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Abstract

There were many algorithms to substitute the back-

propagation (BP) in the deep neural network (DNN) train-

ing. However, they could not become popular because their

training accuracy and the computational efficiency were

worse than BP. One of them was direct feedback alignment

(DFA), but it showed low training performance especially

for the convolutional neural network (CNN). In this pa-

per, we overcome the limitation of the DFA algorithm by

combining with the conventional BP during the CNN train-

ing. To improve the training stability, we also suggest the

feedback weight initialization method by analyzing the pat-

terns of the fixed random matrices in the DFA. Finally, we

propose the new training algorithm, binary direct feedback

alignment (BDFA) to minimize the computational cost while

maintaining the training accuracy compared with the DFA.

In our experiments, we use the CIFAR-10 and CIFAR-100

dataset to simulate the CNN learning from the scratch and

apply the BDFA to the online learning based object track-

ing application to examine the training in the small dataset

environment. Our proposed algorithms show better perfor-

mance than conventional BP in both two different training

tasks especially when the dataset is small. Furthermore,

we examined the efficiency improvement by real chip im-

plementation, and finally, DNN training accelerator with

BDFA shows 35.3% lower power consumption compared

with hardware which is optimized for BP.

1. Introduction

Deep learning becomes the core of the machine learning

and it has been utilized for many applications such as ma-

chine translation, speech recognition, and object classifica-
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tion. Training the deep neural network (DNN) is an impor-

tant portion of the deep learning because we need different

pre-trained models to cover the various deep learning tasks.

One well-known method of DNN training is the algorithm

called back-propagation (BP) ([14]). The BP is the gradient

descent based training method which follows the steepest

gradient to find the optimum weights. Therefore, BP based

training can be applied to any DNN configurations if the

network consists of any differentiable operations.

Even though the BP shows the outstanding performance

in DNN training, BP based training suffers from the over-

fitting problem. Since the BP easily sinks into a local mini-

mum, we need a large scale of the dataset to avoid the over-

fitting. In addition, we use various data augmentation tech-

niques such as flipping and cropping. If the DNN training

is done in the limited resources and dataset, BP based DNN

training is too slow to be converged and shows low accu-

racy. One example is MDNet ([12]) which introduces an

object tracking algorithm with the online learning concept.

Real-time implementation is an important issue in object

tracking, so it has the limitation to utilize various data aug-

mentation and large dataset for online learning.

To break the BP based DNN training paradigm, Feed-

back alignment (FA, [11]), was proposed based on the gra-

dient descent methodology, but without following the steep-

est gradient. The FA pre-defines a feedback weight before

starting the training, and the weight is determined by the

random values. It is also known to converge slowly, and

shows worse performance compared with the previous BP.

Direct feedback alignment (DFA, [13]) was developed

by getting the idea from the FA. Although the FA propa-

gates errors from the last layer back to the first layer step-

by-step, the DFA propagates errors from the last layer di-

rectly to each layer. This approach gives the opportunity of

the parallel processing. Since the errors of every layer are

generated independently in DFA, we can immediately cal-

culate each layer’s gradient if the DNN inference is finished.

Moreover, the number of required computation is reduced in

the DFA. This is because the number of neurons in the last



Figure 1. BP (Black) vs Conventional DFA (Read) for CNN Training (Tested in CIFAR-10)

layer is usually fewer than the prior layer, so the size of the

feedback weight becomes smaller than the BP. In spite of

these advantages, the DFA suffers from accuracy degrada-

tion problem. The accuracy degradation problem becomes

more serious when the DFA is applied to the CNN case. It

is known that the DNN is not learnable with the DFA if the

DNN becomes much deeper than AlexNet ([9]).

In this paper, we explain the new DFA algorithm to im-

prove the training accuracy in CNN, and suggest a feed-

back weight initialization method for the fast convergence.

Moreover, we propose the binary direct feedback alignment

(BDFA) to maximize the computational efficiency. We ver-

ified the training performance in the VGG-16 ([15]) with-

out any data augmentation, and DFA shows higher accuracy

compared with the BP. And then, the training with small

dataset was proved through the online learning based ob-

ject tracking application. We also examined the proposed

algorithm with the ASIC implementation and proved that

our approach enables low-power online learning with better

training performance than the conventional BP approach.

The remaining part of the paper is organized as follows.

The mathematical notation of the BP, FA, and DFA will

be introduced in Section 2. Then, the details of the pro-

posed algorithms will be explained in Section 3. The exper-

iment and hardware implementation result will be followed

in Section 4, and 5. The paper will be concluded in Section

6.

2. Preliminaries

2.1. Back-propagation

Back-propagation is a general algorithm for the DNN

training, suggested by [14]. Let oi be the ith layer’s fea-

ture map, when Wi+1,i be the weight and bias between the

ith layer and the i + 1th layer. If the activation function is

represented as f(·), and L is the total number of layers, the

feature map of the i+ 1th layer can be calculated as

ii+1 = Wi+1,i oi, oi+1 = f(ii+1) (1)

Once the inference is over, the inference result is compared

with the pre-defined labels, and the error map eL is calcu-

lated by a loss function such as cross-entropy. The error is

propagated gradually from the last layer to the first layer,

and the ith layer’s error map can be calculated as

ei = (W T
i+1,i ei+1)⊙ f ′(ii+1) (2)

where ⊙ is an element-wise multiplication operator and

f ′() is the derivative of the non-linear function. We need

the transposed weight matrix, W T
i+1,i, to propagate the er-

rors in MLP case. After the BP, the gradient of each layer

is computed by using both the ith layer’s feature map and

i + 1th layer’s error map. The ith layer’s gradient, Gi is

calculated as following.

Gi,b = ei+1 o
T
i , i ∈ {0, 1, . . . , L− 1} (3)

Gi =
1

B

∑

b

Gi,b, W
′

i+1,i = Wi+1,i − η Gi (4)

If we use the mini-batch gradient descent with the batch size

B, total B gradients, Gi,b are averaged and get the Gi. Gi

is used to update the Wi+1,i by multiplying learning rate,

η. In the CNN case, the matrix multiplication operations in

every step described in MLP is substituted with the convo-

lution operations. One more different thing is that it uses

180°flipped kernel instead of the transposed weight used in

the BP. Other operations are as same as in the MLP case.

2.2. Feedback Alignment

Feedback alignment (FA) which was introduced by [11]

substituted the transposed weight with the fixed random ma-

trix in error propagation operation. In other words, they pre-

defined the feedback weight which has the same size as the

transposed weight, but the values of the feedback weight

are determined randomly. Although the weights used in the

training are updated for every iteration, the pre-defined ran-

dom matrix is maintained until the training is finished. Let



Figure 2. Conventional DFA in CNN and Proposed DFA based Error Propagation

Ri+1,i be the feedback weight of the ith layer, the propa-

gated error in the FA is calculated as

ei = (RT
i+1,i ei+1)⊙ f ′(ii+1) (5)

, and the other procedures such as gradient generation and

weight updating are same as BP does.

2.3. Direct Feedback Alignment

Even though, both the BP and the FA propagate errors

from the last layer to the first layer in order, the DFA ([13])

directly propagates errors from the last layer to other lay-

ers. If the number of neurons in the last layer and the ith

layer, are represented by NL and Ni respectively, the size

of the feedback weight is determined as Ni ×NL. Let, ith

layer’s feedback weight in the DFA be D
T
i , then the error

is calculated as

ei = (DT
i eL)⊙ f ′(ii+1) (6)

One of the interesting characteristics is that there is no data

dependency between different errors because the DFA prop-

agates the errors directly from the last layer. This character-

istic gives the opportunity of parallel processing in the DFA

based error propagation operation.

Compared with the BP, DFA showed similar training per-

formance for the multi-layer perceptron (MLP) structure.

Moreover, DFA requires fewer computations because NL is

generally smaller than the number of neurons in the inter-

mediate layers. However, the DFA dramatically degrades

the accuracy when it applied in the CNN training as shown

in Figure 1. Furthermore, the elements of the intermediate

feature map are all connected with the last layer neurons,

so it requires much more computations compared with BP

based CNN training. In summary, the DFA’s computational

efficiency can be induced in the MLP training, but not in the

CNN.

3. Our Approach

As mentioned in Section 2, the DFA is efficient for MLP

training, because it can be computed in parallel without ac-

curacy degradation. However, this advantage is diminished

when the DFA is applied in the CNN. To solve this prob-

lem, we propose the new training method to make the DFA

applied to the CNN. In addition, the initialization method

of the feedback weight is suggested for the fast and stable

learning curve. At last, we propose the advanced training al-

gorithm, binary direct feedback alignment (BDFA), which

shows high computing efficiency and robust training perfor-

mance in various conditions.

3.1. CDFA: CNN Training by Combining both BP
and DFA

Generally, CNN consists of the convolutional layers and

fully-connected (FC) layers. The two different kinds of lay-

ers have different roles. For example in object classification,

convolutional layers are considered as the feature extractor

by using the characteristics of the convolution computation.

In contrast, FC layers receive the result of the feature ex-

tractor and judge what the object is. However, in the initial

iterations of the BP based CNN training, training the con-

volutional layers can be ambiguous because the FC layers

cannot be considered as a good object classifier. During

some iterations of BP, the weight of the FC layers will be

changed and the convolutional layers should be adaptive to

the changed FC layers. In other words, convolutional layers

can be confused if the propagated error’s domain is changed

for every iteration.

If the error is propagated from the last FC layer to con-

volutional layer through the constant domain shifting, the

training of the convolutional layer can be more stable than

conventional BP. From this motivation, we use DFA instead

of BP in the FC layers. As shown in Figure 2, the network

maintains the BP in the convolutional layers but adopts the

DFA for the FC layers. Since there is no data dependency

among the FC layers, the DFA can directly propagate the

error to the FC1. Since the DFA uses fixed feedback weight

for error propagation, convolutional layers do not have to be

adaptive to various errors which are derived from the differ-

ent domain. In this method, the error propagation in the

convolutional layers can be started even though the errors

are not propagated for the remained FC layers. Therefore,

the error propagation of both the convolutional layers and



Figure 3. Overall network configuration for training

the FC layers can be computed in parallel right after DFA is

done for the first FC layer.

[13] shows that the randomly initialized feedback weight

can be used for DFA based DNN training. However, both

the FA and the DFA are sensitive to the initialization method

of the feedback weight because it affects the training accu-

racy and the convergence speed significantly. As shown in

[10], it is observed that the batch-normalization (BN) seems

to make the FA become not sensitive to the initialization

method, but it is still a problem because of the slow conver-

gence. To make the DFA robust to the initialization method,

we fixed the feedback weight as the multiplication of the

transposed weights in multiple layers. To sum up, the feed-

back weight of the ith layer, Di, can be calculated as

Di = WL,L−1 . . .Wi+2,i+1Wi+1,i (7)

, and finally, the error propagation operation can be summa-

rized as follow.

ei = (DT
i eL)⊙ f ′(ii+1) (8)

The suggested initialization method is suitable for other var-

ious functions such as sigmoid, tanh and ReLU. Moreover,

other normalization or optimization methods such as BN

and dropout ([16]) are also applicable with the proposed ini-

tialization with the equation (7).

3.2. Binary Direct Feedback Alignment (BDFA)

The DFA needs the feedback weight addition to the for-

ward weight matrix, and it occupies a larger memory to

store both two matrices. Moreover, the DFA has the chance

to be computed in parallel, but it requires much larger mem-

ory bandwidth. Since the throughput in the FC computing

is vulnerable to the memory bandwidth, loading the addi-

tional feedback weight degrades the throughput compared

with the unlimited bandwidth case.

To solve the throughput bottleneck problem caused lim-

ited bandwidth, we propose the binary direct feedback

alignment (BDFA) algorithm. BDFA uses the binarized

feedback weight, Bi, whose values are determined as either

+1 or -1. In other words, the Bi can be stored as a single

bit to represent only the sign value of the feedback weight’s

element. As a result, required memory to store the Bi is

reduced by 96.9% compared with the 32-bit floating point

representation which now becomes the general numeric rep-

resentation in CPU or GPU. As we determined in the DFA,

BDFA’s feedback weight, Bi can be similarly defined by a

modification of the equation (7). Bi is determined as

Bi = sign(Di), ei = (BT
i eL)⊙ f ′(ii+1) (9)

, when the sign(·) is the function which indicates the sign

value of each element. The difference between equation (7)

and (9) is only whether the sign(·) is applied or not. By ap-

plying equation (9), BDFA shows faster and stable training

convergence compared with the random initialization case.

The effect of the binarization and initialization will be dis-

cussed in section 4.

4. Experiments

In this section, we compared the training accuracy of

the conventional BP and suggested training algorithm. We

measured the relative accuracy by training CNN from the

scratch in CIFAR-10 and CIFAR-100 dataset ([8]). We used

the network configuration as described in Figure 3. The

base network follows the VGG-16 configuration, but has

one additional FC layer. To sum up, it consists of 13 con-

volutional layers with BN and ReLU activation functions,

followed by three FC layers without BN. The number of

neurons in the last FC layer is determined by the number

of classification categories in each different dataset. In the

BP based approach, both the convolutional layers and the

FC layers are trained by using BP. In contrast, the train-

ing method of the last three FC layers is substituted with

the DFA or the BDFA to measure the performance of the

proposed training algorithm. The simulation was based on

mini-batch gradient descent with the batch size 100 and uses

momentum([17]) for the optimization method. The param-

eters of the network are initialized as introduced by [4],

and the learning rate decay and the weight decay method

is adopted. Other hyper parameters are not changed for fair

comparison.

4.1. CNN Training from the Scratch

The CNN training with the DFA and BDFA, are renamed

as CDFA and CBDFA respectively for the simple explana-



Table 1. CNN Training Result in CIFAR-10 & CIFAR-100 (Small Learning Rate)

CIFAR

10

BP BP w/

BN

CDFA

Random

CDFA

Eq (7)

CDFA

w/ BN

CBDFA

Random

CBDFA

Eq (9)

CBDFA

w/ BN

Top5 98.63 98.24 98.42 98.55 98.56 98.63 98.88 98.83

Top1 81.11 76.91 88.68 86.36 87.41 89.39 87.65 86.46

CIFAR

100

BP BP w/

BN

CDFA

Random

CDFA

Eq (7)

CDFA

w/ BN

CBDFA

Random

CBDFA

Eq (9)

CBDFA

w/ BN

Top5 67.80 63.91 77.05 72.82 77.55 75.07 71.92 76.85

Top1 40.29 37.80 61.42 48.24 55.11 59.92 47.48 54.47

Figure 4. Training and Test Accuracy with Proposed Training Algorithm

tion. Table 1 shows Top5 and Top1 test accuracy after the

CNN training is done in the two different CIFAR datasets.

In this simulation, there is no data augmentation to make

an environment which has a limited dataset. This condition

can examine whether the algorithm is robust to the train-

ing in the small dataset. To sum up, only 50,000 images in

the CIFAR-10 and CIFAR-100 is only used for DNN train-

ing and the other 10,000 images are tested to evaluate the

test accuracy. As a result, both the CDFA and the CBDFA

show higher test accuracy compared with the conventional

BP even though the feedback weight is randomly initial-

ized. In CIFAR-10, the CDFA and CBDFA are 7.5% and

8.3% higher in Top1 test accuracy than the BP respectively.

The accuracy improvement by the CDFA and the CBDFA

seems much more remarkable in CIFAR-100. As shown

in Figure 4, the training curve of the CDFA and CBDFA

is much slower, but they achieve 21.3% and 19.6% better

performance respectively compared with the BP.

However, the feedback weight with the random initial-

ization has critical problems for training. One of the prob-

lems is the slow training curve described in Figure 4. DFA

requires time to be adaptive to the randomly initialized feed-



Figure 5. Training and Test Accuracy with Proposed Training Algorithm

Table 2. CNN Training Result with Data Augmentation (CIFAR-10)

w/o Data Augmentation w/ Data Augmentation

BP CBDFA Conv. only Training BP CBDFA Conv. only Training

Top5 99.15 99.07 98.84 99.33 99.49 99.46

Top1 82.33 87.35 82.06 87.97 90.13 88.48

back weights, so it takes a long latency to be converged. In

the BP approach, we generally take the larger learning rate

to make the training faster. However, the test accuracy of the

DFA and BDFA is swung up and down dramatically when

the large learning rate is applied. Moreover, it still spends

a long time to converge. In this problem, the initialization

with the equation (7) and (9) can be useful to solve the learn-

ing speed and stability problem. After the feedback weight

is initialized by the proposed equations, it shows faster and

more stable convergence characteristic as shown in Figure

5. When the proposed initialization method is combined

with the large learning rate, it shows the best training per-

formance compared with the other results.

When the dataset is augmented with the flipping and

cropping, the training performance of the BP and CBDFA

becomes higher than before. The simulation uses the large

learning rate, and CBDFA takes the initialization with equa-

tion (9). In table 2, the performance of the CBDFA shows

the highest accuracy compared with not only BP but also

the training suggested by [5]. It trains only the convo-

lutional layers, and the parameters of the FC layers are

fixed. Even considering the data augmentation, CBDFA

still shows higher training accuracy compared with the other

two methods. As a result, CBDFA seems robust to the size

of the dataset.

There are some interesting observations in our simu-

lation. First of all, the CBDFA shows negligible accu-

racy degradation compared with the CDFA based training.

Sometimes, the CBDFA has a rather better performance

than the CDFA case. Refer to the learning curve described

in both Figure 4 and Figure 5, the CBDFA’s learning speed

is slightly degraded, but the final training results are ap-

proximately the same. Therefore, CBDFA can improve the

training performance and take the hardware benefits such



Figure 6. Object Tracking Result with the Proposed Training Algorithm, CBDFA

as smaller memory bandwidth by adopting binarized feed-

back weights. The second one is the effect of the BN. Even

though the suggested initialization method achieves the fast

and stable training, it has a little accuracy degradation com-

pared with the random initialization method. This accuracy

degradation can be reduced when the BN layer is added af-

ter the FC layer. This result is counter characteristic com-

pared with the BP case because the BP shows the worse

training result when the BN layer is followed right after the

FC layer. To sum up, the equation (7) and (9) are much

more powerful when the BN is followed after the convolu-

tional layer.

4.2. Example of Online Learning with Small
Dataset: Object Tracking

[12] suggested online FC learning based object tracking

algorithm, MDNet. In the MDNet, both the convolutional

layers and FC layers are pre-trained with the VOT ([7], [6])

and OTB ([18]) object tracking dataset. However, the last

layer of the FC layers is randomly initialized for the new

tracking task. The convolutional layers do not need to be

trained during the tracking but the FC layers are fine-tuned

by using the BP. To apply BDFA to FC online learning with

the small dataset, we replace the BP by the BDFA for FC

layers in the MDNet.

We compared the object tracking performance by draw-

ing the precision and the success plots of the one-pass eval-

uation (OPE) in the OTB dataset. As shown in Figure 6, the

object tracking with the BDFA based online learning shows

similar performance compared with the BP case. How-

ever, the BDFA shows better performance than BP when the

batch size becomes smaller. Since the object tracking appli-

cation is very sensitive to the online learning speed and the

BDFA has a chance to be computed in parallel, BDFA based

online learning becomes much more beneficial than con-

ventional BP. Moreover, the BDFA can dramatically reduce

the required data transaction in error propagation because

of the fewer neuron interconnections and the binarization.

As pointed out in the paper, [2], BP based online learn-

ing is inefficient for online learning in the devices which

have limited memory bandwidth, computing resources, and

small dataset. In this case, the effect of the BDFA can be

maximized because of its profits.

5. Hardware Implementation

5.1. Overall Architecture

We have fabricated BDFA based DNN learning pro-

cessor [3] with the 65nm CMOS technology. The main

computation required for DNN inference is accelerated

by DNN Core (DNNC). DNNC fetches the feature maps

from OMEM and computes matrix multiplication based

on multiply-accumulate units (MACs). The feature maps

stored in OMEM are encoded by run-length compression

[1] and it can reduce the required memory space by only re-

membering nonzero data. Proposed processor can support

DNN training with 32 batchsize and uses dedicated momen-

tum optimizer for updating weights. Direct error propaga-

tion core (DEPC) is in charge of error propagation to sup-

port DNNC during the online learning. It computes new

errors by using the proposed BDFA algorithm.

5.2. Direct Error Propagation Core

Since the feedback weight of the BDFA indicates only

the sign values, the matrix multiplication will be substituted

with the adder-only computation. We implemented adder-

tree based error propagation computing block instead of de-

signing MAC array. DEPC can reduce the overall comput-



Figure 7. ASIC Implementation of the DNN Learning Processor

with the Proposed BDFA Algorithm

ing power required for error propagation because the adder

shows much lower power consumption compared with the

multiplier. In addition, we designed built-in pseudo-random

number generator (RNG) to generate feedback weights.

With the built-in RNG, it does not need to load feedback

weights from external memory such as DRAM and we can

reduce power caused by DRAM access. Both adder-based

error computing and RNG based feedback weight fetch-

ing achieve the 35.3% lower power consumption compared

with BP based error propagation core design.

6. Conclusion

In this work, we propose the new DNN learning algo-

rithms to maximize the computation efficiency without ac-

curacy degradation. We adopt one of the training method,

DFA and combine it with the conventional BP. The com-

bination of the DFA and the BP shows much better test

accuracy in CNN training through the simulation in the

CIFAFR-10 and CIFAR-100 dataset. BDFA takes one step

further, binarizing the feedback weight while maintaining a

similar performance compared with the full-precision DFA.

The stability problem induced in the DFA and BDFA simu-

lation (Figure 5) can be solved by the new feedback weight

initialization method, equation (7) and (9). The BDFA

is also simulated in the object tracking application, and it

shows better tracking results compared with the conven-

tional BP based online FC tuning. Additionally, we proved

the efficiency improvement effect of BDFA by implement-

ing ASIC and possible to design low-power online learning

processor.

References

[1] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An

energyefficient reconfigurable accelerator for deep convolu-

tional neural networkss. IEEE Journal of Solid-State Cir-

cuits, 52:127–139, 2017.

[2] D. Han, J. Lee, J. Lee, S. Choi, and H.-J. Yoo. A 141.4

mw low-power online deep neural network training proces-

sor for real-time object tracking in mobile devices. In Pro-

ceedings of International Symposium on Circuits and Sys-

tems (ISCAS), 2018.

[3] D. Han, J. Lee, J. Lee, and H.-J. Yoo. A 1.32 tops/w energy

efficient deep neural network learning processor with direct

feedback alignment based heterogeneous core architecture.

Symposium on VLSI Circuits, 2019.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. CoRR, abs/1502.01852, 2015.

[5] E. Hoffer, I. Hubara, and D. Soudry. Fix your classifier: the

marginal value of training the last weight layer. In Interna-

tional Conference on Learning Representations, 2018.

[6] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Ce-

hovin, G. Nebehay, and G. F. et al. The visual object tracking

vot2014 challenge results. European Conference on Com-

puter Vision Workshops (ECCVW), 2016.

[7] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, F. Porikli,

L. Cehovin, G. Nebehay, G. Fernandez, and T. V. et al. The

visual object tracking vot2013 challenge results. Interna-

tional Conference on Computer Vision Workshops (ICCVW),

2013.

[8] A. Krizhevsky. Learning multiple layers of features from

tiny images. 2009.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Pro-

ceedings of Neural Information Processing Systems (NIPS),

pages 1106–1114, 2012.

[10] Q. Liao, J. Z. Leibo, and T. Poggio. How important is weight

symmetry in backpropagation? arXiv:1510.05067, 2015.

[11] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman.

Random feedback weights support learning in deep neural

networks. Nature Communications, 7, 2016.

[12] H. Nam and B. Han. Learning multi-domain convolutional

neural networks. In Proceedings of Computer Vision and

Pattern Recognition (CVPR), 2016.

[13] A. Nokland. Direct feedback alignment provides learning in

deep neural networks. In Proceedings of Neural Information

Processing Systems (NIPS), 2016.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning

internal representations by back-propagating errors. Nature,

323:533–536, 1986.

[15] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In Proceedings

of Computer Vision and Pattern Recognition (CVPR), 2015.

[16] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15(1):1929–1958, 2014.

[17] I. Sutskever, J. Martens, G. Dahl, and G. E. Hinton. On the

importance of initialization and momentum in deep learn-

ing. In Proceedings of International Conference on Machine

Learning (ICML), pages 1139–1147, 2013.

[18] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark.

Transactions on Pattern Analysis and Machine Intelligence,

37:1834–1848, 2015.


