity and structured sparsity [6])

about the true signal has been leveraged to reduce the num-

ber of measurements (subsampling) in FP setup. However,

it has been observed that these conventional signal priors

often fail to capture the rich structure that many natural sig-

nals exhibit [7]. Priors learned from huge datasets can ef-

fectively capture this rich structure using the power of deep

neural networks [8]. These deep neural networks or deep

learning based end-to-end approaches have not yet been

explored for reducing the number of measurements in FP.

Moreover, even a slight change in the parameters of FP for-

ward acquisition model such as number of cameras or over-

lap would require costly retraining of these models.

To bridge the gap between deep learning based ap-

proaches (that can take advantage of the powerful learned

priors) and conventional hand-designed priors such as spar-

sity (that are flexible enough to handle a variety of model

parameters), recently pretrained deep generative models

have emerged as an impressive alternative for subsampled

FP problem [9]. During the training of these generative

models, they are encouraged to produce high dimensional

samples, from low dimensional latent code, that resemble

with that of the training set X , of which true signal x is as-

sumed to be a member i.e. x ∈ X (we defer further details

of training generative models to next section). Due to their

power of capturing the high dimensional image distribu-

tions, these pretrained generative models have been shown

to obtain significant performance gains over non-learning

based FP methods, including sparsity, at very low sampling

rates.

One of the significant drawback of these pretrained gen-

erative priors is their limited representation capabilities.

That is once trained, they are incapable of producing any

target image that lies outside their range1. Adding redun-

dancy in the form of additional measurements is ineffective

in driving reconstruction error to zero (even if we ignore

the error due to non-convex optimization and noise). This

shortcoming of the generative models in effectively learn-

ing the distribution of the true image dataset hampers their

ability to reliably reproduce the estimate of given new (test)

sample from its range as shown in Figure 2. Although,

recently these generative models have been shown to pro-

duce high-resolution (1024 × 1024) and extremely photo-

realistic images, but as illustrated in Figure 2 that even for

these powerful generative models when one searches over

the range of the generator for an image that is closest to the

original, one is expected to get a significant mismatch. This

indicates the severe mode collapse (inability of the gen-

erative model to capture the entire distribution of the true

dataset) at higher resolutions.

In this paper, we aim to mitigate the limited representa-

tion capabilities of pretrained generative model in the con-

text of subsampled FP. Specifically, we propose to make

pretrained generator image adaptive by modifying it to bet-

ter represent a single image that is consistent with the sub-

sampled FP observations y. We achieve it by jointly op-

timizing over the latent code and pretrained weights at the

test time during minimization of the reconstruction loss. In

this way, we not only leverage the rich semantic knowl-

edge learned by the generator during training (in form of

pretrained weights) but also allowing it to search solution

beyond its range (by updating pretrained weights) while

obeying the forward FP acquisition model. Through ex-

1Range of the pretrained generator can be defined as the set of all the

images that can be generated by the that generator.



tensive simulations, we show that this simple strategy ef-

fectively eliminates the representation error inherited in the

pretrained generators for subsampled FP problem. We fur-

ther demonstrate its effectiveness at higher resolutions face

images of size 1024× 1024.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly highlight the training procedure of GANs.

Section 3 gives overview of the related work, followed by

Section 4 that briefly recaps the FP setup. We formulate

problem and give proposed solution in Section 5. Section 6

gives simulation results followed by limitations of proposed

approach and concluding remaks in Section 7 and Section 8

respectively.

2. Training the Generative Model

In this section, we briefly recap the training process of

GANs, as our approach requires a pretrained generator of

the specific image class X . GANs, originally introduced

by [10], consists of two neural networks, generator (G) and

discriminator (D). These networks compete with one an-

other in an adversarial fashion where the generator tries to

generate fake samples as real as possible, and discrimina-

tor aims to distinguish between generated samples and real

samples. In these models, the generative part (G), learns a

mapping from low dimensional latent space z ∈ R
k to a

high dimensional sample space G(z) ∈ R
n where k ≪ n.

During training, these generative models are encouraged

to produce samples that resemble that of training data X .

A well-trained generator, given by a deterministic function

G : Rk → R
n with a distribution PZ over z (usually ran-

dom normal or uniform), is therefore capable of generating

fake data indistinguishable from the real data, it has been

trained on. The min-max objective for training generative

models can be written as

min
G

max
D

Ex∼pX (x) logD(x) + Ez∼p(z) log(1−D(G(z))),

After training, we employ the trained G as a regularizer in

our subsampled FP reconstruction algorithm.

3. Related Work

FP literature has mainly focused on the merits of exper-

imental setup [1, 5, 11, 12] and on improving the quality

of the reconstructed images [13, 14]. Relatively little at-

tention has been given to the challenge of large measure-

ments complexity. Exploiting low dimensional structures in

the context of FP has not been explored until very recently.

Zhang et al. leverage the sparsity and group sparsity priors

to improve the reconstruction quality of image via threshold

based gradient descent [15, 16]. However, they do not in-

vestigate the FP problem in the context of subsampled mea-

surements. We also note work of [17] and [18] that use

denoisers as plug-and-play priors in FP setup for improving

reconstruction.

Recently priors learned from large datasets by exploit-

ing the power of deep neural networks have shown promis-

ing results for faithful reconstruction of the true image in

FP setup [19, 20]. Specifically, these deep learning based

approaches invert the forward acquisition model of FP via

end-to-end training of deep neural networks in a supervised

manner [8]. However, even a slight change in the parame-

ters of the FP measurement model, such as aperture diam-

eter, number of cameras, or overlap would require costly

retraining of these deep learning based models. Moreover,

these deep learning based approaches have not been ex-

plored for the case of subsampled FP setup.

To the best of our knowledge, the first work that lever-

ages the sparsity prior to reduce the sampling rate in FP is

that of Jagatap et al. [6]. They further devise realistic sub-

sampling strategies that can be readily implemented in con-

ventional FP setups. Their algorithm (CoPRAM - Compres-

sive Phase Retrieval using Alternative Minimization) signif-

icantly reduces the number of samples required for faithful

reconstruction of the true signal. Chen et al. [21] lever-

age low-rank structure for dynamic and time-varying tar-

gets (videos) in FP to reduce the number of measurements.

However, recently it has been shown in [7] that sparsity and

low-rank priors often fail to capture the complex structure

that many natural signals exhibit resulting in unrealistic sig-

nals also fitting the sparse and low-rank prior modeling as-

sumption.

Generative models such as Generative Adversarial Net-

works (GANs) have been shown to produce promising re-

sults in various imaging inverse problems [22, 23, 24, 25,

26]. Inspired from their success in imaging inverse prob-

lems, recently [9] leverages the power of pretrained gener-

ative models for FP to reconstruct faithful estimates of the

true image from far fewer samples. More precisely, their

approach Deep Ptych, aims to find the latent code z via

gradient descent algorithm such that G(z) is as similar as

possible to true image x. However, a significant drawback

of the pretrained generative priors in solving subsampled FP

problem is their limited representation capability, that might

stem from mode collapse [27] or architectural choices of

generator and discriminator. This shortcoming of the pre-

trained generative models in effectively learning the distri-

bution of image datasets, especially at higher resolutions,

hampers their ability to reliably reproduce the estimate of

any given new (test) example that does not belong to its

range of the generator.

4. Fourier Ptychography Setup

In this section, we briefly describe the forward ac-

quisition model of FP as shown in Figure 3. In long-

distance imaging, the resolution of the image is limited by



Figure 3: Fourier Ptychography forward acquistion model. The

object has been illuminated using coherent light source. A co-

herent camera array captures illumination field from the object.

The bandlimited signal is then focused to an image plane and a

subsampling operator is applied. Subsequently, an optical sensor

measures the magnitude while discarding the phase of signal

diffraction-limit of the imaging system. To handle this is-

sue, multiple cameras are usually arranged in a square grid,

forming a coherent camera array. Coherent camera array is

placed in the far-field of the object (x) to satisfy the Fraun-

hofer approximation. Under this approximation, when co-

herent illumination field emerging from the object is inter-

cepted by the thin lens of camera array, it can be approxi-

mated as 2D Fourier transform F . Each camera in the array

have a finite aperture denoted by Pℓ (ℓ = 1, 2, ..., L, where

L denotes total number of cameras in the coherent cam-

era array) that acts as a bandpass filter covering different

parts of Fourier domain of the true image as shown in Fig-

ure 3. The bandlimited signal is then focused to an image

plane where due to a second phase shift from the acquisi-

tion camera lens it undergoes an inverse Fourier transform

(F−1). Subsequently, the complex spatial domain image is

captured by an optical sensor that measures only the mag-

nitude while discarding the phase information [4]. In order

to reduce the sample complexity, we discard some observa-

tions at the sensor plane. This can be treated as applying

a subsampling operator (Mℓ(·)), to effectively reduce the

number of measurements. Mathematically, observation yℓ

for ℓth camera can be modeled as

yℓ = |Mℓ(Aℓ(x))|+ nℓ, (2)

where Aℓ = F−1Pℓ ◦ F is the measurement model prior

to optical sensor acquisition step, ◦ denotes the Hadamard

product, and Mℓ is the subsampling operator. Subsampling

operator when applied to an image, randomly picks a frac-

tion of samples (f) discarding the others [6]. We define the

subsampling ratio as the fraction of samples retained by Mℓ

divided by the total number of observed samples i.e.

Subsampling Ratio (%) =
Fraction of samples retained (f ) × 100

Total observed samples (nL)
.

The subsampling mask resembles the operation of a bi-

nary matrix having entries 1’s and 0’s. The mask has been

element-wise multiplied with the observations in such a way

that pixels corresponding to 1’s are retained and those cor-

responding to 0’s are discarded. Hence subsampling ratio f

governs the percentage of samples that will be retained.

5. Problem Formulation and Proposed Solu-

tion

In this section, we formally introduce our proposed ap-

proach that we dubbed as Adaptive Ptych. We start by for-

mulating the problem and stating the objective function of

the pretrained generator based Deep Ptych approach [9].

Further, we show how our proposed approach circumvents

the representation error inherited in the Deep Ptych.

Without assuming any prior information about the true

image x, we can minimize the FP measurement loss as

x̂ = arg min
x∈Rn

L
∑

ℓ=1

‖yℓ − |MℓAℓ(x)|‖
2
2, (3)

to find the estimate of the true image x. For the rest of the

paper, we will call (3) as reconstruction constraint. Note

that without assuming any prior information about x, (3)

is notoriously difficult to solve as infinitely many solutions

satisfy the reconstruction constraint.

Next, we consider that the generative model, represen-

tated by the deterministic function Gθ(z) : R
k → R

n where

k ≪ n, has been trained on the representative samples of

specific class, X , of the images. For instance, X may be

set of street numbers or face images. Pretrained generator

Gθ(z), parameterized by the weights θ ∈ R
d, takes latent

code z as input and produces output sample Gθ(z) ∈ R
n,

similar to the training samples of class X . This way Gθ(z)
captures the high dimensional distribution of the training

set X and can acts as a strong prior for the true image x,

provided x ∈ X .

Deep Ptych approach aims to invert the pretrained gen-

erator Gθ(z) by optimizing over the latent code z to best

match the output of Gθ(z) with the subsampled FP mea-

surements. Specifically, Deep Ptych approach tries to find

the estimate of the true image as the solution to the follow-

ing non-convex optimization formulation

ẑ = arg min
z∈Rk

L
∑

ℓ=1

‖yℓ − |MℓAℓ(Gθ(z))|‖
2
2. (4)

The estimated image x̂ is acquired by a forward pass of the

ẑ through the generator Gθ as x̂ = Gθ(ẑ). As the loss func-

tion term in (4) is non-linear and non-convex, therefore it

is approximated via gradient descent algorithm started from

random initialization of z:

ẑ ← ẑ − η
∂
∑L

ℓ=1 ‖y − |MA(Gθ(z))‖
2
2

∂z

∣

∣

∣

∣

∣

z=ẑ

, (5)



Figure 4: Illustration of Deep Ptych approach (left), where

the solution (red dot) is constrained to lie inside the range

(grey region) of the pretrained generator. Unlike Deep

Ptych, proposed approach Adaptive Ptych (right) can ex-

plore solutions outside the range of the generator, while still

obeying the forward FP acquisition model.

where η is the learning rate for the gradient descent al-

gorithm. The optimization program of Deep Ptych in (4)

implicitly constrains the recovered solution x̂ to lie in the

range of the pretrained generator Gθ. This is illustrated in

Figure 4, where we show the true images and corresponding

closest images that lie in the range of the generative models

trained on respective datasets. It can be seen in Figure 4

(left) that the generator trained on face dataset is not able to

reconstruct corresponding true images faithfully via Deep

Ptych approach due to representation/range error.

To mitigate the representation error of Deep Ptych, we

propose a simple yet effective recovery algorithm that con-

siders solutions outside the range of the pretrained gener-

ator while still leveraging the rich structure of the learned

generative models. Specifically, we optimize the weights,

denoted by θ, of the pretrained generator Gθ along with la-

tent code z, to best match the output of the generator with

the observed subsampled FP measurements y. Optimiza-

tion program of proposed approach is

{θ∗, z∗} = argmin
θ,z

L
∑

ℓ=1

‖yℓ − |MℓAℓ(Gθ(z))|‖
2
2, (6)

Note that the initial value of θ is the pretrained weights.

Thus we are incorporating information captured during the

test time (subsampled FP observations) with the valuable

knowledge (in the form of pretrained weights) obtained dur-

ing the training of the generative model. The final estimate

x̂ will be x̂ = G
θ̂
(ẑ). We dubbed our proposed approach

as Adaptive Ptych as it adapts the weights of the Gθ to pro-

duce an estimate of the true image that best matches with

the given FP measurements y.

We empirically show that proposed approach gives com-

parable performance to Deep Ptych at low measurements

and leverage additional measurements to enhance the per-

formance by going beyond the range of the generator and at

the same time obey the forward phase retrieval model in (2).

This is illustrated in Figure 4 where estimate recovered via

Deep Ptych algorithm (red dot) is constrained to lie in the

generator range (grey area) while proposed approach has no

such limitation.

Although Adaptive Ptych approach gives visually ap-

pealing reconstructions, however, we numerically observe

that the original high-resolution frequencies may not always

be fully restored in the reconstructed images. To handle

this discrepancy, we project the estimate x̂, obtained by (6),

onto the solution space of yℓ = |MℓAℓx| by minimizing

the following optimization program

x̃ = argmin
x

L
∑

ℓ=1

‖yℓ − |MℓAℓ(x)|‖
2
2 + λ‖x− x̂‖22 (7)

where λ balances fidelity of the approximation to subsam-

pled measurements y and closeness of estimated solution

x̃ to the solution obtained via Adaptive Ptych algorithm x̂.

We leverage the auto-differentiation function of Tensorflow

[28] to calculate the gradient of the above optimization pro-

gram to solve it via gradient descent algorithm. We take x̃

from (7) as the final estimate of the high-resolution true im-

age. The reconstructed image x̃ is as close as possible to the

estimate given by (6), and at the same time respecting the

reconstruction constraint of (3). We dubbed this modified

approach as Adaptive Ptych+.

6. Numerical Results
In this section, we evaluate the performance of the pro-

posed approach against baseline methods through exten-

sive experiments, both qualitatively and quantitatively. For

quantitative comparison, we use peak signal to noise ra-

tio (PSNR) and structural similarity index measure (SSIM)

[29]. All our simulations are performed by adding 1% ran-

dom Gaussian noise to measurements unless stated other-

wise2. For generative model based approaches, we report

the results on a held-out test set, unseen by the generative

models during training.

Datasets description: We evaluate the performance of the

proposed approach on four datasets. These datasets in-

clude CelebA [30], SVHN [31], Shoes [32] and CelebA-HQ

dataset [33]. CelebA dataset contains more than 200, 000
RGB face images (with 180, 000 training images) of size

218 × 178 × 3 of different celebrities. We use aligned and

cropped version of this dataset, where each image is of size

64 × 64 × 3. SVHN consists of 32 × 32 × 3 real-world

images of house numbers obtained from google street view

images with 73,257 images for training and 26,032 for test-

ing. Shoes dataset consists of 50K RGB examples of differ-

ent categories of shoes, resized to 64 × 64 × 3. For Shoes

dataset, we leave 1000 images for testing and use the rest as

2Noise of 1%, for image scaled between 0 to 1, translates to Gaussian

noise with zero mean and a standard deviation of 0.01.



Table 1: Experimental setting and relevant parameters for

CelebA, SVHN, Shoes, and CelebA-HQ. We chose dif-

ferent parameters to show generalizability of proposed ap-

proach for different settings.
CelebA SVHN/Shoes CelebA-HQ

Aperture Size of Camera 16 16 150

Frequency Bands Overlap 65% 50% 30%

Number of Cameras 81 49 9

Generator DCGAN DCGAN ProGAN

Resolution 64 x 64 64 x 64 1024 x 1024

a training set. We upsample SVHN to size 64× 64× 3 and

train generative model on that dataset. Finally, the CelebA-

HQ dataset consists of 30,000 face images each having size

of 1024× 1024. For the rest of paper, we will call CelebA,

SVHN, and Shoes dataset as low-resolution datasets and

CelebA-HQ as a high-resolution dataset. The representa-

tive training samples of these datasets are shown in Figure

5.

Generators Architecture: For low-resolution datasets, we

use deep convolutional generative adversarial network (DC-

GAN) model of [34]. DCGAN uses convolutional layers in

its generator and discriminator architecture to exploit the hi-

erarchy of representations from image parts. For DCGAN,

size of low dimensional latent representation z is set to 100
and is sampled from a random normal distribution. We

train DCGAN model on the training set of low-resolution

datasets by updating generator G twice and discriminator D
once in each cycle to avoid fast convergence of D. Each

update during training use the Adam optimizer with batch

size 64, β1 = 0.5, and learning rate 0.0002. Generator,

after training, is employed as a regularizer for proposed

subsampled Fourier ptychography algorithm. For CelebA-

HQ experiments, we use official pretrained model of pro-

gressive GAN (ProGAN) that is trained on high resolution

1024× 1024 face images. The ProGAN model has a latent

dimension of size 512 and is sampled from random normal

distribution.

Baseline Methods: We use IERA [1], CoPRAM [6], and

Deep Ptych [9] as baseline methods for qualitative and

quantitative comparison. For CoPRAM, as in the original

paper, we assume sparsity of the true images in Fourier ba-

sis. We use default algorithmic parameters of all baseline

methods unless stated otherwise.

Setup: All simulations are performed on core-i7 computer

(3.40 GHz and 16GB RAM) equipped with Nvidia Titan X

GPU. We use TensorFlow library for implementing the pro-

posed approach. Experimental FP settings for each dataset

are given in Table 1.

6.1. Results on Low-Resolution Datasets

In this section, we compare the reconstruction perfor-

mance of the proposed approach against baseline methods,

Figure 5: Samples of CelebA, SVHN, Shoes and CelebA-HQ

datasets used for training of respective generative models. We train

DCGAN model on training data of CelebA, SVHN, and Shoes.

For CelebA-HQ dataset, we use official pretrained model of Pro-

GAN [33].

both qualitatively and quantitatively, as we change the sub-

sampling ratio. For low-resolution datasets, we use Adam

optimizer to minimize the objective function in (4) with

learning rate of 0.001 and 1500 steps.

Qualitative results for low-resolution datasets against

different subsampling ratios are presented in Figure 6. It

can be seen in Figure 6 that the reconstructed images of

IERA and CoPRAM are blurry and contains artifacts for

low subsampling ratio of 1%. For the same subsampling

ratio, reconstructed images via Deep Ptych are visually ap-

pealing due to strong prior induced by pretrained generative

models. However, due to limited representation capability

of Deep ptych, its reconstructions are constrained to lie in

the range of the pretrained generator that hampers its abil-

ity to produce a faithful estimate of the true image. On the

other hand, as shown in Figure 6, the performance of the

proposed approach is not limited by range of the genera-

tive model. It can be observed that the reconstructions of

the proposed approach are visually sharp and close to the

ground truth images as compared to Deep Ptych reconstruc-

tions.

Quantitative results in terms of SSIM and PSNR for

Adaptive Ptych and baseline methods, against different sub-

sampling ratios, are shown in Figure 7 and Table 2 respec-

tively. These results are averaged over randomly selected

15 images taken from the test set of each dataset. As can be

seen in Figure 7, Adaptive Ptych is able to achieve higher

SSIM values at low-subsampling ratios (1−3%). For higher

subsampling ratios, unlike Deep Ptych, Adaptive Ptych can
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Figure 6: Visual comparison of the reconstructed images by proposed approach against baseline methods at different sub-

sampling ratios. From top to bottom: Original images, IERA, CoPRAM, DCGAN, and Adaptive Ptych. Compared to the

competing methods, our approach has been shown to produce superior results qualitatively.
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Figure 7: SSIM plots of reconstructed images via Adaptive Ptych against baseline methods at different subsampling ratios for CelebA,

SVHN, and Shoes datasets (left to right).

Table 2: Average PSNR results (dB) under different subsampling ratios of baseline methods and Adaptive Ptych. The best

PSNR values are highlighted in bold.

CelebA SVHN Shoe

1% 2% 3% 5% 1% 2% 3% 5% 1% 2% 3% 5%

IERA 9.00 9.89 14.15 10.68 8.42 9.18 9.79 10.75 3.29 3.84 4.25 4.93

CoPRAM 12.07 16.33 19.57 21.94 10.33 13.27 15.49 17.28 4.70 6.87 9.19 13.08

DCGAN 19.92 20.61 20.29 20.91 19.56 20.46 20.07 20.03 22.11 22.75 23.17 23.46

Adaptive Ptych 25.67 28.69 29.68 30.05 21.37 22.44 22.33 22.76 22.09 26.97 27.95 29.74

leverage the additional measurements for improved recon-

structions that are comparable to that of CoPRAM. In Table

2, we present the average PSNR values that show a simi-

lar trend as that of SSIM metric. For instance the average

PSNR of reconstructed CelebA images via Adaptive Ptych,

at subsampling ratio of 2%, is about 12 dB and 8 dB higher

as compared to that of CoPRAM and Deep Ptych.

6.2. Results on CelebA-HQ

In this section, we demonstrate the effectiveness of

Adaptive Ptych and Adaptive Ptych+ for high-resolution

face images of CelebA-HQ. For Adaptive Ptych, we use

Adam optimizer with 2000 steps and learning rate of 0.001
to minimize the reconstruction loss in 4. We further refine

the estimate of Adaptive Ptych via Adaptive Ptych+ by us-



(a) Original (b) IERA (c) CoPRAM (d) Deep Ptych (e) Adaptive Ptych (f) Adaptive Ptych+

Figure 8: Visual comparison of the reconstructed images via Adaptive Ptych and Adaptive Ptych+ against baseline methods at different

subsampling ratios. Compared to the competing methods, our approaches has been shown to produce superior results qualitatively.

Figure 9: SSIM plot of reconstructed images via proposed ap-

proaches against baseline methods at different subsampling ratios

for (a) CelebA (b) SVHN and (c) Shoes dataset.

ing Adam optimizer for 200 iterations to minimize recon-

struction constraint in (7).

Qualitative results of Adaptive Ptych and Adaptive

Ptych+ against baseline methods are shown in Figure 8.

Once again, the results of IERA and CoPRAM contain ar-

tifacts at low subsampling ratios. Deep Ptych reconstruc-

tions, although sharp, are not satisfying due to limited rep-

resentation capabilities of ProGAN. Adaptive Ptych recon-

structions are visually appealing and close to the true image

as compared to baseline methods. As shown in Figure 8,

Adaptive Ptych may not be able to recover fine details like

hair in the high-resolution face images. Adaptive Ptych+ ef-

fectively mitigates this discrepancy as discussed in Section

5 and achieve best perceptual results among all approaches.

Quantitative results in terms of SSIM, averaged over 5

test images (due to computational and time constraints) of

CelebA-HQ dataset, against different subsampling ratios

are shown in Figure 9. We observe that Adaptive Ptych

and Adaptive Ptych+ are able to achieve higher average

SSIM values as compared to baseline methods. The aver-

age SSIM value of Deep Ptych reconstructions saturates as

we increase the subsampling ratio, contrary to correspond-

ing Adaptive Ptych and Adaptive Ptych+ SSIM values that

continue to increase by leveraging upon the additional mea-

surements at higher subsampling ratios.

7. Limitations

Currently, our approach is limited by the requirement of

the massive amount of training data to train the generative

model accurately. This can be highly prohibitive in the con-

text of FP, due to time and cost constraints. Our experi-

ments show the effectiveness of the proposed approach for

low noise level of 1%. Extending the proposed approach

to high noise levels, that is relevant in FP setup, is chal-

lenging but promising future direction. Another limitation

of pretrained generator based approaches is that they work

only for specific classes of images on which they have been

trained.

8. Conclusion

To conclude, we propose to mitigate the limited repre-

sentation capability of pretrained generative models for sub-

sampled Fourier ptychography problem. We demonstrate

the superiority of the proposed approach against baseline

methods both qualitatively and quantitatively.
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