
Real-Time Object Detection On Low Power Embedded Platforms

George Jose Aashish Kumar Srinivas Kruthiventi

Sambuddha Saha Harikrishna Muralidhara

Harman International India Pvt. Ltd., Bangalore

{george.jose, aashish.kumar, srinivas.sai,

sambuddha.saha, harikrishna.muralidhara}@harman.com

Abstract

Low power real-time object detection is an interesting

application in deep learning with applications in smart

wearables, Advanced Driver Assistance Systems (ADAS),

drone surveillance systems, etc. In this paper, we discuss the

limitations with existing networks and enumerate the vari-

ous factors to keep in mind while designing neural networks

for a target hardware. Based on our experience of working

with TI embedded platform, we provide a systematic ap-

proach for designing real time object detection networks on

low power embedded platforms. First stage involves identi-

fying the optimal layers for the hardware, by understanding

it’s computational and memory limitations. The next step is

to use these layers to come up with a basic building block

that has low computational complexity. The final stage in-

volves using model compression techniques like sparsifica-

tion/quantization to accelerate the inference process. Based

on this design approach, we were able to come up with a

low latency object detection model HX-LPNet that operates

at 22 FPS on low power TDA2PX System on Chip(SoC) pro-

vided by Texas Instruments (TI).

1. Introduction

Object detection is one of the most popular research ar-

eas in deep learning today. The advent of GPUs with heavy

computational power and memory capacity has boosted the

use of Convolution Neural Networks(CNNs) for this task.

Object detection is also one of the most challenging prob-

lems with applications in autonomous driving scenarios,

surveillance systems, etc where it need to detect multiple

objects in the image with varying sizes. A lot of recent

research on CNNs has shown promising results for com-

plex object detection tasks. But one major drawback is

the need for high computational power and larger memory

footprint associated with models like Faster RCNN [22],

RetinaNet [13], etc. This limits its application in battery-

operated low power systems like smart wearables, Ad-

vanced Driver Assistance Systems (ADAS), drone surveil-

lance systems, etc. fuelling the need for developing low

power detection architectures.

Tiny YOLO [19], SSDLite [6, 23] and SqueezeDet[28]

are some of the existing architectures having low memory

footprint and low computation power. Although these net-

works are widely used in mobile devices, we found it inef-

ficient for our hardware platform. In this paper, we explain

the various challenges faced by us to develop a neural net-

work for object detection task on low power TDA2PX SoC

provided by TI. We discuss in detail the drawbacks asso-

ciated with the above networks with respect to the hard-

ware platform used by us. Our work is inspired by Jac-

intoNet11 v2 [16], a previous work done on this platform.

We perform modifications to this network to come up with a

low latency object detection model that operates at 22FPS.

Based on these design experiences, we provide a systematic

approach to design neural networks which can be extended

to any other embedded platform. Some of these guidelines

are similar to the ones suggested by the authors of Shuf-

fleNetv2 [15].

The paper has been organized in the following manner.

In section 2, we discuss the various research works in this

area. Section 3 discusses the different hardware factors to

be considered while designing a network on embedded plat-

forms. Sections 4 and 5 gives a description of our hardware

platform and design strategy used to develop a low com-

plexity network on this hardware. Finally in section 6, we

show the performance of our model in comparison with pre-

vious work done on this platform.

2. Related Work

In this section, we will be discussing various techniques

currently adopted for reducing the memory footprint and

accelerating the inference process in neural networks. First

we will discuss the basic modules in various backbone

networks like MobileNets [6, 23], ShuffleNets [30, 15],

SqueezeNets [9, 28] which have been designed for per-

forming inference in real-time. Then we will be discussing



various network pruning techniques that are applied during

training or post-training to reduce the number or precision

of weights to accelerate the inference process. Finally, we

discuss how neural architecture search (NAS) can be ap-

plied to get a compact model.

The following are the notations used in this paper. Ci is

the number of input channels, Co is the number of output

channels, M and N are the width and height of the input

feature map to the convolutional layer. For simplicity, we

have taken a filter with kernel size 3× 3.

2.1. Depthwise Separable Convolutions

Depthwise separable convolutions perform a low-rank

approximation of 3× 3×N convolutional filter by decom-

posing it into two filters of sizes 3× 3 (depthwise convolu-

tion) and a 1 × 1 × N (pointwise convolution). First, the

3 × 3 filter is convolved across each channel separately to

learn spatial features and then the channel information is

aggregated by sliding a 1 × 1 filter at each spatial location

(see Fig 1c).

For each filter, the number of parameters required is re-

duced from 3× 3× Ci × Co to (3× 3 + Ci). The number

of computations for the entire layer is also reduced from

3 × 3 × Ci × Co × M × N to (3 × 3 × Ci × M × N +
Ci × Co × M × N ). These depthwise separable convolu-

tions are able to achieve 8 to 9 times reduction in computa-

tion at the cost of only a small reduction in accuracy. Some

networks which use depthwise separable convolutions are

MobileNets [6, 23], ShuffleNets [30, 15] and Xception [3].

2.2. Group Convolutions

The problem with the traditional convolutional filter is

that it operates on the entire feature map depth, thereby in-

creasing the computational complexity. Sometimes it might

be redundant for each filter to operate across the entire depth

of the feature map. Group convolutions solve this by split-

ting the input feature map across depth into different groups

and applying different filters to each group (see Fig 1b).

For a layer with G groups, the input feature map will be

split into groups with depth (Ci/G) channels. In order to

produce an output feature map with depth Co, each group

will produce feature maps of depth Co/G. Using group

convolutions, the number of parameters is reduced from

(3×3×Ci) to (3×3×Ci/G). The number of computations

is also reduced to (3 × 3 × Ci × Co × M × N)/G. Thus

there is a reduction in the total number of parameters and

computations by a factor G to generate the same number

of output channels. The first use of group convolution was

in AlexNet [11] where it was used to distribute the model

across GPUs.

Stacking group convolution layers has a drawback of

limiting the information to a certain block of groups and

not sharing across the entire channels. ShuffleNet solves

(a) Normal Convolution (b) Group Convolution

(c) Depthwise Convolution

Figure 1: Representation of input-output relationships for

different types of convolutions. The left side represents

input channels and the right side represents output chan-

nels. An edge between them represents that particular out-

put channel is dependant on the corresponding input chan-

nel

this by simply shuffling the channels thereby spreading the

information across different groups.

2.3. Bottleneck Layers

Pointwise convolutions are used in bottleneck layers to

reduce the computational complexity of traditional convo-

lutional filter. Pointwise convolutions can be used to ex-

pand or squeeze the number of channels without changing

the spatial resolution at a relatively low computational com-

plexity. In bottleneck layers, first, the number of channels

is reduced by applying 1×1 convolutions. The normal con-

volutional 3 × 3 filter is then applied on this feature map

with reduced depth. The number of channels can then be

increased by using a 1 × 1 pointwise convolution. The fire

modules in SqueezeNet uses the bottleneck layer to reduce

the number of computations. MobileNetv2 (see Fig 2b) uses

a combination of depthwise separable convolution, and bot-

tleneck layers to improve the performance of MobileNetv1.



2.4. Low Rank Filter Approximation

One approach towards low-rank filter approximation is

to split the 3×3 convolutional kernel into two kernels of size

1×3 and 3×1. Thus, the number of parameters are reduced

from 3× 3×Ci ×Co to (3×Ci ×Co)× 2. This reduction

will be more significant for larger kernels like 5×5 or 7×7
filters. Depthwise separable convolution can also be viewed

as a low-rank approximation technique.

Another approach is to apply tensor decomposition as

a post-training process on the learned weight matrix. The

most commonly used techniques are Canonic Polyadic

(CP)[12] and Tucker [10] decomposition in case of convo-

lutional filters and truncated Singular Value Decomposition

(SVD) in case of fully connected layers [4]. This will de-

compose the tensor weights into low-rank tensors.

2.5. Network Pruning

Neural networks are generally trained on large datasets

with millions of parameters. Estimating the right amount

of network complexity is a difficult task and often neural

networks end up with a lot of redundant parameters. The

rationale behind network pruning techniques is to remove

this redundancy by reducing the capacity of the networks.

One approach is to prune the network by removing indi-

vidual neurons or entire convolutional filter based on some

rank assigned to it[17]. Rank can be assigned based on l1
or l2 magnitude of the weights and the weights can be spar-

sified based on this. This can be done in an iterative manner

where after sparsification, the model is retrained to com-

pensate for the loss in accuracy [2]. Another approach is

to reduce the precision of weights and activations [8]. The

most common approach is to quantize the weights to 8 bits,

but some works have shown that it can be reduced to even 1

bit [20] [7].

2.6. Neural Architecture Search

Until recently, state-of-the-art neural networks are hand-

designed by human experts using heuristics combined with

trial and error. However, there is an emerging trend of Neu-

ral Architecture Search (NAS) [31] which aims to discover

optimal architecture for neural networks in an automated

fashion. Several approaches based on reinforcement learn-

ing [31], evolutionary algorithms [21] and continuous op-

timization [14] are proposed to perform this search effec-

tively. NASnets are shown to achieve the best trade-off be-

tween computational complexity and performance for tasks

such as image classification, object detection. More re-

cently, Cai et al.[1] have proposed to incorporate the com-

putational latency of inference on the target platform into

the search objective while discovering neural architecture.

3. Design Considerations For Hardware

In the following sections, we will discuss the various fac-

tors to be considered while designing neural networks for

specific hardware.

3.1. Factors Affecting Computation Speed

In order to understand the performance limitations of dif-

ferent neural network architectures, its necessary to have

an understanding of how a simple algorithm is executed on

hardware. Following is a simplified model of the various

stages involved in the execution pipeline :

1. Reading the inputs from memory

2. Performing the required math operations

3. Storing the outputs back to memory

Let Tmem be the time taken for accessing the memory

and Top be the time taken for executing the arithmetic oper-

ations. For a single-threaded execution without any paral-

lelism, the total time taken for the entire operation is (Tmem

+ Top). In practice, processors use pipe-lining mechanisms

to improve hardware utilization. While one thread will be

performing math operations, other threads would have al-

ready started fetching data for the next cycle. This ensures

that resources do not stay idle. In this scenario, the to-

tal time taken to complete the process can be viewed as

max(Tmem, Top). Modern processors are equipped with

multiple cores to incorporate more parallelism.

So the performance is limited depending on which of the

above two operations takes the maximum duration. A pro-

cess is math limited if the time taken for performing math

operations are longer . A process becomes memory lim-

ited if the time taken for fetching and storing the memory

becomes the bottleneck. When it comes to running deep

neural networks on any platform, two major components

that determine the performance are: a) Processing capa-

bility typically measured in the number of Floating Point

Operations/seconds (FLOPs) b) Memory bandwidth and la-

tency.

GPUs are designed to maximize the FLOPs by per-

forming parallel calculations using multiple cores. Latest

NVIDIA GTX 1080Ti has nearly 3500 CUDA cores oper-

ating at around 1.5GHz which is capable of delivering 11.3

TFLOPs. In comparison to this, our hardware TDA2PX

SoC is equipped with two EVEs which can deliver around

28 GFLOPs at a clock frequency of 900MHz. The inter-

nal memory bandwidth of GTX1080Ti is around 27.3 Gbps,

while for EVE processor in our SoC it is around 384Gbps.

3.2. Arithmetic Intensity of an Algorithm

An algorithm can be math limited or memory limited

depending on its implementation in the hardware, memory



requirements and processors bandwidth. Tmem of an algo-

rithm is the amount of memory in bytes accessed divided by

the memory bandwidth of the processor. Top is the number

of operations required for performing the algorithm divided

by the processors math bandwidth. So an algorithm is a

math limited if Top > Tmem. This can be expanded as :

(

#ops

BWmath

)

>

(

#bytes

BWmem

)

On rearranging the above expression, we get :

(

#ops

#bytes

)

>

(

BWmath

BWmem

)

The LHS of the above equation is dependent only on the

given algorithm and is known as the algorithms arithmetic

intensity. The RHS is dependent on the processors memory

and math bandwidth and sometimes referred to as ops: byte

ratio [27]. Layers like convolutional layers and fully con-

nected layers typically involve many calculations per input

value and mostly belong to the category of math limited

layers. Layers like pooling, activation functions, concate-

nation, addition, scale, bias perform only a few operations

per bytes accessed making it memory limited. [18] provides

an in-depth analysis of how the choice of parameters of the

layer can make it memory-limited or time-limited.

3.3. Low Power Requirements

NVIDIA GTX 1080Ti GPUs operating at maximum ca-

pability requires a power of around 250W, while typical

CPUs consume around 65W. For battery-operated devices

like smart wearables and ADAS systems, this is unaccept-

able. Low power devices should typically consume power

in the range of single digits to operating for a longer dura-

tion.

One major factor which affects energy consumption is

the amount of off-chip DRAM (Dynamic RAM) memory

access. Accessing DRAM memory consumes around twice

the order of energy compared to on-chip SRAM(Static

RAM) access. SRAM which is used for CPU cache has

a higher memory bandwidth, but the cost limits the storage

capacity of SRAM. DRAM which requires a lesser amount

of transistors to store the same amount of data is cheaper

but slower. Storing data in the cache is based on two main

strategies:

Temporal locality: Data just accessed is kept in the cache

assuming it is likely to be used again. This promotes the

need for data reuse like in convolution, where loaded filter

weights will operate on the entire spatial dimensions before

being removed from SRAM.

Spatial locality: Neighbouring data is also loaded into

cache, assuming it is likely to be used in the future. This

promotes the need for storing data in an efficient manner.

For example in the case of matrix multiplication, it will be

more efficient to store the first matrix in row-major format

and second matrix in column-major format.

Another way to reduce DRAM access is to reduce the

number of filter weights and feature maps so that they can

be stored entirely in the SRAM. Larger activation maps or

filter weights will force the data to switch between SRAM

and DRAM, thereby increasing energy consumption [15].

4. System Description

We use TDA2PX System-on-Chip (SoC) developed by

Texas Instruments designed for efficient low power Ad-

vanced Driver Assistance Systems (ADAS) applications

[25]. The TDA2PX SoC has a multiprocessor architec-

ture comprising of two TMS320C66x digital signal proces-

sors (DSPs), VisionAccelerationPaC, Arm Cortex-A15 MP-

Core, and dual-Cortex-M4 processors. The vision process-

ing functions are provided mainly by the two Embedded

Vision Engines (EVEs). EVEs are equipped with a 32− bit
RISC core for efficient program execution and a vector co-

processor (VCOP) for vision processing. The TDA2PX also

has interfaces to integrate multiple peripherals like multi-

camera interfaces, displays, CAN and GigB Ethernet AVB.

TI deep learning (TIDL) library [26] enables inference

using deep neural networks on TDA2PX SoC. TIDL helps

achieve efficient inference on the device by utilizing the

hardware resources optimally and also provides support for

sparse convolutions.

The development flow for performing deep learning-

based applications can be categorized into three phases:

a) Model Training: The computational capacity of

TDA2PX SoC is not sufficient to perform the training of

deep learning models. Model is first trained offline on pow-

erful GPUs using frameworks like Tensorflow or Caffe.

b) Model Translation: This tool takes the floating-point

model trained using the above frameworks and converts

to a fixed-point model (supports 4-bit to 12-bit) which is

compatible by the TIDL library. This quantization speeds

up the inference process. In addition, it provides the

option to place individual layers on different processors

(EVEs/DSPs) for further optimization. For example, convo-

lutional layers are optimal on EVEs, while fully connected

layers and detection layers are optimal on DSPs.

c) Model Inference: This final stage is responsible for run-

ning the quantized network model on the TDA2PX SoC us-

ing the application programming interfaces provided by the

TIDL library.

5. Design Strategy For TDA2PX SoC

In this section, we will discuss a systematic approach we

followed to find an optimal network on TDA2PX SoC. Our

network HX-LPNet performs low latency object detection



at FPS > 20 for an image of size 1024× 512.

5.1. Identifying the optimal layers for hardware

Our design strategy was to first explore the commonly

used blocks for lightweight object detection like Mo-

bileNets, SqueezeDets, and ShuffleNets on TDA2PX SoC.

On experimentation we found these architectures to be slow

on our platform. Table 1 shows the benchmarking of Mo-

bileNetv1, ShuffleNetv1 and JacintoNet11 v2 [16] on sin-

gle EVE core running at 650MHz. SqueezeNet even with

lower GMACs has a higher latency compared to Jacin-

toNet11 v2 which is a modified version of Resnet10 with-

out skip connections.

MobileNet based architectures use depth-wise separable

convolutions as the basic building block. As discussed in

section 2.1, a depthwise separable convolution is a combi-

nation of depthwise convolution and 1x1 pointwise convo-

lution (see Fig 2a). Although the number of computations

is less for this block, the major bottleneck is the memory

access time for depthwise convolutions. The algorithmic

intensity for this layer is low, since for each channel only a

single filter is applied. Hence it behaves very similarly to

an element-wise operation with memory access cost being

the bottleneck.

SqueezeDets which are based on fire modules uses point-

wise convolutions to reduce the channel size (squeeze

layer). This is followed by an expansion module which

is a mixture of 1x1 and 3x3 filters whose outputs are con-

catenated to produce a tensor with large channel size (see

Fig 2c). Even though the number of computations is less

compared to normal convolutions by squeezing the channels

initially, the problem lies in the use of concat layer which

can create an additional memory access cost, especially for

large activation maps. Additionally, the SqueezeDets will

have more layers with decreased complexity. For such an

architecture, the latency can be high due to increased mem-

ory access cost. ShuffleNetv2 [15] also presents a similar

observation, where they observe an increase in latency when

the number of groups is increased.

ShuffleNets uses a combination of pointwise convolu-

tions, channel shuffle, depth-wise convolution along with a

residual connection (see Fig 2d). Depthwise convolution,

shuffle operation and residual connections are operations

with low arithmetic intensity, thereby causing additional la-

tency. Additionally, the shuffle layers are not supported by

the TIDL library.

From the above observations, it can be inferred that lay-

ers like element-wise sum, concat, depthwise convolutions

with low arithmetic intensity can hinder the performance

due to high memory access cost. This further justifies the

claim that along with the number of computations, one

needs to compute the memory access cost also while de-

signing for maximum performance in platforms constrained

by memory bandwidth and compute power.

For our SoC, we found that the most optimal way to re-

duce computation was by the use of group convolutions. In

our architecture, we mainly use groups of 2 and 4. The

maximum group size used was 8 at a single place in the

network where the depth was maximum. Since the channel

shuffle layer is not supported by the TIDL library, we use a

1x1 pointwise convolution after stacked group convolution

layers to use the aggregate channel information.

(a) Mobilenetv1 (b) Mobilenetv2

(c) Squeezenet (d) Shufflenetv1

Figure 2: Basic building blocks of various commonly used

lightweight object detection architectures

Network topology Image Size MMACs Latency

Mobilenetv1 224x224 567.70 559.18ms

Squeezenetv1 227x227 390.80 237.60ms

Jacintonet11 v2 (D) 224x224 405.81 203.23ms

Jacintonet11 v2 (S) 224x224 107.54 103.23ms

Table 1: Benchmarking data by TI of various backbone ar-

chitectures on a single EVE core at 635MHz for TDA2PX

SoC. (D) represents dense model and (S) represents sparse

model



5.2. Striking a balance between spatial dimensions
and channel depth

For most of the networks, a major part of the computa-

tional complexity lies in the initial part of the network ow-

ing to its large spatial dimensions. Apart from increase in

computational complexity, this will also introduce problem

of having large intermediate feature maps. As discussed in

section 3.3, large activation maps will force switching of

data between DRAM and SRAM which will increase the

energy consumption.

In the proposed backbone architecture, we try to main-

tain the computational complexity of layers nearly same

throughout the network. In order to achieve this we need to

find the right balance between spatial resolution and chan-

nel depth at a specific layer without compromising much

on the accuracy. For initial layers, less number of channels

were used (C = 8, 32, 64) to reduce the complexity. Once

the spatial dimensions were reduced using max pooling lay-

ers, we use channels of 64 and 128. The maximum depth

used in the network was 256 only at one layer, from where

the detection heads are starting.

ID Layer Type Kernel # O/p Stride Groups

Size Channels

1 Conv,Relu 5 8 2 1

2 Conv,Relu 3 32 2 1

3 Maxpool 2 32 2

4 Conv, Relu 3 32 1 2

5 Conv, Relu 3 64 1 4

6 Maxpool 2 64 2

7 Conv,Relu 3 64 1 2

8 Conv,Relu 3 64 1 2

9 Conv,Relu 3 128 1 2

10 Conv,Relu 3 128 1 4

12 Conv,Relu 1 256 1 1

13 Conv,Relu 3 128 1 8

Table 2: Layer structure of our backbone feature extractor

network

5.3. Use of sparse convolutions and quantization

This section discusses the techniques adopted to acceler-

ate the inference process for the fixed network architecture.

We mainly adopt two strategies for this:

Sparse convolutions: TIDL library provides support for

sparse convolutions. In order to get sparse coefficients, a

three stage training is adopted as explained in [16]. First is

the normal training with l2 regularization. Following this,

we train a model using l1 regularization which is known to

introduce sparsity by bringing the weights closer to zero. In

the final stage, sparsification is obtained by setting weights

Sparsity (%) # MegaCycles

80 8.95

75 12.91

50 23.35

30 31.62

20 35.98

Table 3: Comparison of % Sparsity vs # Mega Cycles

required to complete [128 × 64 × 64] → 3 × 3 convo-

lution → [128 × 64 × 128] → BiasAdd + RELU →

[128 × 64 × 128] with 8 − bit layer parameters on a sin-

gle EVE core at 635MHz. (Note: Data obtained from TIDL

library datasheet)

to zero less than a threshold which is determined dynami-

cally based on the range of weights. From table 3, it can be

observed that with 80% sparsity a 4x times improvement in

speed can be obtained on TDA2Px SoC.

Dynamic 8-bit quantization: Networks weights were

trained with 32bit floating point precision. For inference,

the TIDL model translation tool converts the model weights

to 8-bit fixed representation based on the dynamic quanti-

zation method [16, 5]. The thresholds are determined sepa-

rately for each layer. A similar strategy is adopted for model

activations also. This reduction in precision helps increase

the inference speed without much compromise in accuracy.

6. Results

6.1. Dataset Description

For experiments, we use the Berkeley DeepDrive

Dataset, which is also known as BDD100K [29]. It con-

sists of over 1000 hours of driving data videos collected

from various locations in the United States under diverse

weather conditions. Each video which is 40sec long was

captured at 30fps with a resolution of 720p. For our ex-

periments, we only used images captured at daytime and

under clear weather conditions. Further, the number of ob-

ject categories was reduced from 10 to 3 (car, pedestrian,

and truck).

6.2. Detection Model

For object detection, we used SSD based architecture

(see Fig3) with our proposed backbone as a feature extrac-

tion module. Predictions were done at six different feature

resolutions with feature map sizes varying from 64 × 32
to 4 × 2. Original 1280 × 720 images were resized to

1024× 512 and fed to model for training. We compare our

results with JDetNet [24], which is also an SSD based archi-

tecture with Jacintonet11 v2 as the feature extractor. As per

benchmarking done by TI, dense Jacintonet11 v2 was able



to operate faster than MobilenNet [6] and SqueezeNet [9].

After sparsification, JacintoNet11 v2 is around 2x times

faster than SqueezeNet model (see Table1) with a latency

of 107ms. Caffe-Jacinto framework1 was used to train both

models. This is a fork of NVIDIA Caffe with support for

training sparse and quantized models. As described in sec-

tion 5.3, both models were trained in 3 stages: a) initial

training with l2 regularization (b) training with l1 regular-

ization (c) training for sparsity. For the initial training, mod-

els were trained with a base learning rate of 1e-2 and weight

decay of 0.0005. For l1 and sparsity training, the base learn-

ing rate used was 1e-3. For all the experiments, Adam opti-

mizer was used.

Figure 3: SSD Architecture

6.3. Model Evaluation

To evaluate the accuracy of various object detection

models, we used mean Average Precision (mAP) metric. A

model with higher mAP will perform better in detecting ob-

jects more accurately. Apart from this we also use latency

and FPS to compare the performance of the model on hard-

ware. An ideal model running on an embedded platform

should be able to detect objects with high mAP, at low la-

tency and high FPS.

Model FPS Latency GMACs mAP %Sparse

JDetNet [24] 9.19 0.50s 4.49 63 34.90

HX-LPNet 22.47 0.20s 0.74 52 53.55

Table 4: Comparison of FPS, GMACs and mAP of JDetNet

vs HX-LPNet while running on 2 EVEs and single C66x

DSP core

For all our experiments, we use 2 EVE cores @ 635MHz

and single DSP core @ 850MHz. All layers except the de-

tection layer were placed in EVEs. Floating-point opera-

tions are required for the ArgMax layer which is faster in

DSP compared to EVE. For evaluation, the images were fed

to TDA2PX over Ethernet from a PC.

Table 4 shows the performance comparison of our model

HX-LPNet with JDetNet. It can be observed that ours

1https://github.com/tidsp/caffe-jacinto

Training Stage mAP FPS Latency

Initial with l2 reg 53.79 16.79 0.28s

Effect of l1 reg 54.00 16.90 0.28s

Effect of sparsity 52.51 22.47 0.20s

Effect of quantization 52.00 22.47 0.20s

Table 5: Effect of l1 regularization, sparsification, and quan-

tization on model mAPs. Latency and FPS shown above

are after quantizing the respective models inorder to run on

TDA2PX SoC

is a lightweight detection model with 6x fewer computa-

tions required compared to JDetNet. Dense JDetNet model

has 3.15M parameters, while our dense model has only

0.42M parameters. Our sparse model was able to achieve

22.47 FPS on TDA2PX with a latency of only 0.2ms. This

throughput and latency are much better than the JDetNet

model. But these performance gains come with the cost of

a reasonable reduction in overall mAP. On analysis of re-

sults, we found that our models have poor performance in

detecting small objects. This is mainly due to the reduction

in the number of channels in our model compared to JDet-

Net. But for ADAS applications we are mainly interested

in detecting closer objects, which are mostly larger in size.

Table 5, shows the mAP of our model at various stages of

training and during inference with quantization. It can be

observed that sparsification and dynamic quantization have

little impact on the mAP. Compared to the dense model, the

sparse model has half the parameters (53% sparsity) and

FPS was observed to increase from 16.79 to 22.47. Even

the reduction in precision from 16-bit while training to 8-

bit for inferencing has a little impact on mAP. To conclude,

sparsification and quantization are two good techniques that

can be adopted to improve the speed and reduce the memory

footprint of neural networks without much drop in accuracy.

In terms of power consumption, the TDA2PX SoC has been

designed to operate at single-digit power for ADAS appli-

cations.

7. Conclusion

In order to design a neural network on hardware with

given performance requirements, it is necessary to under-

stand the limits of the hardware first. Based on our ex-

perience, we provide one systematic approach: a) Finding

the optimal layers for the hardware, by understanding its

processor and memory limitations. b) Based on the above

knowledge, find a basic building block that has low compu-

tational complexity that could be replicated to generate the

network. Care should be taken to reduce the size of acti-

vations so as to reduce energy consumption, c) Use model

compression techniques like sparsification/quantization to



accelerate the inference process.

A drawback associated with this method is the amount

of manual work involved in the first two stages which can

lead to delays in development. Another good approach

would be to use NASNets which aims at automating the pro-

cess of finding the network design by taking into considera-

tion hardware parameters like latency and energy consump-

tion. More research in this direction can significantly reduce

the timeline for developing efficient networks on embedded

platforms.

References

[1] H. Cai, L. Zhu, and S. Han. Proxylessnas: Direct

neural architecture search on target task and hardware.

arXiv:1812.00332, 2018.

[2] G. Castellano, A. M. Fanelli, and M. Pelillo. An iterative

pruning algorithm for feedforward neural networks. IEEE

transactions on Neural networks, 8(3):519–531, 1997.

[3] F. Chollet. Xception: Deep learning with depthwise sepa-

rable convolutions. In IEEE conference on computer vision

and pattern recognition, 2017.

[4] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in neural infor-

mation processing systems, 2014.

[5] P. Gysel. Ristretto: Hardware-oriented approximation of

convolutional neural networks. arXiv:1605.06402, 2016.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv:1704.04861, 2017.

[7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In Advances in neural

information processing systems, 2016.

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Quantized neural networks: Training neural net-

works with low precision weights and activations. The Jour-

nal of Machine Learning Research, 18(1):6869–6898, 2017.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accu-

racy with 50x fewer parameters and¡ 0.5 mb model size.

arXiv:1602.07360, 2016.

[10] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.

Compression of deep convolutional neural networks for fast

and low power mobile applications. arXiv:1511.06530,

2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, 2012.

[12] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lem-

pitsky. Speeding-up convolutional neural networks using

fine-tuned cp-decomposition. arXiv:1412.6553, 2014.

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Fo-

cal loss for dense object detection. In IEEE international

conference on computer vision, 2017.

[14] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable

architecture search. arXiv:1806.09055, 2018.

[15] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2:

Practical guidelines for efficient cnn architecture design. In

European Conference on Computer Vision, 2018.

[16] M. Mathew, K. Desappan, P. Kumar Swami, and S. Nagori.

Sparse, quantized, full frame cnn for low power embedded

devices. In IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops, 2017.

[17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. arXiv:1611.06440, 2016.

[18] NVIDIA. Deep learning sdk documentation.

https://docs.nvidia.com/deeplearning/sdk/dl-performance-

guide/index.html.

[19] J. Pedoeem and R. Huang. Yolo-lite: a real-time ob-

ject detection algorithm optimized for non-gpu computers.

arXiv:1811.05588, 2018.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

2016.

[21] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized

evolution for image classifier architecture search. In AAAI

Conference on Artificial Intelligence, 2019.

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, 2015.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In IEEE Conference on Computer Vision and Pattern

Recognition, 2018.

[24] Texas Instruments. Caffe jacinto models.

https://github.com/tidsp/caffe-jacinto-models.

[25] Texas Instruments. TDA2Px evaluation module.

http://www.ti.com/tool/TDA2PXEVM.

[26] Texas Instruments. TI Deep Learning Library Overview.

https://training.ti.com/texas-instruments-deep-learning-tidl-

overview.

[27] S. Williams, A. Waterman, and D. Patterson. Roofline:

An insightful visual performance model for floating-point

programs and multicore architectures. Technical report,

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA

(United States), 2009.

[28] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:

Unified, small, low power fully convolutional neural net-

works for real-time object detection for autonomous driving.

In IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, 2017.

[29] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and

T. Darrell. Bdd100k: A diverse driving video database with

scalable annotation tooling. arXiv:1805.04687, 2018.

[30] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile de-

vices. In IEEE Conference on Computer Vision and Pattern

Recognition, 2018.

[31] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. arXiv:1611.01578, 2016.


