
 

Abstract 

Image denoising, particularly Gaussian denoising, has 

achieved continuous success in the past decades. Although 

deep convolutional neural networks (CNNs) are also shown 
leading high-performance in Gaussian denoising just as in 

many other computer vision tasks, they are not competitive 

at all on real noisy photographs to representative classical 

methods such as BM3D and WNNM. In this paper, a simple 

yet robust method is proposed to improve the effectiveness 

and practicability of deep denoising models. In view of the 

difference between real-world noise in camera systems and 

additive white Gaussian noise (AWGN), the model learning 

has exploited clean-noisy image pairs newly produced built 

on a generalized signal dependent noise model. During the 

model inference, the proposed denoising model is not only 
blind to the noise type but also to the noise level. Meanwhile, 

in order to separate the noise from image content as full as 

possible, a new convolutional architecture is advocated for 

such a blind denoising task where a kind of lifting residual 

modules is specifically proposed for discriminative feature 

extraction. Experimental results on both simulated and real 

noisy images demonstrate that the proposed blind denoiser 

achieves fairly competitive or even better performance than 

state-of-the-art algorithms in terms of both quantitative and 

qualitative assessment. The codes of the proposed method 

are available at https://github.com/zhaohengyuan1/SDNet. 

1. Introduction 

Image denoising is a fundamental problem in the fields 

of image processing and computer vision. Classical 

algorithms generally emphasize on the properties of natural 

images and noise by exploiting hand-engineered and 

analytical features. While with the rising popularity of the 

convolutional neural networks (CNNs), modern denoising 
algorithms often learn a mapping from noisy images to their 

counterpart noise-free versions in the framework of deep 

supervised learning. In a typical denoising setting with 

additive white Gaussian noise (AWGN), deep denoisers 

have achieved significant success due to their advanced 
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Figure 1: (a) A test image from the real noisy image dataset [7]. A 
local patch of the noisy and denoised image by each approach is 
shown around the test image. (b) Noisy patch, (c) DnCNN [2] 
(PSNR = 34.08 dB), (d) WNNM [6] (PSNR = 38.68 dB), (e) 
CBM3D [5] (PSNR = 39.72 dB), (f) Our SDNet (PSNR = 39.94 
dB).  

 

capabilities of representing complex properties of images 

and noise. However, as turning to real noisy images, the 

state-of-the-art deep denoising models for AWGN, e.g., 

TNRD [1] and DnCNN [2], are usually shown [3] inferior 

performance to classical prior-based algorithms, e.g., 

BM3D [4], CBM3D [5] and WNNM [6]. The apparent 

reason to such discrepancy is that Gaussian noise is largely 

deviated from the real ones coming from five major sources 

in camera systems including photon shot noise, dark current, 

readout noise, fixed pattern noise and quantization noise. It 

is thus required to formulate denoising of real photographs 
as a totally blind estimation problem. In practice, neither the 

noise type nor the level is available in advance, which poses 

a great challenge to both training and generalization of deep 

CNNs. Figure 1 provides a denoising example from the real 
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noisy image dataset in [7], demonstrating that our proposed 

deep method is a more appropriate candidate for real image 

blind denoising.   

Our Contributions. This paper presents a simple yet 

robust method so as to improve the effectiveness 

and practicability of deep denoising models. State-of-the-

art results are shown on simulated noisy images as well as 

realistic noisy datasets. Two core considerations as 

formulating blind denoising are that, on the one hand, the 

noise model for preparing training images should not be 

camera-specific; on the other hand, the blind deep denoiser 
should be applicable to distinct cameras 

with varied settings while free of the need to estimate noise 

level. According to the guideline, this paper generates a 

new set of clean-noisy image pairs via use of a generalized 

signal dependent noise model given a certain parameter 

setting so as to better match the physics of real-world image 

formation. It is discovered that, such a choice as above is 

demonstrated feasible and applicable to denoising of real 

photographs in spite of its blindness to the camera image 

signal processing pipeline. The simplicity of the proposed 

deep convolutional architecture for denoising is another 
highlight of the paper. It does not exploit the local statistics 

or non-local similarity of natural images as in previous 

strategies [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], while 

emphasizes separating the noise from image content via a 

direct fully end-to-end residual learning strategy wherein 

seven lifting residual modules are involved.  We note that, 

our architecture, dubbed as SDNet, is inspired by the 

networks suggested in [15], [16], [17], while with the 

particular concentration in this paper on the discriminative 

feature extraction for removing real-world camera noise.  

To the best of our knowledge, SDNet is the first one 

using the generalized signal dependent noise model [18] for 
stage- wise blind denoising of real photographs. Its whole 

network architecture is provided in Figure 2. The main 

contributions and highlights of this work can be 

summarized as following which are four-fold:  

1. We demonstrate that blind denoising of real photographs 

can be made workable to a large degree by exploiting the 

generalized signal dependent noise model for generating 

pairs of clean-noisy training images. 

2. SDNet is a fully end-to-end convolutional residual neural 

network model for realistic color image denoising trained 

without need of any hand-crafted priors or additional real 
noisy photographs (along with nearly noise-free images) for 

data augmentation.  

3. The core spirit of SDNet is to separate noise from image 

content in stages and each stage contributes to the desired 

overall noise map, whose prediction precision is ensured 

largely by integrating our lifted residual modules and the 

shortcut connections. 

4. Experiments on both simulated and realistic noisy images 

demonstrate that SDNet could achieve fairly competitive or 

even better performance than state-of-the-art denoisers in 

terms of both quantitative and qualitative assessment. 

2. Related Work 

AWGN Denoising. As one of the most fundamental image 

processing problems, AWGN denoising has undergone fast 

development ranging from classic variational, PDE, 

wavelet, and stochastic algorithms [19, 20] to modern 

nonparametric, self-similarity-driven techniques, e.g., non-

local means [21], BM3D [4]. They are all hand-engineered 

methods, and the modern ones are demonstrated more 

powerful in the model capacity and expressiveness for 
AWGN denoising. Another technical route for AWGN 

denoising is data-driven, which concentrates on image 

representation where either the patch sparsity or local 

statistical regularities are to be learned, e.g., K-SVD [14, 

22], Fields-of-Experts [23]. A non-local sparse modeling 

idea is also advocated in [6, 8], and WNNM [6] is one of 

the most representative methods. Nowadays, with the 

prosperity of deep CNNs, single image AWGN denoising 

is witnessing another round of fast development. DnCNN 

[2] is the first deep denoiser outperforming the state-of-the-

art traditional methods such as BM3D [4], which is a 17-
layer and fully end-to-end convolutional neural model to 

learn the residual noise map assuming a certain noise 

variance. Other recent CNN-based methods including 

FFDNet [24], RED30 [16], MemNet [25], BM3D-Net [26] 

and MWCNN [27] are also developed to solve the AWGN 

denoising problem. For example, FFDNet [24] proposes a 

flexible single network to deal with noisy images in various 

noise levels. The network takes both the noise map and 

noisy image as input and hence is more advanced than 

DnCNN [2]. In addition, the dilated convolution operators 

are exploited in FFDNet for detailed feature extraction.   

Real Image Denoising. Because AWGN deviates from the 
noise greatly emerging in the practical camera image signal 

processing pipeline, a few more recent efforts work towards 

the real image denoising problem. And, it is discovered that 

[3] state-of-the-art deep image denoisers, e.g., DnCNN, are 

not competitive at all to BM3D and WNNM. To capture the 

noise characteristics in real camera photographs, a common 

strategy is to model them via the joint Gaussian-Poissonian 

distribution [28]. In [29] the non-stationary disturbances are 

also modeled via a heteroscedastic Gaussian where 

variance is a function of intensity. Moreover, the cross-

channel noise model is introduced in [7] considering that 
the assumption of channel-independent noise does not hold 

in reality. Since the noise level is unknown in real denoising 

problem, a real image denoiser usually involves two 

closely-relative stages, i.e., noise estimation and non-blind 

denoising. For example, a unified framework is proposed in 



 

 

 
Figure 2: Illustration of our SDNet for stagewise blind denoising of real photographs. 

    

   
(a) Noise-free image (b) Real noisy image (c) SDN-based noisy image (d) Gaussian noisy image 

Figure 3: Images with their pixel intensity histograms. (a) Noisy-free image, (b) Real noisy image from the dataset in Nam et al. [7], (c) 
Synthetic noisy image generated by the signal dependent noise model in (1), (d) Homogeneity Gaussian noisy image. Note that, the 
Kullback-Leibler divergence between (b) and (c), i.e., 0.0028, is much smaller than that between (b) and (d), i.e., 0.0104, demonstrating 
that (c) is much closer to (b). 

[30] for estimating and removing color noise based on the 
piecewise smooth image model. In [12], the non-local 

Bayes method [31] is extended to model the noise statistics 

of every patch group to be zero-mean correlated Gaussian 

distributed. In [32], a Bayesian nonparametric method is 

also proposed for blind denoising by use of the low-rank 

mixture of Gaussians model. Besides, WNNM is recently 

extended for real color image denoising in [33]. The very 

recent deep denoiser CBDNet also follows the two-stage 

architecture for denoising of real photographs [34]. It has 

been divided into noise estimation and non-blind deblurring 

networks. And, its training images are generated according 

to the noise modeling ideas in [28, 29] as well as the in-
camera processing procedure. An alternative way to 

analytically modeling image noise is to collect examples of 

real noisy and noise-free images, which is, however, a great 

burden on the practitioner. Instead, [35] uses the generative 
adversarial network to simulate the distribution of real noise 

for constructing the clean-noisy image pairs. Besides, some 

works also address real image blind deblurring without use 

of ground truth clean images, e.g., [36, 37]. 

In this paper, SDNet is proposed as another blind image 

denoising approach for real photographs. SDNet follows a 

similar routine to CBDNet, trained by generating simulated 

clean-noisy image pairs while using the generalized signal 

dependent noise model firstly reported in [18]. Note that the 

experimental results demonstrate that such a choice fits the 

real blind denoising task to a great degree despite that none 

of the in-camera processing modules is considered. Another 
difference from existing real blind denoising methods is 

that SDNet is free of explicit estimation of the noise level. 

Hence, SDNet is a much simpler deep convolutional  



 

 

 

 

 

 

     

     

     
Figure 4: The 15 cropped real noisy images in Nam et al. [7]. 

 

architecture in practice. Such benefit originates from the 

combinatorial use of stage-wise denoising idea as well as 

our advocated lifting residual modules and the shortcut 

connections. Therefore, a revelation from the present work 

is that real blind denoising can be approached simpler while 
achieving more robust and effective performance. 

3. Proposed SDNet Denoiser 

3.1 Generalized signal dependent noise (SDN) modeling 

In view real noise is sophisticated and signal dependent 

in the pipeline of real camera imaging [28], blind deblurring 

of real photographs using CNNs should be based on a 

realistic image dataset for model training. Rather than 

capturing real noisy photographs with various cameras as 

in [7, 38, 39, 40], this paper generates a new set of clean-

noisy image pairs via use of the generalized signal 

dependent noise model in [18] attempting to characterize 

the physical process of real-world imaging at low cost.  
Assuming z  is a noisy pixel intensity and x is a noise-free 

pixel intensity, we can formulate v as following: 

                              (1) 

where  and  are zero-mean 

Gassuan random variables,  is an exponential parameter 

controlling the strength of signal dependence. As suggested 

in [18], can be assigned between 1/2 and 1/3 for practical 

modeling of camera imaging noise. Taking variance of both 

sides of (1), it is found that the generalized signal dependent 

noise model can be approximated with a heteroscedasticity 

Gaussian 

                               (2) 

where  can be calculated as  after a 

straightforward calculation. By specifying the parameters

, u and w with respect to the denoising problem at hand, 

it is expected to make a denoiser based on CNNs more 

effective and practical. Note that, using  of the 

heteroscedasticity Gaussian, one may generate a 

homogeneity Gaussian noisy image with a noise variance  

Method CBSD68 Kodak Nam et al. [7] 

(a) 33.92 / 0.9639 34.65 / 0.9631 36.84 / 0.9742 

(b) 33.79 / 0.9609 34.55 / 0.9626 36.32 / 0.9706 

(c) 34.06 / 0.9649 34.73 / 0.9640 36.74 / 0.9749 

(d) 34.22 / 0.9662 34.97 / 0.9657 36.56 / 0.9710 

(e) 34.34 / 0.9672 35.15 / 0.9669 37.51 / 0.9778 

Table 1. Quantitative analysis (average PSNR and SSIM) of the 
SDNet on two synthetic datasets, i.e., CBSD68 [41] and Kodak, 
and a real noisy dataset [7]. (a) SDNet only keeping the final noise 
map, (b) SDNet without utilizing the shortcut connections, (c) 
SDNet with Block-1 in Figure 5, (d) SDNet with Block-2 in Figure 
5, (e) SDNet with Block-3 in Figure 5, i.e., our final blind denoiser. 

The bold indicates the best. 

 

 by averaging  across signal intensities from 0 to 

255, i.e.,  

                 (3) 

Figure 3 provides an example showing that the noisy image 

by use of SDN model is obviously closer to the real one 

than the homogeneity Gaussian noisy image. The 

parameters of SDN model are and 

 

3.2 Network architecture 

Figure 2 illustrates the overall network architecture of the 

proposed SDNet denoiser. It is obviously seen that there are 
four convolution layers and seven basic blocks in the trunk 

branch of the SDNet, where the outputs of last three blocks 

have been convoluted so as to produce noise maps in stages. 

To achieve top denoising performance SDNet is 

constructed in detail and strengthened by our lifted residual 

modules as well as the shortcut connections, which are 

discovered help to better separate noise from image content. 

Compared with existing real denoising methods in Related 

Work, SDNet is apparently a rather simpler end-to-end 

convolutional model whose architectural superiority is 

analyzed in the following. 

Stagewise noise estimation. As being discussed in 

DnCNN [2], the residual learning strategy contributes to 

improving AWGN denoising performance. It is relatively 

easier to get remarkable results by exploiting CNNs to learn 

noise maps rather than a direct mapping from noisy image 

to noise-free image. We take a step further here, advocating 

use of a new structure which outputs multiple noise maps 

in the backend of the SDNet. Note that, each noise map

 is a part of the total map

 as shown in Figure 2, 

where z denotes an input noisy image hereafter. Then, 

 aims to approximate the noise- free image x. 

Hence, there will be two ground truth labels to guide the  
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Figure 5. Three distinct building blocks. The left is the plain 
convolutional block, the middle and right present our lifted 
residual blocks for the proposed SDNet. 

training of SDNet model, i.e., the true total noise map and 

the original clean image. To show the advantage of 

stagewise noise estimation, only the last noise map is kept 

in Figure 2 and the denoising performance of re-trained 

model is shown in Table 1. The noisy images include the 

synthetic ones from two clean datasets, i.e., CBSD68 [41] 

and Kodak (http://r0k.us/graphics/kodak), with the SDN 

model (1), and also a real noisy image dataset of Nam et al. 

[7]. Clearly, the final SDNet (Table 1 (e)) is better than its 

degraded version (Table 1 (a)) in terms of both average 

PSNR and SSIM.  

Addition-based shortcut connections. We are inspired by 

the commonly acknowledged skip connections proposed in 

[16] and propose to further plug into the trunk branch of the 

SDNet three addition-based shortcut connections. Note that, 

the concatenation-based skip connections may be served as 

another possible choice for SDNet. Those skip connections 

are expected not only help to enhance feature maps in deep 

layers but also help to achieve benefits on back-propogating 

the gradient information to bottom layers, and therefore the 

training of SDNet becomes relatively easier. To validate the 
neccessity and effectiveness of the addition-based shortcut 

connections to SDNet, its degenerated version without 

those connections is re-trained and also quantitatively 

evaluated as shown in Table 1 (b). We find that on the same 

dataset the denoising performance of SDNet is more 

strongly relative to the shortcut connections than the 

stagewise noise estimation. Besides, we note that the 

influence of shortcut connections on denoising 

performance is more obvious on the real image datast than 

the two synthetic ones as compared with PSNR and SSIM 

results shown in Table 1 (e). 

Advocated residual blocks for SDNet. One notes that the 
overall structure of SDNet is very simple and its denoising 

performance is natually determined by the building blocks 

to a great degree. In this paper, three distinct blocks are tried 

in SDNet, which are provided in Figure 5. The left block is 

a plain convolutional module of six layers of Conv-BN-

ReLu operation. The middle and right blocks are motivated 

by the recently proposed Linear Multi-step ResNet (LM-
ResNet) in [42], which presents a bridge for the first time 

between the famous ResNet [17] and the linear multi-step 

method in numerical ordinary differential equations, and 

also the idea advocated in [43] that the diversity of network 

structure has an important impact on the generalization 

capablity of deep CNNs. We should note that the last two 

building blocks are the specifically advocated residual 

blocks for SDNet in this paper, which can be respectively 

formualted as  

               (4) 

              (5) 

where  represents the input tensor in Figure 5, 

and the output tensor,  the one Conv-BN-

ReLu operation, and two and three Conv-BN-ReLu 

operations, respectively. In each convolution (Conv) layer, 

the number of filters is 64 and the size of every filter is 

The Batch Normalization (BN) [44] and ReLu [45] 

are deployed after each Conv layer. We call the block from 

the left to the right as Block-1, Block-2, and Block-3, 

respectively. SDNet with each kind of block has been 

experimented and demonstrated in Table 1 (c), (d), (e). It is 

found that SDNet-Block-1 and SDNet-Block-2 perform 

comparatively to a certain degree, while SDNet-Block-3 

achieves a remarkable improvement in both synthetic and 

realistic blind denoising and hence it is specified as our 

deep denoiser in this paper.     

3.3 Training details 

To create our training data, the noise model (1) is applied 

to 400 images chosen from BSD500 [41] and Waterloo [46]. 

We then randomly take  crops of each image and 

apply the horizontal and vertical flips for data augmentation, 

which totally produces 33600 crop images for training. 

Note that the noise model (1) is just assigned with a single 

set of parameter values, i.e., to 

generate clean-noisy image pairs for real image blind 

denoising. We claim that harnessing the noise model (1) 

with combinations of different parameter settings may lead 

to better results. In spite of that, it is found that the 

parameter setting as above is a more robust candidate than 

several other choices (shown a little later). 

The loss function for training SDNet is defined as 

              (6) 

where N represents the number of total training image pairs  
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CBM3D WNNM Ours CBM3D WNNM Ours CBM3D WNNM Ours CBM3D WNNM Ours 

CBSD68 28.19 35.64 37.54 28.16 33.31 34.59 28.19 32.54 34.53 28.15 31.69 34.34 

Kodak 29.74 36.70 37.71 29.68 34.49 34.98 29.74 33.74 34.92 29.68 32.82 35.15 

Average 28.96 36.17 37.63 28.91 33.90 34.79 28.96 33.14 34.73 28.91 32.26 34.75 

Table 2. Denoising performance on the synthetic noisy images generated by the signal dependent noise model with different settings of 

parameter values. State-of-the-art denoising methods CBM3D [5] and WNNM [6] are compared with SDNet. The bold indicates the best. 

 

Camera Settings 
CBM3D [5] DnCNN [2] NC [48] WNNM [6] 

MCWNNM 
[33] 

SDNet 
Camera ISO Image # 

Canon 5D Mark III 3200 

1 38.25 37.26 38.75 39.68 39.89 39.83 

2 35.85 34.13 35.55 35.75 37.03 37.25 

3 34.12 34.09 35.54 34.67 35.66 36.79 

Nikon D600 3200 

1 33.10 33.62 35.57 33.60 34.83 35.50 

2 35.57 34.48 36.79 36.32 36.50 37.24 

3 40.77 35.41 39.26 39.95 38.87 41.18 

Nikon D800 1600 

1 36.83 35.79 38.03 36.63 38.46 38.77 

2 40.19 36.08 39.02 40.28 39.78 40.87 

3 37.64 35.48 38.21 37.56 39.01 38.86 

Nikon D800 3200 

1 39.72 34.08 38.03 38.68 37.76 39.94 

2 36.74 33.70 35.69 36.42 36.53 36.78 

3 40.96 33.31 36.76 39.86 37.76 39.78 

Nikon D800 6400 

1 34.63 29.83 33.52 34.43 32.91 33.34 

2 33.95 30.55 32.79 32.81 32.67 33.29 

3 33.61 30.09 32.80 32.72 33.17 33.22 

Average 36.73 33.86 36.42 36.62 36.66 37.51 

Table 3. Performance comparison of different blind denoising methods on the real image dataset of Nam et al. [7], including CBM3D [5], 
DnCNN [2], NC [48], WNNM [6], MCWNNM [33], and our SDNet. The bold indicates the best. 

 

 and  describes the total noise map as 

explained in subsection 3.2. The minimization method is 

the Adam algorithm [47] with the learning rate degrading 

from 10-4 to 10-6, and  10-6. The 

size of mini-batch is set as 16 and the model is trained 50 

epochs. It takes approximately 10 hours to train our SDNet 

model on a Nvidia GeForce CTX 1080 Ti GPU. 

4. Experiments 

4.1 Synthetic denoising results 

To validate denoising performance of SDNet on 

synthetic noisy images, four groups of clean-noisy pairs are 

prepared in the same manner as subsection 3.3 except that  
the signal dependent noise model (1) is assigned with different 
settings of parameter values as listed in Table 2. Two state-of-the-
art classical algorithms CBM3D [5] and WNNM [6] are of our 

particular interest for comparison with the proposd SDNet. 

Denoising experiments are performed on the noisy images 
synthesized from two clean datasets, i.e., CBSD68 [41] (68 

images) and Kodak (24 images). We see that the proposed SDNet 

has achieved universal better performance than both 

CBM3D and WNNM in four groups of synthetic datasets.  

In spite of that, the SDNet with  is 

to be employed to process the two real image datasets in 

this paper because of its more adaptiveness to the 

corresponding blind denoising tasks. 

4.2 Realistic denoising results 

This section demonstrates denoising performance of the 

SDNet algorithm on two realistic noisy image datasets 

along with comparison to state-of-the-art real denoising 

methods including MCWNNM [33] and NC [48], and three 

leading AWGN denoising methods including CBM3D [5], 

WNNM [6] and  DnCNN [2]. We note that, there are much  
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CBM3D [5] DnCNN [2] NC [48] WNNM [6] MCWNNM [33] Our SDNet 

      
38.25 dB 37.26 dB 38.75 dB 39.11 dB 39.68 dB 39.83 dB 

      
37.64 dB 35.48 dB 38.21 dB 37.05 dB 39.01 dB 38.86 dB 

      
39.72 dB 34.08 dB 38.03 dB 38.66 dB 38.68 dB 39.94 dB 

      
36.83 dB 35.79 dB 38.03 dB 36.63 dB 38.46 dB 38.77 dB 

      
34.12 dB 34.09 dB 35.54 dB 34.67 dB 35.66 dB 36.79dB 

Figure 6. Denoising results of several images from the dataset in Nam et al. [7] corresponding to each denoising method. 
 

less real image denoisers than the AWGN ones in the 

literature and their running codes are generally either not 

available or hard to be employed except the noise clinic 

(NC) [48] and multi- channel WNNM (MCWNNM) [33]. 

The first group of experiments are performed on the real 

dataset of Nam et al. [7] totally consisting of 11 static 

scenes, 500 JPEG images per scene which are averaged as 

the mean image to be the corresponding ground truth. It is 

noted that the noise of in-camera imaging processing is also 
taken into consideration in this dataset. Moreover, a new 

cross-channel noise model is proposed Nam et al. [7]. The 

original images of the dataset are captured by Nikon D800, 

Nikon D600 and Canon 5D Mark III with different ISO 

values, most of which are with the size  and 

are then cropped into the size  The PSRN scores 

of denoised results using each method are provided in Table 

2. Not surprisingly, we find that DnCNN [2] achieves the 

worst performance in this scenario, and it is so inferior to 

the other compared methods that its average PSNR is less 
than others at least 2.5dB. It is interesting to find that the 

two AWGN denoisers CBM3D [5] and WNNM [6] have 

7630 4912×

512 512.×



 

 

 

 

 

 

CBM3D [5] DnCNN [2] NC [48] WNNM [6] MCWNNM [33] Our SDNet 

      
34.63/0.9803 32.82/0.8769 33.90/0.9529 34.38/0.9708 34.48/0.9668 35.00/0.9863 

      
37.07/0.9727 36.69/0.9420 36.64/0.9687 37.24/0.9597 37.45/0.9673 37.61/0.9820 

Figure 7: Denoising results on two real noisy images of the PloyU dataset [40] for visual perception. 
 

Methods CBM3D [5] NC [48] DnCNN [2] WNNM [6] MCWNNM [33] SDNet 

PSNR 38.11 36.92 36.08 37.30 38.25 38.20 

SSIM 0.9832 0.9449 0.9161 0.9610 0.9665 0.9846 

Table 4: Performance comparison of different blind denoising methods on the PloyU real image dataset [40] (100 images) including 
CBM3D [5], DnCNN [2], NC [48], WNNM [6], MCWNNM [33], and our SDNet. The bold indicates the best. 
 

been very competitive to the two real denoisers NC [48] and 

MCWNNM [33] to a great degree. In this experiment, 

SDNet is demonstrated rather qualified for denoising of real 

photographs in Nam et al. [7] inspite of its blindness to the 

camera image signal processing pipeline. In Figure 4 the 

noisy images are provided and in Figure 6 some of 
denoising results by each approach are shown for visual 

perception. We also perform blind denoising on another 

real dataset, i.e., PloyU [40] (100 real noisy photographs). 

Table 3 provides the PSNR and SSIM scores for each 

denoising method on this dataset. In this experiment, it is 

found that SDNet achieves a competitive performance to 

the AWGN method CBM3D [5] and real denoiser 

MCWNNM [33], and a superior performance than NC [48], 

DnCNN [2], as well as WNNM [6]. Denoising results are 

provided in Figure 7 for visual comparison corresponding 

to each method on two real noisy photographs of PolyU. 

5. Conclusion 

This paper proposes a simple yet robust deep convolution 

approach to blind denoising of real camera photographs, i.e., 

SDNet. It is formulated as a fully end-to-end convolutional 

residual neural model for stagewise denoising, strengthened 

by lifted residual modules and the shortcut connections.The 

model is trained without use of any hand-crafted priors or 

additional real noisy photographs. Experimental results on 
both simulated and real noisy images show that the new 

blind denoiser achieves competitive or better performance 

than state-of-the-art classical and deep denoising 

algorithms in terms of both quantitative and qualitative 

assessment. 
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