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Abstract

Deep learning algorithms have demonstrated state-of-

the-art performance in various tasks of image restoration.

This was made possible through the ability of CNNs to learn

from large exemplar sets. However, the latter becomes an

issue for hyperspectral image processing where datasets

commonly consist of just a few images. In this work, we pro-

pose a new approach to denoising, inpainting, and super-

resolution of hyperspectral image data using intrinsic prop-

erties of a CNN without any training. The performance of

the given algorithm is shown to be comparable to the per-

formance of trained networks, while its application is not

restricted by the availability of training data. This work is

an extension of original “deep prior” algorithm to hyper-

spectral imaging domain and 3D-convolutional networks.

1. Introduction

Deep Convolutional Neural Networks (CNNs) are occu-

pying more and more leading positions in benchmarks of

various image processing tasks. Commonly, it is related to

the excellent representative ability of hierarchical convolu-

tional layers which allows CNNs to learn a large amount of

visual data without any hand-crafted assumptions. Ulyanov

et al. [30] were the first to show that not only a learning

ability but also the inner structure of a CNN itself can be

beneficial for processing of image data.

For example, the inverse task of image restoration, such

as inpainting, noise removal, or super-resolution, can be for-

mulated as an energy minimization problem as follows:

x∗ = min
x

E(x, x0) +R(x) , (1)

where E(x, x0) is a task related metric, x and x0 are orig-

inal and corrupted images, and R(x) is a regularization

term (image prior) which can be chosen manually or can

be learned from data (as it happens in the vast majority

of CNN-based methods). However, the theory of Ulyanov

et al. states that image prior can be found in the space of

the network’s parameters directly, through the optimization

process, which allows removal of regularization term, and

searching a solution as:

x∗ = fθ∗(z), where θ∗ = argmin
x

E(fθ(z), x0) (2)

Here, f is a CNN with parameters , and z is a fixed input

(noise). Thereby, an original image can be restored via op-

timization of the network’s weights using only a corrupted

image.

This approach has a particularly high significance in the

domain of hyperspectral imaging (HSI). Currently, HSI is

a powerful tool which is widely used in remote sensing,

agriculture, cultural heritage, food industry, pharmaceutics,

etc. The complexity of hyperspectral equipment and pro-

cess of data acquisition make corruption of image data even

more likely than it is for RGB imaging. Thus, it gener-

ates an increased demand for algorithms of hyperspectral



image restoration. But, at the same time, accurate learning-

based methods can hardly be used due to the lack of data.

The complexity of data acquisition does not allow gather-

ing of large custom datasets for a particular task, and even

openly available ones are very limited and rarely exceed one

hundred images, sometimes consisting of just one image

[3][15][31].

Our work aims to solve this problem and, altogether, our

contributions can be formulated as follows:

• We propose an efficient algorithm for hyperspectral

image restoration based on the theory of Ulyanov et

al.

• We design a new 3D-convolutional implementation of

the algorithm and prove the fundamental property of

3D convolutions to contain low-level image informa-

tion which can be used as a prior.

• We demonstrate a potential application of the algo-

rithm for HSI and evaluate its performance in compar-

ison with other methods.

• Eventually, we make the source code publicly accessi-

ble and is ready to use out-of-the-box.

2. Related Works

In this section, we briefly introduce recent advances in

hyperspectral denoising, inpainting, and super-resolution.

One way to perform HSI denoising is to apply 2D algo-

rithms to each band separately. Such an approach can uti-

lize bilateral [29] or NL-means filtering [7], total variation

[27], block-matching 3D-filtering [9], or novel CNN-based

techniques, e.g. DnCNN [39]. However, not taking spectral

data into consideration may cause distortions and artifacts

in the spectral domain. This, has given rise to a family of

algorithms based on spatial-spectral features, such as spa-

tiospectral derivative-domain wavelet shrinkage [24], low-

rank tensor approximation [26], low-rank matrix recovery

[38], and most recently FastHyDe algorithm [40], which

utilizes sparse representation of an image linked to its low-

rank and self-similarity characteristics. A deep learning

paradigm has been used in the 3D modification of DnCNN,

and more advanced HSI-oriented network HSID-CNN [36].

The inpainting of grayscale and RGB images con-

ventionally rely on patch-similarity and variational algo-

rithms to propagate information from intact regions to holes

[2][4][13] and may be used for HSI data in a band-wise

manner. Novel inpainting approaches benefit from realistic

reconstruction ability of GANs, which allows filling even

large holes with remarkable accuracy [16][21][35]. How-

ever, they rely on large training datasets. There are also

a number of HSI-specific inpainting methods [6][8][10].

Similar to our approach, Addesso et al. [1] address HSI

inpainting as an optimization task with (hand-crafted) col-

laborative total variation regularizer, while Yao et al. [34]

designed a regularizer based on the Criminisi’s inpainting

method. Recently, the FastHyIn algorithm [40] (an ex-

tension of FastHyDe) demonstrated state-of-the-art HSI in-

painting accuracy, with the only remark that similar to [28]

it utilizes information from intact bands, thus cannot be

used in cases of all-bands corruption.

The majority of hyperspectral super-resolution (SR) al-

gorithms perform a fusion of input hyperspectral image

with a high-resolution multispectral image which is easier

to obtain [11][25]. Single-image SR is a more sophisticated

task. The attempts to solve it include spectral mixture analy-

sis [19], low-rank tensor approximation [32], Local-Global

Combined Network [18], MRF-based energy minimization

[17], transfer learning [37], the recent method of 3D Full

Convolutional Neural Network [23], and others.

3. Methodology

The main idea of the method is captured by Equations

(1) and (2). The fully-convolutional encoder-decoder fθ is

designed to translate a fixed input z filled with noise to the

original image x, conditioned on corrupted image x0. We

use the paradigm of the “deep prior” method [30] which

says that optimal weights θ of a network fθ can be found

from the intrinsic prior contained in a network structure in-

stead of learning them from the data. Particularly, θ is ap-

proximated by the minimizer θ∗:

θ∗ = argmin
x

E(fθ(z), x0) (3)

which can be obtained using an optimizer such as gradient

descent from randomly initiated parameters. It is also pos-

sible to optimize over input z (not covered in this work).

The energy function E(x, x0) may be chosen accord-

ingly to the application task. In the case of a basic recon-

struction problem, it may be formulated as L2-distance:

E(x, x0) = ||x− x0||
2 (4)

It was shown [30] that optimization converges faster in

cases of natural-looking images rather than random noise,

i.e. the process demonstrates high impedance to noise and

low impedance to signal. The latter can be used to interrupt

the reconstruction before the noise will be recovered, which

will lead to blind image denoising.

Also, E(x, x0) term can be modified to fill the missing

regions in a inpainting problem with mask m ∈ {0, 1}:

E(x, x0) = ||x− x0 ◦m||2 (5)

where ◦ is a Hadamard product. Otherwise, downsampling

operator d(x, α) : xαN×αN×C → xN×N×C with factor α

can be used in E(x, x0) to address super-resolution task as a



prediction of high-res image x which, when downsampled,

is the same as low-res image x0:

E(x, x0) = ||d(x)− x0||
2 (6)

3.1. Implementation details

It was found, that different fully-convolutional encoder-

decoder architectures (sometimes with skip-connections)

are suitable for the implementation of the given method. For

the exact description in details please see the source code1.

Although parameters differ for each sub-task, the general

framework is common and is illustrated in Fig. 1.

We experiment with two versions of the networks – 2D

and 3D. While 2D convolutions are still able to process

multi-channel input, they cause shrinkage of spectral infor-

mation already at the first convolutional layer and recover

1https://github.com/acecreamu/deep-hs-prior

it back at the last one. In this case, filters of these layers

would have an “elongated” shape with a depth equal to the

depth of the hyperspectral image. A 3D convolution allows

the use of smaller filters (e.g. 3 × 3 × 3) along the whole

network because its output is a 3D volume. This ability to

preserve a 3D shape of the input is considered to be ben-

eficial for the processing of hyperspectral data. It is worth

mentioning, that unlike a conventional “hourglass” architec-

ture, where data is consecutively downsampled/upsampled

along two spatial dimensions, processing of 3D volumes al-

lows doing the same with third dimension as well (see Fig.

1).

The input of the network is uniform noise in range 0-0.1

of a shape equal to the shape of a processed hyperspectral

image. Optionally, it is additionally perturbed at each it-

eration with Gaussian noise of specified σ. The activation

function used is LeakyReLU [33]. Downsampling is per-

Figure 1: 2D (top) and 3D (bottom) convolutional architectures used in our experiments. Size of the filters of the first

convolutional layer is illustrated under the input image. Pooling and activation layers are omitted for simplicity sake.



Figure 2: HSI denoising results. HYDICE DC Mall image; false-color with bands (57, 27, 17).

formed using a stride of convolutions, while upsampling is

either “nearest” or bilinear (trilinear for a 3D case). Other

methods can also be used but these prevailed in our experi-

ments. ADAM algorithm was used for optimization.

4. Experimental setup

Denoising. We evaluate the ability of an algorithm to re-

move noise using HYDICE DC Mall data [31] with syn-

thetically added Gaussian noise of σ = 100. The image

consists of 191 channels and was cropped to 200×200 pix-

els size. Results (Fig. 2, Table 1) are compared to HSSNR

[24], LRTA [26], BM4D [22], LRMR [38], and HSID-CNN

[36] methods.

Inpainting. The Indian Pines dataset [3] (145×145×200)

from AVIRIS sensor was used to test the proposed inpaint-

ing method. The mask of corrupted strips was applied to all

bands. Results (Fig. 4, Table 1) are compared to Mumford-

Shah [14] and fourth-order total variation (TV-H−1) [5]

2D methods, as well as the state-of-the-art HSI inpainting

method FastHyIn [40].

Super-resolution. The experiment was conducted using

ROSIS-03 image of Pavia Center [15] (102 spectral bands).

A patch of 150 × 150 pixels was cropped from the orig-

inal image and downsampled by a factor of 2 by spatial

dimensions. The evaluation includes “nearest” and bilin-

ear upsampling, learning-based method SRCNN [12] ap-

plied band-wise (msiSRCNN) or by groups of 3 bands (3B-

SRCNN [20]), and 3D-FCNN [23]. Results are presented

in Fig. 3 and Table 1.

5. Results and discussion

As can be seen, the proposed method outperforms

all single-image algorithms and demonstrate performance

comparable to trained CNNs, while not being trained on

any dataset before. Surprisingly, the 2D version of the Deep

HS prior outperformed the 3D-convolutional one in all ex-

periments. Note that the 2D implementation has nothing to

do with band-wise processing; instead, it captures spectral

information in filters of the first convolutional layer and uses

combinations of them at the subsequent layers. Besides,

the 3D implementation requires significantly more memory

and computational time for processing the same amount of

data because it works with tensors of higher dimensionality

(roughly speaking a 3D version will have C times more pa-

rameters, where C is a number of bands). Eventually, we

find 2D implementation was sufficient for processing of hy-

perspectral data. And yet, it is worth mentioning that 3D

version demonstrated comparable performance that is im-



Denoising

HSSNR LRTA BM4D LRMR HSID-CNN Deep HS Deep HS

(trained) prior 3D prior 2D

MPSNR 16.31 23.17 22.57 24.31 25.29 23.24 25.05

MSSIM 0.605 0.849 0.812 0.879 0.901 0.852 0.889

SAM 24.73 9.122 9.761 10.46 8.406 9.910 8.606

Inpainting

Do Mumford- TV-H−1 FastHyIn Deep HS Deep HS

Nothing Shah prior 3D prior 2D

MPSNR 17.75 24.74 27.68 28.08 35.34 37.54

MSSIM 0.722 0.890 0.911 0.920 0.966 0.979

SAM Inf 5.429 3.855 3.032 1.133 0.856

Super-resolution

Nearest Bicubic msiSRCNN 3B-SRCNN 3D-FCNN Deep HS Deep HS

(trained) (trained) (trained) prior 3D prior 2D

MPSNR 29.98 31.10 32.48 32.69 33.92 32.31 33.67

MSSIM 0.921 0.937 0.957 0.960 0.969 0.945 0.967

SAM 4.786 4.592 4.617 4.661 4.140 4.692 4.211

Table 1: Quantitative evaluation of the results.

Figure 3: HSI super-resolution results. Pavia Center image; rescale factor 2; band 25 visualization.



Figure 4: HSI inpainting results. AVIRIS Indian Pines dataset; band 150. The mask of corrupted stripes (a) was applied to

all bands, except case (d) where only bands 25:175 (75%) were affected.

portant from a theoretical point of view because it proves

that CNN architectures based on 3D convolutions also con-

tain the image prior within the intrinsic parameters.

6. Conclusions

Starting from the paradigm that the image prior can be

found within a CNN itself and not be learned from train-

ing data or designed manually, we developed an effective

single-hyperspectral-image restoration algorithm. Qualita-

tive and quantitative evaluation of the results demonstrated

superior effectiveness of the proposed algorithm compared

to other single-image algorithms.
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