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1Université Côte d’Azur - INRIA, 2IRT Saint-Exupéry
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Abstract

Semantic segmentation methods have made impressive

progress with deep learning. However, while achieving

higher and higher accuracy, state-of-the-art neural net-

works overlook the complexity of architectures, which typ-

ically feature dozens of millions of trainable parameters.

Consequently, these networks requires high computational

ressources and are mostly not suited to perform on edge

devices with tight resource constraints, such as phones,

drones, or satellites. In this work, we propose two highly-

compact neural network architectures for semantic segmen-

tation of images, which are up to 100 000 times less complex

than state-of-the-art architectures while approaching their

accuracy. To decrease the complexity of existing networks,

our main ideas consist in exploiting lightweight encoders

and decoders with depth-wise separable convolutions and

decreasing memory usage with the removal of skip connec-

tions between encoder and decoder. Our architectures are

designed to be implemented on a basic FPGA such as the

one featured on the Intel Altera Cyclone V family of SoCs.

We demonstrate the potential of our solutions in the case of

binary segmentation of remote sensing images, in particular

for extracting clouds and trees from RGB satellite images.

1. Introduction

The semantic segmentation of images, which consists in

assigning a semantic label to each pixel of an image, is a

long standing problem in Computer Vision. The popular-

ization of Convolutional Neural Networks (CNN) has led to

a lot of progress in this field. Fully Convolutional Networks

(FCN) [23] and related architectures, such as the popular

U-Net [31], outperformed traditional methods in terms of

accuracy while being easy to use.

In the quest towards accuracy, state-of-the-art neural net-

works often disregard the complexity of their architectures,

which typically feature millions of trainable parameters,

requiring days of training and gigabytes hard-drive space.

These architectures also require a lot of computing power,

such as GPUs consuming hundreds of Watts. Consequently,

these architectures cannot be easily used on edge devices

such as phones, drones or satellites.

Our goal is to design neural network architectures oper-

ating on low-power edge devices with the following objec-

tives:

• High accuracy. The architecture should deliver accu-

rate semantic segmentation results.

• Low complexity. The architecture should have a low

number of parameters to learn.

• Adaptability. The architecture should be easily imple-

mentable on low-power devices.

Some efficient architectures, such as ESPNet [24], and

convolution modules [12] have been proposed for phones

and autonomous vehicles. These architectures are however

too complex to be exploited on devices with lower power

budget and computational resources. For instance, this is

the case of FPGA cards embedded into system-on-chips

(SoCs) on satellites, which have limited floating-point capa-

bilities and are restricted by their amount of hardware logic.

In this paper, we present two highly-compact neural net-

work architectures for semantic segmentation, which are

up to 100 000 times less complex than state-of-the-art ar-

chitectures while approaching their accuracy. We propose

two fully-convolutional neural networks, C-FCN and C-

UNet, which are compact versions of the popular FCN [23]

and U-Net [31] architectures. To decrease the complexity

of existing networks, our main ideas consist in exploiting

lightweight encoders and decoders with depth-wise sepa-

rable convolutions and decreasing memory usage with the

removal of skip connections between encoder and decoder.

Our architectures are designed to be implemented on a basic

FPGA such as the one featured on the Intel Altera Cyclone

V family of SoCs. We demonstrate the potential of our solu-

tions in the case of binary segmentation of remote sensing

images, in particular for extracting clouds and trees from

RGB satellite images. Our methods reach 95% accuracy

in cloud segmentation on 38-Cloud [25] and CloudPeru2



[28] datasets, and 83% in forest segmentation on EOLearn

Slovenia 2017 dataset.

2. Related works

We first review prior work in two related aspects of our

goal: neural networks for semantic segmentation and neural

network inference on edge devices.

2.1. Neural networks for semantic segmentation

Many deep learning methods have been proposed to

improve performance of segmentation networks, in terms

of accuracy on popular benchmarks such as [6, 21, 29]

and speed, with the goal of real-time semantic segmenta-

tion [32]. These methods are compared in recent surveys

[9, 7, 32] without studying the networks from a complexity

point of view.

Encoder-decoders. Most of the popular segmentation

neural networks, such as U-Net [31], SegNet [2], or

DeepLabv3+ [3] adopt an encoder-decoder architecture.

The encoder part of the network, also called backbone, is

typically a Deep Convolutional Neural Network composed

of multiple stages of convolution operations, separated by

pooling operations. This allows the encoder to capture high-

level features at different scales. It is common to use an ex-

isting CNN architecture such as ResNet-101 [11], VGG16

[34], or MobileNet [12] as a backbone, since pre-trained

weights on databases such as ImageNet [15] are available

for transfer learning. However, while achieving great accu-

racy, these encoders are complex and not suited for infer-

ence on edge devices. Decoders are in charge of upsam-

pling the result to get an output that has the same size as

the original image. Deconvolutions, also called transposed

convolutions or up-convolutions, introduced by H. Noh et

al. [30] in the context of semantic segmentation, are used to

learn how images should be upscaled.

Skip connections. Skip connections are often used be-

tween convolution blocks, i.e. short skips, in architectures

such as residual networks [11], and/or between the encoder

and the decoder, i.e. long skips, in architectures such as U-

Net [31]. These connections are performed by concatenat-

ing feature maps from different parts of the network in or-

der to retain some information. In the case of segmentation

networks, skip connections are used to keep high-frequency

information (e.g. corners of buildings, borders of objects)

to obtain a more precise upscaling by the decoder. While

skip connections can yield good results in practice, they are

often memory consuming, especially the long skips, as they

require feature maps to be kept in memory for a long time.

Consequently, they cannot easily be used on edge devices

with limited memory. In particular, we show in Section 4

that they are not useful for our use cases.

2.2. Neural networks on edge devices

Efficient convolution modules. Several low-complexity

convolution modules have been developed, with the goal of

reducing power consumption and increase inference speed

on low-end or embedded devices, such as phones. This is

the case of Inception [36], Xception [4], ShuffleNet [39],

or ESP [24]. These modules are based on the principle of

convolution factorization and turn classical convolution op-

erations into multiple simpler convolutions. S. Mehta et al.

provide a detailed analysis of these modules in [24]. How-

ever, we cannot use them as they still feature too many train-

able parameters and often require to store the results of mul-

tiple convolution operations performed in parallel or short

skip connections. In contrast, we use Depth-wise Separable

Convolutions, introduced in [33] and used in MobileNets

[12].

Neural Network simplification Several techniques have

been developed to simplify neural networks for systems

with tight resource constraints. Training and inference us-

ing fixed-point or integer arithmetic and quantization is an

active research topic [20, 14, 37], since floating-point opera-

tions are costly on many embedded systems such as FPGAs,

and trade-offs have to be made between accuracy and speed.

Neural network pruning, on the other hand, is the process

of removing some weights [18] or entire convolution filters

[19, 27] and their associated feature maps in a neural net-

work, in order to extract a functional ”sub-network” that has

a lower computational complexity and similar accuracy. A

lot of work has been done on enabling and accelerating NN

inference on FPGA [1], with tools being released to auto-

matically generate HDL code for any neural network archi-

tecture [10], with automated use of quantization and other

simplification techniques. These approaches are orthogonal

to our work as they could be applied to any neural network.

3. Proposed architectures

We now detail our compact neural networks, C-UNet and

C-FCN. These architectures are Fully Convolutional. Thus

the size of the networks does not depend on the size of the

input images. In particular, the training steps and the testing

steps can be performed on different image sizes.

3.1. C­UNet

As illustrated in Figure 1, C-UNet is a compact version

of the popular U-Net architecture [31].

To create a shallower network, three convolution stages

have been removed with respect to the original architecture.

Removing stages strongly reduces the computational cost as

the number of feature maps is typically multiplied by a fac-

tor 2 at each stage. For instance, U-Net [31] has 1024 fea-

ture maps at the last encoder stage. A standard 3x3 convolu-

tion at this stage uses 3×3×1024×1024+1024 = 9438208
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Figure 1: U-Net [31] compared to C-UNet and C-UNet++. Gray: input, white: conv3x3 + ReLU, yellow: depthwise separable conv3x3 + ReLU, green: 2x2

max pool, orange: conv1x1 sigmoid, blue: 2x2 deconvolution, red: output, arrows: skip connections. Numbers indicate the number of feature maps at each

stage.

parameters. The number of stages to remove has been cho-

sen after experimental validation, 3 being a good compro-

mise between field of view and number of parameters. In-

deed, we found experimentally that we could train a classi-

fier to detect objects such as clouds and trees in 28x28 pixel

images with good accuracy. The encoder in C-UNet has

a receptive field of 50x50 pixels and is consequently more

than capable of reaching the same accuracy.

Some of the standard convolution layers have also been

replaced by depth-wise separable convolutions. Introduced

in [12], they allow a classical convolution to be split into

a depth-wise convolution and a point-wise convolution, to

use the fact that inter-channel features are often not related

to spatial features. Since the convolution kernel is the same

for all input feature maps in a depth-wise convolution, this

allows us to reduce the number of learned parameters sig-

nificantly. For example, a standard 3x3 convolution with 16

input and output feature maps has 2320 trainable weights,

while a depth-wise separable convolution of the same size

only has 416 trainable weights.

The number of filters per convolution has been chosen

so that C-UNet has 51 113 parameters, ie around 500 times

less than the architecture implemented in [25]. C-UNet then

has 8 filters per convolution at the first stage and this num-

ber is doubled at every stage in the encoder, and divided by

two at every stage in the decoder, as in the original U-Net

architecture [31].

We also propose a variant of C-UNet, called C-UNet++,

with an even more compact architecture. C-UNet++ con-

tains 9 129 parameters, ie 3000 times less parameters than

the architecture implemented in [25]. As illustrated in Fig-

ure 1, the number of convolution layers has been reduced

to one per stage, and only the first stage has standard con-

volutions. This gives C-UNet++ a receptive field of 22x22

pixels.

Note that skip connections between corresponding

stages in encoder and decoder parts could be considered.

However, we show in Section 4 that they are not necessarily

useful, as adding them may not significantly increase per-

formance and may require a lot of memory depending on

the input image size.

3.2. C­FCN

The second proposed architecture, called C-FCN, relies

upon a small CNN and a bilinear upsampler, as illustrated

in Figure 2. The encoder has 3 stages, with a single convo-

lution per stage. A 1x1 convolution then generates a class

heatmap which is then upsampled by the bilinear upsampler.

C-FCN uses depthwise separable convolutions to maximize

the number of convolution filters we can use within our pa-

rameter budget, which is of 1 438 parameters for this archi-

tecture.

We also propose a variant of C-FCN with the same depth,

called C-FCN++, which is designed to be the smallest vi-

able architecture with only 273 parameters. The first layer

is an atrous convolution layer with a dilation rate of 2, which

broadens the receptive field of the network a little bit [38].

The number of filters of C-FCN and its variant C-FCN++

are showed in Table 1.

3 F1

F2

F3

1

Figure 2: C-FCN and C-FCN++ architectures. Gray: input, white:

conv3x3 ReLU, green: 2x2 max pool, orange: conv1x1 sigmoid, blue:

4x4 bilinear upscaling.

Arch. F1 F2 F3 DW Atrous Nparam

C-FCN 10 20 40 Yes No 1438

C-FCN++ 5 2 2 No 1
stconv. 273

Table 1: Characteristics of C-FCN and C-FCN++. DW = usage of depth-

wise convolutions. Fx is the number of convolution filters and feature

maps at stage x.

4. Experiments on cloud segmentation

In this section, we evaluate the performance of our archi-

tectures for cloud extraction in RGB remote sensing images.

Performing real-time cloud segmentation directly onboard

and removing useless cloud-covered images can allow sig-

nificant bandwidth, storage and computation time savings

on the ground. Accurate detection of clouds is not an easy

task, especially when a limited number of spectral bands



is available, as clouds share the same radiometric proper-

ties as snow, for example. Traditional cloud segmentation

methods are either threshold-based or handcrafted, with the

most popular ones being Fmask [43] and Haze Optimized

Transform [40].

M. Hughes et al. [13] were, to our knowledge, the first

to use a neural network-based approach for cloud segmen-

tation in Landsat-8 images. However, convolutional neu-

ral networks were not used. A lot of recent work has been

done on cloud segmentation using CNN [25, 26, 28, 5, 22].

However, all these methods use computationnaly-heavy ar-

chitectures on hyperspectral images and are designed to

be used with powerful hardware on the ground, and thus,

are not compatible with our use-case. Cloud segmenta-

tion using neural networks has already been integrated in

an ARTSU CubeSat mission by Z. Zhang et al. [41]. S.

Ghassemi et al. [8] have proposed a small strided U-Net ar-

chitecture for onboard cloud segmentation. Their architec-

tures are still too big for our use cases and are designed to

work on 4-band images (RGB + NIR). Nevertheless, we in-

clude a 3-band implementation of MobUNet [41], MobDe-

convNet [41] and ”Plain+” strided U-Net [8] architectures

in our comparison.

Datasets. We use publicly available cloud segmentation

datasets to train and test the models.

We use the Cloud-38 dataset, introduced by S. Mo-

hajerani et al. [26]. The dataset is composed of 4-band

Landsat-8 images with a 30m resolution. We only use RGB

bands. Since some of the training scenes have black bor-

ders in the original dataset, we remove all the patches that

have more than 50% of black pixels. The training and val-

idation set is composed of 4 821 patches of size 384x384.

The testing set is composed of 9 200 patches.

We also use the CloudPeru2 dataset, introduced by G.

Morales et al. [28]. This dataset is composed of 4-band

PERUSAT-1 images with a 3m resolution. It features 22

400 images of size 512x512. We use 10% of these images

for testing. Test images have been chosen randomly and are

the same for all of our tests.

Training procedure. All models were implemented us-

ing the Keras framework using Tensorflow 1.13 as a back-

end in Python 3.6.

Models are trained using a round-based scheme. Train-

ing sets are randomly shuffled and split into training (85%),

and validation (15%) sets at the beginning of each round.

Within a round, all models are then trained on the same

training and validation sets for a maximum of 150 epochs.

At the end of all rounds, the best network for each architec-

ture is selected using the testing set.

Data is augmented using random horizontal and vertical

flips, as well as random rotations of 5 degrees maximum.

The same random seed is used for all architectures. Models

were trained for 4 rounds with batch-size 8 and the Adam

optimizer with a learning rate of 0.001. Binary crossentropy

loss is used for all networks. Early stopping is used with a

patience of 15 and a maximum number of epochs of 150.

This training scheme takes around 10h per architecture,

per round, per dataset on an Nvidia GTX 1080 Ti graphics

card, which brings our total training time to around 1160h.

Training could have been faster, as the card’s VRAM was

barely being used when training really small models, but

we wanted to use the same training parameters (batch-size)

for every model, to get the fairest possible comparison. The

largest batch-size we could use to train the biggest network

(U-Net) is 8.

Comparative architectures. We compare our networks

to different semantic segmentation architectures from the

litterature, that we re-implemented:

• U-Net for cloud segmentation, as presented by S. Mo-

hajerani et al. [25], which we use as a ”baseline” for

comparison, since U-Net, originally presented by Ron-

neberger et al. [31] for the segmentation of medical

images is a well-known and easy to implement archi-

tecture that has proved useful for many segmentation

tasks,

• ESPNet A, introduced by S. Mehta et al. [24], which

is a state-of-the-art segmentation network, in terms of

efficiency and accuracy. We use K = 5, α2 = 2, α3 =

5.

• MobUNet and MobDeconvNet, introduced by Z.

Zhang et al. [41], are small versions of U-Net [31] and

Deconv-Net [30] for onboard cloud segmentation, that

use depth-wise separable convolutions [12],

• StridedUNet, introduced by Ghassemi et al. [8] for on-

board cloud segmentation, which uses strided convo-

lutions for downsampling,

• LeNetFCN, an FCN variation of the well-known

LeNet-5 architecture [17], which was originally cre-

ated for written number classification. We replace

the final Fully-Connected (Dense) layers by a 1x1 2D

Convolution with a sigmoid activation, in order to

output a segmentation map. LeNetFCN architecture

looks like the ”C-FCN” architecture (see Fig.2) with

F1 = 3, F2 = 5, except it uses 5x5 convolutions in-

stead of 3x3 convolutions.

We evaluate models using standard segmentation met-

rics: Total Accuracy, Precision, Recall, Specificity and Jac-

card Index (IoU), as defined in [26].

Qualitative results. Fig. 3 shows inference results of our

networks on three image patches taken from the 38-Cloud

test set, compared to the ground truth and U-Net. Our net-

works provide a visually good result, even on difficult ter-

rains such as snow. The segmentation masks produced ap-

pear smooth, especially for C-FCN/C-FCN++ because of



(a) Source image 1 (b) Ground truth (c) U-Net (d) C-UNet (e) C-FCN (f) C-FCN++

(g) Source image 2 (h) Ground truth (i) U-Net (j) C-UNet (k) C-FCN (l) C-FCN++

(m) Source image 3 (n) Ground truth (o) U-Net (p) C-UNet (q) C-FCN (r) C-FCN++

Figure 3: Qualitative results of C-UNet, C-FCN, and C-FCN++ on 38-Cloud dataset, compared to Ground Truth and U-Net [25]. Our networks in bold font.

Our networks give good results and are not fooled by snow on the third patch (m). C-FCN and C-FCN++ results appear very smooth compared to others

because the segmentation map output by the network is 4 times smaller than U-Net’s and upsampled with a bilinear upsampling. Thus, C-UNet produces a

more refined segmentation than C-FCN.

(a) 38-Cloud (b) CloudPeru2

Figure 4: Test accuracy with respect to number of parameters on the two

tested datasets. Our networks in green and bold font, others in blue. Num-

ber of parameters is on a log scale. Our networks offer good accuracy at

varying levels of complexity. There is a point of diminishing return in this

task: our C-UNet performs about the same as a 500 times bigger U-Net.

the bilinear upsampling. This is not an issue to estimate

cloud coverage as a percentage.

Quantitative results. Table 2 shows accuracy metrics on

38-Cloud and CloudPeru2. We include the Fmask accuracy

results from S. Mohajerani et al. [26] for 38-Cloud, since

our test dataset and metrics are the same.

The best network under 1500 parameters is C-FCN. In

Model Acc. Prec. Rec. Spec. Jacc.

LeNet FCN 91.10 86.00 84.34 94.03 74.16

C-FCN++ 93.23 91.67 85.45 96.62 79.30

mobDeconvNet [41] 93.44 92.04 85.75 96.78 79.83

C-FCN 93.91 91.23 88.39 96.31 81.47

C-UNet++ 94.85 94.18 88.48 97.63 83.89

ESPNet A [24] 95.08 93.94 89.55 97.49 84.66

StridedUNet [8] 95.39 94.21 90.36 97.58 85.60

mobUNet [41] 95.58 95.37 89.78 98.11 86.03

U-Net [25] 95.61 95.69 89.56 98.25 86.08

C-UNet 95.78 96.53 89.27 98.61 86.50

Fmask [43] 94.89 77.71 97.22 93.96 75.16

LeNet FCN 89.23 93.11 83.27 94.52 78.44

C-FCN++ 91.37 93.50 87.76 94.58 82.71

mobDeconvNet [41] 93.40 94.98 90.78 95.73 86.63

C-FCN 94.09 95.15 92.15 95.82 88.01

C-UNet++ 94.59 96.03 92.31 96.61 88.92

U-Net [25] 95.82 96.29 94.78 96.75 91.44

mobUNet [41] 95.97 97.20 94.14 97.59 91.66

C-UNet 96.42 96.54 95.83 96.94 92.65

stridedUNet [8] 96.45 96.49 95.95 96.89 92.72

ESPNet A [24] 96.59 96.45 96.30 96.85 93.01

Table 2: 38-Cloud (top) and CloudPeru2 (bottom) results. Our networks

in bold font.

particular, this network matches Fmask’s accuracy (within

1%), and achieve much better precision and IoU. This net-

work also exceeds the performance of our implementation

of mobDeconvNet [41], using 4x less parameters. Our C-

FCN++ matches the performance of mobDeconvNet while



using only 273 parameters. Our C-UNet matches the per-

formance of our implementation of mobUNet [41], while

using less memory thanks to the lack of skip connections.

It also exceeds the performance of our implementation of

StridedUNet [8], while being 20% smaller in terms of num-

ber of parameters. We see similar results on CloudPeru2

as on 38-Cloud. Our networks provide good results on this

high-resolution dataset (3m). Fig. 4 shows the relation be-

tween the number of parameters of a network and its ac-

curacy. Our networks match or exceed the performance or

other methods at each complexity level.

Impact of skip connections. We tried adding skip con-

nections in C-UNet and C-UNet++, but did not find a signif-

icant difference in performance metrics in the case of cloud

segmentation, as shown in Table 3. Skip connections are

useful to keep high frequency information and use it in the

decoder part of the network, since the encoder part tends

to act like a low-pass filter because of successive convolu-

tions. Clouds do not have much high frequency informa-

tion, which is maybe why skip connections were not par-

ticularly useful in our case. This means that a significant

amount of memory can be saved during network inference

by removing skip connections in use cases where they are

not useful, as shown in Table 4. This can allow bigger net-

works to be used on systems with tight resource constraints.

C-UNet Acc. Prec. Rec. Spec. Jac.

with skips 95.90 96.22 90.01 98.46 86.93

w/o skips 95.78 96.53 89.27 98.61 86.50

C-UNet++ Acc. Prec. Rec. Spec. Jac.

with skips 94.51 92.30 89.33 96.76 83.14

w/o skips 94.85 94.18 88.48 97.63 83.89

Table 3: Impact of skip connections on performance of C-UNet(++) on

38-Cloud dataset. We do not see a significant difference in accuracy when

using skip connections for this cloud segmentation task.

Architecture / Image size 384x384 2000x2000

U-Net [25] 34.9 MB 236.5 MB

StridedUNet [8] 4.22 MB 114.4 MB

MobUNet [41] 1.69 MB 45.8 MB

C-UNet with skips 1.97 MB 53.4 MB

C-UNet++ with skips 1.97 MB 53.4 MB

C-UNet without skips 0 MB 0 MB

C-UNet++ without skips 0 MB 0 MB

Table 4: Memory footprint of skip connections for 32-bit float inference

(in Megabytes), computed for two images sizes.

Performance. Many edge devices use ARM-based SoCs,

which are known for their efficiency. This is why we chose

the Raspberry Pi, an ARM computer the size of a credit

card, for our testing. Our particular board is the Raspberry

Pi 4 model B, which features a Quad core Cortex-A72 CPU

clocked at 1.5GHz and 2GB of LPDDR4 SDRAM. We feel

that this board is representative of the kind of power a typ-

ical low-power system could have, as this board consumes

3W when idle and 6W under load on average. We use Ten-

sorflow 1.13.1 with Python 3.7.3 on Raspbian 10.0 to run

our evaluation code on the board.

The number of parameters, or trainable weights, of an

architecture is an important metric, as it is not only linked

to the storage space needed for these parameters but also

(albeit loosely) correlated to computation time since each

weight must be used in computation at some point. On sys-

tems such as FPGAs where networks can be ”hardcoded”

into a chip, the number of parameters is also linked to the

amount of hardware logic that will be used by a network.

Table 5 shows the size used by the tested architectures in

terms of number of parameters and storage space, as well

as the number of FLOPs (Floating Point Operations) used

for one forward pass on a 384x384 image. We can see that

the number of FLOPs is indeed correlated to the number of

parameters.

Architecture Nparams FLOPs Storage (MB)

C-FCN++ 273 4 654 0.047

LeNet FCN 614 10 455 0.049

C-FCN 1 438 24 233 0.066

mobDeconvNet [41] 7 919 134 256 0.149

C-UNet++ 9 129 154 800 0.172

C-UNet 51 113 867 712 0.735

mobUNet [41] 52 657 893 882 0.724

StridedUNet [8] 79 785 1 355 704 1.0

ESPNet A [24] 200 193 3 399 310 2.7

U-Net [25] 31 094 497 528 578 588 357

Table 5: Network parameters, FLOPs (FLoating-point OPerationS) and

storage size. Our architectures in bold font. FLOPs computed for a

384x384 input using Tensorflow’s profiler. We see that the number of

FLOPs is correlated to the number of paramters. Storage size is the size of

the Keras h5 file for each model in MegaBytes.

Model 384x384 1024x1024 2048x2048

C-FCN++ 0.130 0.773 2.663

stridedUNet [8] 0.133 0.752 2.666

C-FCN 0.148 0.903 3.017

C-UNet++ 0.204 1.242 4.295

C-UNet 0.404 2.867 10.355

mobUNet [41] 0.688 5.507 OOM

mobDeconvNet [41] 0.755 N/A N/A

ESPNet A [24] 1.878 15.940 OOM

U-Net [25] 5.035 OOM OOM

Table 6: Execution time on images of different sizes in seconds on Rasp-

berry Pi 4, averaged over 20 iterations. OOM = Out of Memory, N/A =

mobDeconvNet is not an FCN and thus cannot be executed on images of

different sizes than training images.

Table 6 shows the execution time results we obtained.

We can see that our networks do not run out of memory

when trying to process relatively big images of 2048x2048

pixels at once. Even with a Python 32-bit float implementa-

tion, our architectures allow fast processing of images. This

processing could be even faster by using Tensorflow Lite

and quantized weights.

We notice a strange behaviour with stridedUNet, which

performs significantly faster than networks that require less

FLOPs. We suspect that Tensorflow, or at least the ARM



version of it, is lacking some optimizations in the case of

depthwise separable and atrous convolutions.

Adaptability on FPGA We successfully implemented

our most compact network, C-FCN++, on an Altera Cy-

clone V 5CSXC6 FPGA with a dataflow/streaming archi-

tecture and 16-bit quantization based on VGT [10], a tool

that automatically generates HDL code for a given neural

network architecture. This FPGA will be included aboard

OPS-SAT, a CubeSat satellite that will be launched by the

end of 2019 by the European Space Agency. Inference

on a 2048x1944 image was done in less than 150ms at

100MHz. Thus, C-FCN++ allows real-time processing of

images from OPS-SAT’s camera as it captures 2000x2000

images at 7 fps. Comparison with the three other networks

on FPGA were not possible as they are not compact enough

to be implemented on this FPGA.

5. Experiments on forest segmentation

To provide a comparison on another use case, we also

evaluate our models on a forest segmentation task, which is

also important in remote sensing, for applications such as

deforestation monitoring. Although vegetation detection is

usually done using dedicated spectral bands on earth obser-

vation satellites, it would be useful to be able to perform

it on devices that do not usually possess these bands, such

as drones or nanosats. Neural networks have already been

used successfully for land cover and vegetation segmenta-

tion [42, 16]. However, to our knowledge, these tasks have

never been done directly onboard.

For this experiment, we use the EOLearn Slovenia 2017

dataset [35], which is composed of multiple Sentinel acqui-

sitions of Slovenia over 2017, with pixel-wise land cover

ground truth for 10 classes, as well as cloud masks. We

only use the forest class and the RGB bands. This dataset

is originally split into 293 1000x1000 patches. We remove

images that have more than 10% of clouds and split the re-

maining images into 500x500 pixel tiles. We use 24 patches

as a test set. This means our training/validation set has 12

629 tiles, and our test set has 3 320 tiles. We use the same

training scheme and settings as in our cloud segmentation

experiments, which we detailed in 4.

In this test, the performance of our networks, as shown in

Table 7, is comparable to the other networks, which proves

their adaptability to different tasks. In particular, C-UNet

matches the performance of U-Net [25], and C-UNet++

matches the performance of mobDeconvNet[41].

6. Conclusion and future works

In this paper, we introduced lightweight neural network

architectures for onboard semantic segmentation, and com-

pared them to state-of-the-art architectures in the context

of 3-band cloud and forest segmentation. We showed that

Model Acc. Prec. Rec. Spec. Jacc.

LeNetFCN 77.10 67.93 63.57 84.22 48.89

C-FCN++ 77.40 69.52 61.28 85.87 48.31

C-FCN 78.87 68.95 70.38 83.33 53.44

mobDeconvNet [41] 80.61 71.52 72.68 84.78 56.36

C-UNet++ 80.62 72.92 69.61 86.41 55.31

stridedUNet [8] 80.67 72.52 70.70 85.92 55.77

C-UNet 83.33 76.79 73.99 88.24 60.47

U-Net [25] 84.04 73.37 84.28 83.92 64.54

mobUNet [41] 84.27 75.19 81.13 85.92 63.99

Table 7: Slovenia 2017 forest segmentation results (10m resolution).

our networks match the performance of Fmask, a popular

cloud segmentation method, while only using 3 bands and

at a low computational cost that allow them to be imple-

mented on systems with restrictive power and storage con-

straints. We also match the performance of network archi-

tectures that have previously been used for onboard cloud

detection, while using less memory and FLOPs. We talked

about the usefulness of depth-wise separable convolutions

for implementation of neural networks on edge devices and

discussed the memory footprint of skip connections.

Our work has some limitations which leave room for fu-

ture work. We only tested our architectures on binary image

segmentation, and while this is enough for our test cases,

many applications require multi-class image segmentation.
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