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Abstract

Fast data acquisition in Magnetic Resonance Imaging

(MRI) is vastly in demand and scan time directly depends

on the number of acquired k-space samples. Conventional

MRI reconstruction methods for fast MRI acquisition mostly

relied on different regularizers which represent analytical

models of sparsity. However, recent data-driven methods

based on deep learning has resulted in promising improve-

ments in image reconstruction algorithms. In this paper, we

propose a deep plug-and-play prior framework for parallel

MRI reconstruction problems which utilize a deep neural

network (DNN) as an advanced denoiser within an itera-

tive method. This, in turn, enables rapid acquisition of MR

images with improved image quality. The proposed method

was compared with the reconstructions using the clinical

gold standard GRAPPA method. Our results with under-

sampled data demonstrate that our method can deliver con-

siderably higher quality images at high acceleration factors

in comparison to clinical gold standard method for MRI re-

constructions. Our proposed reconstruction enables an in-

crease in acceleration factor, and a reduction in acquisition

time while maintaining high image quality.

1. Introduction

Parallel imaging (PI) techniques have become popular

strategies for reducing scan time, such as by undersam-

pling phase encodes in different MRI sequences, and for

mitigating geometric distortion, such as in EPI sequences.

PI uses spatially varying coil sensitivity profiles from an

array of receiver coils, to reconstruct images despite un-

dersampling of data. Two primary PI reconstruction al-

gorithms are the image domain method of sensitivity en-

coding (SENSE) [22] and the frequency domain method

of generalized autocalibrating partially parallel acquisitions

(GRAPPA) [6]. SENSE reconstruction is achieved by solv-

ing a linear system of equations that uses the coil sensitivity

profiles. Efficient reconstruction methods have been intro-

duced based on the SENSE framework for both Cartesian

[22], and non-Cartesian trajectories [21]. SENSE-based

methods, that explicitly require the coil array sensitivity

maps to be known, include parallel MRI with adaptive ra-

dius in k-space (PARS) [34], parallel imaging reconstruc-

tion for arbitrary trajectories using k-space sparse matrices

(kSPA) [18], and sensitivity profiles from an array of coils

for encoding and reconstruction in parallel (SPACE-RIP)

[16]. The PARS approach performs point-by-point recon-

struction by creating and inverting small localized encoding

matrices (lies within a small radius in k-space) instead of

inverting the complete encoding matrix at once. The kSPA

approach performs the reconstruction as a system of sparse

linear equations in k-space which is achieved by comput-

ing a sparse approximate inverse matrix. The SPACE-RIP

approach positions RF receiver coils around the object of in-

terest which make it possible to image different plane within

the volume of interest and also enabling variable density

sampling in k-space.

GRAPPA reconstruction is an autocalibrating method based

on local k-space kernels, which utilize the learned correla-

tion between multiple channels in local areas and fill miss-

ing k-space values by a linear combination of the acquired

local data from multiple coils. Partially parallel imag-

ing with localized sensitivities (PILS) [7], simultaneous

acquisition of spatial harmonics (SMASH) [26], AUTO-

SMASH [13], and VD-AUTO-SMASH [12], are other ex-

amples of autocalibrating methods which utilize k-space

kernels. The PILS approach needs specific coil arrange-

ment in order to reconstruct the full field of view. The

receiver coils in PILS approach located linearly in the di-

rection of phase encoding with localized sensitivities over

different regions in the full field of view. The SMASH

approach, generates missing data directly by a weighted

linear combination of the estimated sensitivity maps. The

weights in SMASH are estimated by fitting the maps to

spatial harmonic of specific order. The AUTO-SMASH

approach exploits a few numbers of autocalibration signal

(ACS) lines to estimate the sensitivities. Variable-density

AUTO-SMASH (VD-AUTO-SMASH) uses multiple ACS

lines from the k-space center to improve the reconstruction



of the AUTO-SMASH approach. GRAPPA approach can

be considered as a generalized version of the VD-AUTO-

SMASH approach. GRAPPA techniques have been ex-

tended to non-Cartesian k-space trajectories by the meth-

ods such as [25, 11]. Iterative self-consistent parallel imag-

ing reconstruction (SPIRIT) [20] method is also based on

GRAPPA framework but formulated as an inverse problem

which can reconstruct data from arbitrary k-space trajecto-

ries. The extended version of SPIRIT method was intro-

duced in [29] (ESPIRIT) which considered to reconstruct

missing data by restricting the solution to a subspace and

estimate the sensitivity maps from autocalibration lines in

k-space using eigenvalue decomposition of k-space filtered

calibrated kernels in image space.

It is also possible to reduce the aliasing artifact through

techniques such as 2D CAIPIRINHA [4], and Wave-CAIPI

[2], both of which modify the data acquisition in order to

reduce the concentration of aliasing artifacts on certain re-

gions, leading to a reduced geometry factor penalty, and a

more robust reconstruction.

A popular approach to reduce or mitigate the presence

of reconstruction artifacts has been regularized recon-

struction or compressed sensing (CS) method. Methods

based on SENSE are particularly reformulated to include

regularization [23], and rapid and accurate reconstructions

are possible. Popular regularization constraints include

gradient norm, total variation, and l1-norm of transform

domain coefficients to promote edge preservation and

sparsity. CS methods seek to exploit intrinsic image

properties of sparsity in a transform domain and have

allowed for highly accelerated imaging in different settings.

These techniques allow for images to be reconstructed

with the similar linear algebra equation that express both

data similarity term and sparsity penalty term. These have

allowed to increase data acquisition speed while generating

better reconstructions [23, 19, 17, 1, 8, 32, 33, 9]. Due

to nondifferentiability of some regularizers, proximal

methods like alternating direction method of multipliers

(ADMM) [3] has been proposed. Proximal methods uses

proximal operator to avoid the regularizer differentiation.

The plug-and-play prior framework [30] presented with

an idea to utilize the denoiser without any regularization

objective as proximal operator in an iterative method for

image recovery. The method has been used in different

imaging inverse problem applications [27, 5, 14, 28]. In

[27], authors used the plug-and-play framework for bright

field electron tomography. In [5], plug-and-play alternating

direction method of multipliers has been used for image

restoration applications. In [14], the authors developed

the fast-iterative shrinkage/thresholding algorithm (FISTA)

variant of plug-and-play prior for model-based nonlinear

inverse scattering and proved that the framework is appli-

cable beyond linear inverse problems. In [28], the authors

introduced a scalable version of plug-and-play framework

based on iterative shrinkage/thresholding algorithm (ISTA)

which utilized a subset of measurement at every iteration

in order to parallelize the algorithm. In all the mentioned

papers, a fixed denoiser has been used as the proximal

operator which its accuracy can’t be ideal in different

scenarios for different applications. However, in this

paper we present a learning-based plug-and-play prior

framework for parallel MRI reconstruction which extends

the framework to its data-adaptive variant and provides

an end-to-end reconstruction scheme. We evaluate the re-

construction performance of our method to clinically-used

GRAPPA method. GRAPPA reconstruction method is

being considered as the clinical gold standard and the most

trusted method by radiologist for MRI reconstruction.

2. Methods

The complete MR imaging model given by

dl(km) =

∫
Sl(ρ)x(ρ)e

−i2πkmρdρ+ nl(km). (1)

where dl(km) is the data-samples measurements from

lth coil at the mth k-space location km. nl(km) is the noise

measured from lth coil at the mth k-space location. x(ρ)
is the samples of unknown MR image to be recovered. Sl

is the sensitivity map of the lth coil. The following MR

imaging model is the discretized version of Equation (1):

d = Ex + n. (2)

where x is the samples of unknown MR image, E = PFS

is an encoding matrix, and F is a Fourier matrix. P is a

mask representing k-space undersampling pattern and S =
[S1...SL], Sl is a matrix representing the sensitivity map of

the lth coil, 1 ≤ l ≤ L, and L is the total number of coils.

Assuming without loss of generality that the inter-coil

noise covariance has been whitened, the imaging model can

be solved and reach the optimal maximum likelihood esti-

mate for x when E has full column rank. This can be done

by solving the following least squares problem

x̂ = argmin
x

1

2
‖d − Ex‖2

2 (3)

which results in

x̂ = (EHE)−1EHd (4)

In a case of undersampled k-space data, Equation (4)

yields artifacts depending on the sampling pattern. If we

consider Cartesian-type sampled k-space, then we create

aliasing artifacts in the coil images.



Equation (3) can be poorly-conditioned in a case of high

acceleration factor, and therefore, a regularization term can

be incorporated additionally in the least-square approach.

Assuming that the interchannel noise covariance has been

whitened, the reconstruction relies on the regularized least-

square approach:

x̂ = argmin
x

1

2
‖d − PFSx‖2

2
+ βR(x) (5)

where R is a regularization functional that promotes

sparsity in the solution and β > 0 controls the intensity

of the regularization.

Our iterative deep plug-and-play prior framework based

on ADMM for solving the Equation (5) is provided in Al-

gorithm 1.

Algorithm 1 Deep Plug-and-Play Prior

Input: x0, d, S, u0 = 0, λ > 0

1: for i = 1, 2, ..., N do

2: ai ← prox(d, S, xi−1 − ui−1;λ)
3: xi ← DNN(ai + ui−1)
4: ui ← ui−1 + (ai − xi)

5: end for

x0 = EHd is used as an initialization to the algorithm.

For least-square cases, we have

prox(d, S, x̃;λ) = argmin
z

1

2
‖z − x̃‖2

2
+

λ

2
‖PFSz − d‖2

2

(6)

DNN architecture is an encoder-decoder Unet-type [24]

convolutional network architecture with skip connections.

The number of filters for both encoder and decoder layers

is set to 128 and the network filter kernel size is set to 3 for

both encoder and decoder layers. Mean-square-error (MSE)

has been used as a Loss function and Loss minimization

was performed using ADAM [15] optimizer. Since the

deep network frameworks work on real-valued parameters,

inputs, and outputs, in our method complex data are divided

into real and imaginary parts and considered as two-channel

input and output. Figure 1 illustrates the proposed ADMM

based deep plug-and-play prior framework.

3. Results and Discussions

In our experiments, we have tested our method with

four different datasets in order to explore the generalization

potential of our method for MRI reconstruction.

First dataset has been acquired (3D MPRAGE) on six

volunteers with a total of 450 brain images used as the train-

ing set. A 32-channel head coil was used for the MPRAGE

scans and the echo time (TE) of the scan was 2.17ms with

a repetition time (TR) of 1.56s. We undersampled the

multi-coil k-space data retrospectively with undersampling

along both phase encoding dimensions (acceleration fac-

tor R=2x2). Written, informed consent was obtained from

each volunteer prior to scanning and experiments were per-

formed in accordance with the local IRB protocol.

For the second, third, and fourth datasets, we have used

three knee datasets presented by [10]. Three datasets in-

clude Coronal PD dataset (knee dataset-1), Coronal fat-

saturated proton-density (PD) dataset (knee dataset-2), and

Sagittal fat-saturated T2 dataset (knee dataset-3). In the

knee datasets, each subjects were scanned with a 15-

channel knee coil. Each of these three datasets includes a

total of 200 images from 10 patients which have been used

as the training set. 10 images from different patients for

each dataset have used for testing purposes.

The sensitivity maps were computed from a block of size

24x24 for both brain and knee datasets using ESPIRiT [29]

method. Full k-space data reconstructed with the adaptive

combine method [31] was used as our gold standard for

comparison. The reconstruction performance was evaluated

using quantitative metrics focusing on different aspects of

the reconstruction quality. The Peak Signal to Noise Ratio

(PSNR) was used to assess the overall reconstructed image

quality and the Structural Similarity Index (SSIM) was used

to estimate the overall image similarity with respect to the

reference reconstruction.

Figure 2 display the impact of acceleration factor R=2x2

for zero-filled reconstruction, the clinical gold standard

GRAPPA, and our proposed method on 3D MPRAGE brain

images (brain dataset). We observed that the proposed

method reconstructs artifact-free images, which is sharper

and have better quality than GRAPPA reconstruction, and

GRAPPA result shows noise amplification compared to our

result (PSNR of ours is 52.93 compared to PSNR of 43.91

for GRAPPA). Figures 3,4 show the impact of acceleration

factor R=4 (undersampling along only one phase encoding

dimension) for zero-filled reconstruction, GRAPPA, and

our proposed method on knee dataset-1 and knee dataset-2

respectively. Similar to Figure 2, GRAPPA results for knee

data in Figures 3 and 4 show noise amplification compared

to our results (PSNRs of ours are 41.12 and 40.48 compared

to PSNRs of 30.54 and 29.39 for GRAPPA). Our results

show better image restoration than GRAPPA and resulting

in a nearly artifact-free reconstructed images. PSNR and

SSIM quantitative variations on brain dataset is depicted

in Table 1. Table 2 shows PSNR and SSIM quantitative

variations on knee datasets. Tables 1,2 show that our

reconstructions consistently have higher PSNRs and SSIMs

than GRAPPA reconstructions.



Brain Dataset

Method PSNR SSIM

Proposed 53.3± 0.91 0.99± 0.0015
GRAPPA 44.8± 0.69 0.97± 0.0023

Table 1. PSNR and SSIM variations on Brain dataset

4. Conclusion

This paper proposes an ADMM based deep plug-and-

play prior framework and demonstrates the effectiveness of

learning-based plug-and-play prior framework for parallel

MRI reconstruction. The reported results on four real (not

simulated) MRI datasets show that our proposed method

outperforms the clinical gold standard GRAPPA method.

We have demonstrated that the image quality arising from

partially parallel MRI reconstruction can be improved, in

comparison to the GRAPPA reconstruction, by using the

proposed ADMM based deep plug-and-play prior frame-

work.
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Second row, includes error maps correspond to each reconstruction results for comparison.
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