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Abstract

This paper introduces an autoencoder structure to trans-

fer the eye makeup from an arbitrary reference image to

a source image realistically and faithfully using both syn-

thetic paired data and unpaired data in a semi-supervised

way. Different from the image domain transfer problem,

our framework only needs one domain entity and follows

an ”encoding-swap-decoding” process. Makeup transfer is

achieved by decoding the base representation from a source

image and makeup representation from a reference image.

Moreover, our method allows users to control the makeup

degree by tuning makeup weight. To the best of our knowl-

edge, there is no public large makeup dataset to evaluate

data-driven approaches. We have collected a dataset of

non-makeup images and with-makeup images of various eye

makeup styles. Experiments demonstrate the effectiveness

of our method with the state-of-the-art methods both quali-

tatively and quantitatively.

1. Introduction

Makeup is to enhance a unique theme with special cos-

metics, such as foundation, eye brush, eye shadow and etc.,

to make the person more attractive. There have been arising

needs for realistic digital makeup from the makeup industry.

Consider this scenario: when a customer shops on-line, she

browses the website and is attracted by a model’s makeup.

Naturally, the customer would like to try out this makeup

on her face before purchase. Automatic digital makeup

transfer from the model to the customer’s face is favorable.

Some APPs like ModiFace and Taaz can digitally add cos-

metic elements to a face in a photo. However, the styles

are limited to a pre-determined cosmetic set. Among dif-

ferent makeup cosmetics, eye makeup transfer is especially

challenging since eye makeup not only involves color and

texture changes such as eyeshadow, but also contains high

frequency detail changes such as eyelashes.

Figure 1: At inference stage, the source image can present eye

makeup styles of the reference image with controllable makeup

degree. The weight w is gradually increased to demonstrate that

the makeup degree can be controlled conveniently

This paper introduces an autoencoder architecture to dig-

itally add eye makeup to a source image where the eye

makeup style is consistent with the reference image (Fig-

ure 1). In physical makeup process, we can assume that

a makeup layer is added to the base layer to beautify the

skins while preserving the source structure. Based on this

assumption, the proposed autoencoder is trained to extract

base representation and makeup representation on input

images. The makeup transfer result is obtained by de-

coding the base representation from a source image and

makeup representation from a reference image. Compared

to the state-of-the-art makeup transfer method [5] where the

transfer is accomplished within a black-box generator, the

makeup degree is controllable in our method by tuning the

makeup weight thanks to the learned disentangled represen-

tation.

One challenge for data-driven approaches is that it’s dif-

ficult to obtain triplets training data: the source, the refer-

ence with makeup and the ground truth output (which pre-

serves the identity of the source and present the makeup

of the reference). Due to the lack of such data, we formu-

late the makeup transfer problem under unpaired setting like



unsupervised image-to-image translation [37]. GAN-based

makeup transfer method for unpaired data [5] can constrain

the generated output to lie on the manifold of real examples,

but it can not guarantee the makeup is transferred from the

reference image faithfully. To encourage faithful makeup

transfer, we synthesize ”ground truth” makeup transferred

results by image warping based on Delaunay triangulation

[22] to facilitate supervised learning. The semi-supervised

training scheme turns out to be effective in encouraging the

synthetic paired data and unpaired data to reinforce each

other to produce both faithful and realistic makeup transfer

results.

The whole architecture of our method is shown in Fig-

ure 2. It consists of two ”encoding-swap-decoding” pro-

cesses which use the same autoencoder. Let X and Y de-

note the non-makeup and with-makeup images. The syn-

thetic paired data (X,X∗), (Y, Y ∗) only go through the

first encoder-swap-decoder process, where pixel-wise con-

straints are introduced to ensure the makeup being trans-

ferred faithfully. It is notable that the synthetic images

X∗, Y ∗ are far from real examples and pixel-wise losses

tend to produce smoothed results. In comparison, the origi-

nal unpaired data X,Y go through the two encoding-swap-

decoding processes consecutively. Cycle consistent loss

and adversarial loss are introduced to encourage the net-

work to generate realistic results.

To the best of our knowledge, there is no public large

makeup dataset of high resolution to evaluate data-driven

approaches. We have collected a dataset of 1000 images

without makeup and 1000 images with eye makeup.

The key contributions of this paper are: 1) The proposed

autoencoder framework combines the unpair samples and

synthetic paired samples to extract disentangled base rep-

resentation and makeup representation, which can gener-

ate faithful and realistic makeup transfer results. 2) With

the disentangled makeup representation, our framework al-

lows users to control the makeup degree by simply tuning

the makeup weight. 3) We collect the first makeup dataset,

which contains non-makeup images and with-makeup im-

ages of various eye makeup styles. Our code, data and re-

sults will be made public.

2. Related Work

Facial Makeup Transfer: Makeup transfer requires

to transfer the makeup component of the reference image

(such as eyeshadow, eyelashes) to the corresponding re-

gions of source face precisely and realistically. Several

previous works [33, 14, 24] attempted to address the chal-

lenges by transferring the appearance statistics in each de-

composed layer separately with hand-crafted features. Liu

et al. [27] applied the optimized-based neural style trans-

fer model [12] with local constraints to transfer different

cosmetics in different manners. A major disadvantage is

that it needs to parse the face into different semantic re-

gions first, which is prone to error. The state-of-the-art deep

method proposed by Chang et al. [5] extends the Cycle-

GAN [37] to asymmetric networks to enable transferring

specific style from reference image. However, the trans-

fer process is completed within a black-box network with-

out any control of how much makeup being transferred.

In contrast, we propose an autoencoder to extract well-

disentangled base and makeup representation with semi-

supervised training scheme. Faithful and realistic makeup

transfer is achieved by decoding the base representation

from a source image and makeup representation from an

arbitrary reference makeup image. In addition, the makeup

degree can be controlled conveniently by tuning the makeup

representation weight.

Disentangled Representation: Disentangling aims at

learning disentangled representations from data. Existing

works in learning disentangled representations can be cate-

gorized into two groups, unsupervised methods and (semi-

)supervised methods. Most of the existing unsupervised

methods [4, 6, 11, 9] are based on β-VAE [16], which

strength the prior isotropic Gaussian distribution of latent

code to achieve disentangling. Base on VAE, FactorVAE

[19] adds the total correlation into β-VAE, which can get

better disentangled representation. Other unsupervised dis-

entangling methods are based on InfoGAN [7], which is

an information-theoretic extension to the Generative Ad-

versarial Network(GAN) that is able to learn disentangled

representations in a completely unsupervised manner. Re-

cently, Locatello et al. [28] challenge common assump-

tions in the unsupervised learning of disentangled repre-

sentations. Their work theoretically shows that the unsu-

pervised learning of disentangled representations is funda-

mentally impossible without inductive biases on both the

models and the data. Existing (semi-)supervised meth-

ods can be roughly divided into three kinds. Some semi-

supervised methods [3, 30] import annotation information

into β-VAE to achieve controllable disentangling. Another

direction [2, 20, 31, 34] is to utilize annotated data to su-

pervise the input-to-attribute mapping explicitly. The third

kind methods [8, 10, 13] consider to combine paired im-

ages to achieve disentangled representation implicitly in an

end-to-end training manner. However, the disentangling

performance of above (semi-)supervised methods strongly

depends on the annotated samples.

Image Domain Adaption: A series of works including

CycleGAN [37], DualGAN [36], UNIT [26] were proposed

for general image-to-image translation problem under the

unsupervised setting. However, these methods are limited

to deterministic one-to-one mapping. They can not repli-

cate a specific makeup style, which makes them not appli-

cable in this makeup transfer scenario. Most recently, MU-

NIT [18] and several concurrent works [1, 23] adopt dis-



Figure 2: The architecture of our method. Both the synthetic paired data and unpaired data go through the first encoder E and generator G

while only unpaired data go through the second E and G. Synthetic data loss Lsyn and reconstruction loss Lre are designed for synthetic

paired data. Cycle consistent loss Lcycle and adversarial loss Ladv are designed for unpaired data.

entangled representations to generate multiple results with

various styles. However, MUNIT only generates texture

changes and fails to preserve the source image structure in

our makeup transfer application. Different from previous

works which require coupled generators to translate images

between two domains, our method operates in one domain

with one autoencoder.

3. Method

Due to the lack of well-aligned non-makeup and with-

makeup image pairs, we formulate our problem at un-

paired setting. Let X and Y denote the non-makeup

and with-makeup image domains. Different from previous

GAN-based image translation model [18], we apply an au-

toencoder structure to learn disentangled base representa-

tion and makeup representations. The considerations are

twofold. The first is motivated by the physical makeup pro-

cess, which can be regarded as a makeup layer being applied

to the base structure layer. The second is to propose a more

interpretable and controllable method rather than a black-

box network. Moreover, semi-supervised learning scheme

is used to facilitate the training of the autoencoder. The

supervised training for synthetic paired data and the unsu-

pervised training for unpaired data can reinforce each other

to produce faithful and realistic makeup transfer result, as

will be illustrated in details in Section 3.2.

To sum up, our method learns to decompose an input

image into base representation Rb, representing the under-

lying base structure information, and makeup representa-

tion Rm, representing the makeup rendering information.

The makeup-transferred result is generated by decoding the

base representation of a source image and the makeup rep-

resentation of a reference image.

3.1. Network Architecture

Figure 2 illustrates the overall architecture, which in-

cludes encoder E, generator G and discriminator Dx, Dy .

The encoder E maps the image into makeup representa-

tion and base representation [Rm, Rb] = E(x). We expect

the representation to have the following two properties. (1)

They should contain the information of input as much as

possible and can be inverted back. (2) Rm and Rb are well

disentangled. To achieve the first property, reconstruction

loss Lre is introduced to penalize the difference between

reconstructed image x, y and origin image x, y. To achieve

the second property, the makeup representation are swapped

to generate makeup-transferred image x̂ = G(Ry
m, Rx

b )
and makeup-remove image ŷ = G(Rx

m, R
y
b ). For syn-

thetic paired data, x̂, ŷ should be close to the synthetic

”groundtruth” images x∗, y∗. For unpaired data, x̂, ŷ will

go through the second ”encoding-swap-decoding” process.

Adversarial losses Ladv are designed to encourage the gen-

erated results indistinguishable from the real images. We

also inherit the cycle consistency loss Lcycle from Cycle-

GAN [37] to preserve the image identity after dual repre-

sentation swap. That is, x = G(Rŷ
m, Rx̂

b ), y = G(Rx̂
m, R

ŷ
b )

should be identical to x, y respectively.



Source X Reference Y

Synthetic X∗ Synthetic Y ∗

Figure 3: We synthesize warped image X∗, Y ∗ to facilitate super-

vised training with paired data, (X,X∗) and (Y, Y ∗). Although

the person’s identity is lost during warping (e.g., the eyelid is dif-

ferent obviously), paired images can offer strong pixel-wise con-

straints on autoencoder.

3.2. Training Pipeline

For Synthetic Paired Data: To drive the generator to gen-

erate accurate makeup style close to the reference image,

we synthesize ground-truth makeup transferred image X∗

by warping the reference image Y to match the facial land-

marks of source image X based on Delaunay triangulation

[22]. Y ∗ is produced in a similar way which denotes the

makeup removal result. An example is shown in Figure 3

where we can see that the identity of X,Y is lost in the

warped image X∗, Y ∗. For example, the eyelid is differ-

ent obviously. Although the synthetic paired data (X,X∗)
and (Y, Y ∗) are fake, they can offer strong pixel-wise con-

straints on autoencoder, which is achieved by minimizing

the following synthetic data loss:

Lsyn(E,G) = Ex∼PX ,y∼PY
[‖G(Ry

m, Rx
b )− x∗‖1]

= Ex∼PX ,y∼PY
[‖G(Rx

m, R
y
b )− y∗‖1], (1)

where [Rx
m, Rx

b ] = E(x), [Ry
m, R

y
b ] = E(y).

The autoencoder is expected to reconstruct the original

input image based on the encoded representation. That

is, x, y should be identical to x, y correspondingly. This

gives us self reconstruction loss. The reconstruction loss

Lrec(E,G) is defined as:

Lrec(E,G) = Ex∼PX ,y∼PY
[‖G(Rx

m, Rx
b )− x‖1]

+ Ex∼PX ,y∼PY
[‖G(Ry

m, R
y
b )− y‖1]. (2)

Algorithm 1 The Training Algorithm

Input 1: synthetic paired data: (xi, x
∗
i ), (yi, y

∗
i ), i =

1, ..,M
Input 2: unpaired data: xj , yj , j = 1, ..., N
Model: Encoder E, Generator G, Discriminator Dx, Dy

Output: Encoder E, Generator G,

1: Initialize E,G,Dx, Dy

2: for t = 1, 2...T iteration do

3: Random sample paired data (x, x∗), (y, y∗)
4: Encode x, y into representations: Rx

m, Rx
b , R

y
m, R

y
b

5: Reconstruct x, y

6: Swap makeup representation and generate x̂, ŷ

7: Update E,G by optimizing minE,G Ls(E,G)
8: Random sample unpaired data x, y

9: Encode x, y into representation: Rx
m, Rx

b , R
y
m, R

y
b

10: Reconstruct x, y

11: Swap makeup representation and generate x̂, ŷ

12: Apply discriminator Dx, Dy on x̂, ŷ

13: Encode x̂, ŷ into representations: Rx̂
m, Rx̂

b , R
ŷ
m, R

ŷ
b

14: Swap back base representation and generate x, y

15: Update E,G,Dx, Dy by optimizing

minE,G maxDx,Dy
Lu(E,G,Dx, Dy)

16: end for

Due to the nature of non-makeup image, we encourage

its makeup representation to be sparse, and add a regular-

ization term Lregu(E) = ‖Rx
m‖1. In summary, we train

the encoder and generator to optimize the following objec-

tive function on total supervised loss Ls for synthetic paired

data (X,X∗), (Y, Y ∗):

min
E,G

Ls(E,G) = λrecLrec + λsynLsyn + λreguLregu,

(3)

where λrec, λsyn and λregu balance the multiple objectives.

For Unpaired Data: Unlike the paired data that only go

through the first ”encoding-swap-decoding” process, the

unpaired data X,Y go through the process twice consecu-

tively. The total unsupervised loss for unpaired data Lu con-

sists of three types: reconstruction loss Lrec as described in

Equation 2, adversarial loss Ladv and cycle consistent loss

Lcycle.

The adversarial loss constrains the output of generator

x̂, ŷ to lie on the manifold of Y,X respectively. Specif-

ically, let us take x̂ as an example. Discriminator Dy is

to distinguish the generated result x̂ from the real ones in

Y . The generator aims to generate indistinguishable results

conditioned on the base representation of source image Rx
b

and makeup representation of reference image Ry
m. The ad-

versarial loss is defined as:

Lx
adv(E,G,Dx) = Ex∼PX

[log(Dx(x))]

+ Ex∼PX ,y∼PY
[log(1−DxG(Rx

m, R
y
b ))], (4)



Figure 4: t-SNE visualization of makeup representation of all test

images where they are placed exactly at their embedded location.

L
y
adv(E,G,Dy) = Ey∼PY

[log(Dy(y))]

+ Ex∼PX ,y∼PY
[log(1−DxG(Ry

m, Rx
b ))]. (5)

The cycle consistent loss is to preserve the identity of

x, y. That is, we should get back the original image x, y ex-

actly if we swap back the makeup representation in the sec-

ond ”encoding-swap-decoding” process. Specifically, x̂, ŷ

are fed to the same encoder E again and we obtain their

representation Rx̂
m, Rx̂

b , R
ŷ
m, R

ŷ
b as shown in Figure 2. We

swap back the makeup representation and decode them to

x = G(Rŷ
m, Rx̂

b ), y = G(Rx̂
m, R

ŷ
b ), which should be identi-

cal to x, y. The cycle consistent loss is defined as:

Lcycle(E,G) = Ex∼PX ,y∼PY
[‖G(Rŷ

m, Rx̂
b )− x‖1]

+ Ex∼PX ,y∼PY
[‖G(Rx̂

m, R
ŷ
b )− y‖1], (6)

where [Rx̂
m, Rx̂

b ] = E(x̂), [Rŷ
m, R

ŷ
b ] = E(ŷ).

In summary, we train the encoder, generator and discrim-

inator to optimize the following objective function on total

unsupervised loss Lu for unpaired data X,Y :

min
E,G

max
Dx,Dy

Lu(E,G,Dx, Dy) = λrecLrec + λcycleLcycle

+ λadv(L
x
adv + L

y
adv), (7)

where λrec, λcycle and λadv balance the multiple objectives.

Training Algorithm: The complete training algorithm is

summarized in Algorithm 1. Within each iteration during

training, we optimize the network alternatively using syn-

thetic paired data and unpaired data. Training supervised

Figure 5: Architecture of encoder and generator network. The

convolutional channel number, kernel size and stride are indicated

for each convolutional layer. We have designed four basic residual

blocks [15] in the encoder and four residual blocks with adaptive

instance normalization [17] in the generator to process the disen-

tangled representation.

loss is more stable than unsupervised loss. In each itera-

tion, optimizing supervised loss first can provide a better

starting point of encoder E and generator G before opti-

mizing unsupervised loss so that the discriminator D can

be trained more efficiently. As a result, the whole model

converges faster. After training, t-SNE [29] is utilized to

compute a two dimensional embedding of makeup repre-

sentation Rm. The embedding arranges eyes with similar

makeup representation close to each other in a plane. Fig-

ure 4 shows the resulting spatial layout, from which we can

see the well-disentangled makeup representation clearly di-

vides the images into two groups.

4. Experiment

4.1. Implementation Details

Data Collection: Existing face datasets collected for recog-

nition tasks generally lack clear makeup. Besides, the faces

with makeup and without makeup are mixed together. Thus,

we collected a new dataset for our semi-supervised learning

problem. We first used facial landmark detector to collect

high-quality frontal face images from the Internet. We then



Source Reference Ls Lu Ls + Lu

Figure 6: Comparison of visual results trained with different loss settings. The semi-supervised scheme which utilizes supervised loss and

unsupervised loss together achieves more natural results than those obtained using one type of loss only.

manually selected with-makeup and no-makeup images by

visually inspecting whether the eye region contains obvi-

ous makeups. Ambiguous images were discarded. In this

way, we obtained 1000 with-makeup images and 1000 non-

makeup images. Our dataset contain a wide variety of iden-

tities and eye makeup styles.

Model Details: The network architecture is illustrated in

Figure 5. The encoder applies several stride-2 convolutional

layers to downsample the input image and is further divided

into two branches. Base representation maintains the spa-

tial resolution to avoid shape information loss while makeup

representation is downsampled to a 32-dimensional vec-

tor to contain style information only. Generator processes

the base representation by several residual blocks equipped

with adaptive instance normalization [17] to reconstruct the

final image output conditioned on makeup representation.

The training pipeline has been illustrated in Algorithm 1.

We employ the discriminator proposed by [35] to guide the

generator, which consists of four stride-2 convolutional lay-

ers and four leaky ReLU layers.

Training Setting: The reconstruction loss and cycle con-

sistent loss are more crucial since the model should retrieve

images accurately. We set λrec = λcycle = 1, λadv =
λsyn = 0.5 and λregu = 0.1. We tested different param-

eter settings systematically and chose the hyperparameters

according to the qualitative results. The results maintained

high quality even if the loss weights changed within a cer-

tain range. 900 with-makeup and 900 no-makeup images

are randomly selected for training while the remaining im-

ages are used for testing. Random horizontal flip and ran-

dom rotation from -30 degree to 30 degree are applied as

data augmentation. The network is trained for 400 epochs,

which take around two days using Tesla P100 GPU. At the

inference stage, the makeup transfer is achieved within 0.2s.

4.2. Effectiveness of Semi-supervised Training
Scheme

Our network is trained with supervised loss Ls and un-

supervised loss Lu iteratively as described before. We con-

duct experiments using three different loss settings, includ-

ing Ls alone, Lu alone and Ls, Lu together to analyze the

effect of each loss term. The training hyperparameters are

kept the same. We provide two examples of visual com-

parison in Figure 6. When we train the network in super-

vised manner only, the results are faithful to the synthetic

data X∗. However, the results are overly-smoothed and

have poor perceptual quality. A similar finding of the lim-

itation of pixel-wise mean square error loss has also been

reported in [21]. When we train the network in an unsuper-

vised manner only, the faithfulness can’t be guaranteed. As

Figure 6 shows, the eyelashes are not transferred accurately.

In contrast, the combined semi-supervised scheme has pro-

duced better results than those obtained using one type of

loss only.

4.3. Comparison with State-of-the-art

In Figure 7, we compare with three state-of-the-art meth-

ods, MUNIT [18], DeepImageAnalogy [25] and PairedCy-

cleGAN [5]. MUNIT [18] is the state-of-the-art unsuper-

vised image-to-image translation method which can learn

multimodal mappings between two visual domains. How-

ever, it fails to preserve the structure in our makeup adaption

problem without the guidance of supervised constraints.

DeepImageAnalogy [25] transfers style in a structure pre-

serving manner by finding dense semantic correspondences

in feature space of pre-trained VGG19 [32]. However,



Source Reference MUNIT [18] DeepImageAnalogy [25] PairedCycleGAN [5] Our result

Figure 7: Makeup transfer results. We compare our method with state-of-the-art general style transfer methods [18, 25] and makeup

transfer method [5].

Figure 8: Ranking statistics of each method. People prefer our

results over those of other three methods.

VGG19 is originally trained for object detection problem

where the data statistics vary greatly from our eye makeup

dataset. This inherent contradiction decreases the seman-

tic correspondence accuracy. Comparing the first column

and fourth column of Figure 7, the eyebrow of the source

image is not consistent with that of the makeup transferred

result. PairedCycleGAN [5] is the state-of-the-art fast style

transfer method aimed at makeup transfer. Their method’s

main limitation is that the transfer process is not control-

lable at inference stage. In contrast, our method encodes the

makeup style into a 32-dimensional makeup representation.

The makeup degree can be adjusted by tuning the makeup

representation weight. Besides, some unwanted statistics of

the reference image are transferred to the source image by

their method. For example, the eye size of the reference im-

age is transferred to the source image mistakenly, as shown

in Figure 7.

Quantitative Comparison:

We conduct a user study to assess the makeup transfer

quality of different approaches. The study shows the source

image and reference makeup image at the top. Four re-

Source Reference

w=0.3 w=0.7 w=1 w=2

Figure 9: Learned disentangled representations allow users to con-

trol the makeup degree by tuning makeup representation weight

easily.

sults generated by MUNIT [18], DeepImageAnalogy [25],

PairedCycleGAN [5] and our method are presented to the

participants in random order at the bottom. The participants

are asked to rank them in terms of preserving the source

image identity and matching the reference image makeup

style. We use 50 questions and collect 9 or more responses

to each question. As shown in Figure 8, our method is cho-

sen as the best 54.0% of the times. The average rank of our

method is 1.62, which outperforms all other methods.

4.4. Makeup Control

One advantage of our method is that the network has

learned interpretable makeup representation. Let us in-

troduce the makeup representation weight w and generate

makeup transferred result by G(w ∗ Ry
m, Rx

b ). The weight

is gradually increased to demonstrate that the makeup de-
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Figure 10: Makeup removal results.

gree can be controlled conveniently. Generated results with

different weights are shown in Figure 9. The eyebrow, eye-

shadow and eyelash become more vivid with larger weights.

Controllable makeup representation makes our method have

boarder range of applications than current state-of-the-art

makeup transfer method [5] which can only replicate a spe-

cific style from the reference image. The reason behind the

success of applying our method to other problems lies in

that our well-designed encoder-generator architecture can

extract disentangled representation to encode the base struc-

ture and texture information. Therefore, the style transfer

process is more controllable and explicable.

4.5. Makeup Removal

Recover of the original face behind makeup is an ill-

posed problem since the makeup process may conceal the

original appearance. For example, the foundation makeup

will change the skin color and may cover the blemishes

totally. We find plausible makeup removal results can

be achieved by decoding the base representation of with-

makeup images only while setting the makeup representa-

tion to zero. That is, the makeup removal result can be gen-

erated by G(0, Ry
b ) for makeup image y. Two examples are

shown in Figure 10, from which we can see the makeup of

eyeshadow, eyelash and eyebrow have been removed suc-

cessfully while the eye structure is preserved.

4.6. Many-to-Many Makeup Transfer

Our method can handle the makeup transfer between

different eyes shapes, rotations, styles and etc. In Figure

11, we select three different source images (left column)

and three different reference images (top row). Each row

presents the results of the same source image wearing dif-

ferent makeups. Each column presents the results of differ-

ent source images wearing the same makeup. The outputs

(3 × 3 lower right) consistently preserve the identity of the

source image and the style of the reference image. This ca-

pability is quite useful in real application. The user can vir-

tually try different makeups on his own face conveniently as

long as providing a reference image (e.g., a picture of some

famous star), and choose the favorite style.

Figure 11: Various makeups of reference images are transferred to

various source images.

5. Conclusion

In this paper, we incorporate novel semi-supervised

learning, disentangling representation and autoencoder into

an image domain adaption network. The eye makeup can

be transferred from a reference face to a source face realis-

tically and faithfully. Learned disentangled representations

allow users to control the makeup degree by tuning makeup

representation weight easily. Extensive experiments show

that our method achieves state-of-the-art performance in

transferring makeup styles. We have collected a dataset

of various eye makeup styles, which will be made public.

We believe this novel semi-supervised framework can be

applied to other applications beyond makeup transfer and

removal, which can be a future research direction.
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