
512KiB RAM Is Enough! Live Camera Face Recognition DNN on MCU

Maxim Zemlyanikin∗ Alexander Smorkalov∗

Tatiana Khanova Anna Petrovicheva Grigory Serebryakov

Xperience AI

{maxim.zemlyanikin, alexander.smorkalov, tatiana, anna, grigory}@xperience.ai

Abstract

Small factor and ultra-low power devices are becoming

more and more smart and capable even for deep learn-

ing network inference. And as the devices are ”small”,

the challenge is becoming tougher. This paper covers full

development and deployment pipeline of Face Recognition

with a live camera — from model training and quantization

to porting to RISC-V MCU with 512 kilobytes of internal

RAM. Authors provide GreenWaves GAP8 SoC overview

and the approaches for DNN model optimization and in-

ference in the extreme environment. As the project outcome,

authors were able to run Face Detection and Recognition

with live QVGA camera and display preview on a battery-

powered board. We will release the module for GAP8-

compatible quantization1.

1. Introduction

Nowadays most of the computer vision algorithms are

based on deep learning. Deep neural networks have a great

progress in terms of quality and range of tasks they are able

to solve since the time they were proposed. However, hav-

ing the winning solution for some task does not mean hav-

ing the solution ready to be used on a real device. Edge cam-

eras, robots, drones or any other battery-powered devices

have very strict requirements on power consumption. In the

past several years, the research society brought its attention

to this problem, and papers devoted to energy-efficient net-

works started to emerge. Challenges on the energy-efficient

inference and mobile-friendly DNNs (like LPIRC) also pro-

vide great growth of solutions able to cope with the pro-

duction requirements in these areas. Last, but not least,

the manufacturers of hardware devices devoted to the low-

powered DNN inference have shipped their modules to the

market, so now developers are equipped both with the sci-

∗Authors equally contributed to this work
1https://github.com/xperience-ai/gap_

quantization

entific stack and actual hardware support for their applica-

tions.

In this paper, authors have covered the full development

and deployment pipeline:

• the choice of the development platform and application

deployment;

• an overview of the training procedure for extremely

small, but powerful face recognition neural network;

• a novel quantization scheme applicable for the GAP8

chip;

• details of algorithm porting to the target device, includ-

ing memory footprint optimization.

The key result of this project is the face recognition pipeline

that meets the tough memory restrictions of 512 KiB RAM

and 1.5MiB weights size and which is able to run on

battery-powered device with production-ready accuracy and

performance.

2. Related work

Choosing the right approach for the low-power DNN so-

lution starts with the mobile-friendly architecture selection.

There is a track of accurate yet small architectures in the lit-

erature: MobileNets family ([19], [33], [40]), SqueezeNets

family ([22], [9]), ShuffleNets family ([38], [27]), ESPNets

family([28], [29]), etc. Some of these architectures target

the small number of computations, and some focus on re-

ducing the memory footprint.

However, using the slim architecture typically is not

enough to be ready for the inference on the low-power edge

device. Further model adaptation techniques are required,

such as model quantization ([23]), pruning ([17], [16]), dis-

tillation ([18]), hashing ([4]), vector quantization and Huff-

man coding [15]. Additionally various factorizations have

been proposed to speed up pretrained networks [24], [25]

and another approach is low-bit networks [6], [31], [21].

Even with originally small architecture and various tech-

niques to compress it further, we still have business task

to solve that typically differs from just image classifica-

tion (the task that most architecture-introducing papers de-



scribe). The business application of this paper is smart door-

bell that requires to be able to recognize people in the cam-

era’s field of view. Face recognition is a quickly evolving

area with a number of public large-scale datasets available

([3], [13]). The great effort on recognition improvement is

related to sophisticated loss functions ([14], [34], [30], [37],

[26], [7], [35]).

3. Platform Overview

The project is aimed to create and deploy a smart door-

bell application that would be highly energy-efficient. Very

low energy consumption target does not leave much space

for hardware selection as there are not so many hardware

DNN accelerators available on the market. The authors se-

lected GreenWaves Technologies GAP8 SoC [8], [10] as it

provides general-purpose computing unit on the same SoC

with DNN/CV-related hardware accelerator. According to

documentation, it offers an impressive balance between the

energy consumption and the number of operations per sec-

ond. However, great power efficiency has its price — spe-

cial modifications in the training procedures of the face de-

tection and recognition algorithms, as well as porting of

these algorithms to the device, were required to achieve the

goal.

GreenWaves GAP8 is a RISC-V and PULP (Paral-

lel Ultra-Low-Power Processing Platform) open-source

platform-based IoT application processor targeted for intel-

ligent applications and machine learning [10]. The com-

pute part of the SoC consists of several RISC-V cores: a

high-performance micro-controller core (FC) and 8 com-

pute cores organized as a cluster for parallel execution of

computationally-intensive tasks. In addition to the general-

purpose cores, the SoC includes a Hardware Convolution

Engine (HWCE) designed for CNN applications. The chip

includes 512 KiB L2 memory accessible for all cores, 64

KiB L1 fast-access memory for compute cluster and 8 KiB

of L1 memory owned by FC. GAP8 is capable to use exter-

nal L3 memory and flash memory but it’s not directly acces-

sible — all operations require to copy data to L2 memory

first. Authors use GAPuino board [12] with HIGHMAX

HM01B0 camera and 2.8’ ILI9341 SPI display.

GAP8 SDK provides support for PULP OS (na-

tive OS for PULP SoCs family), ARM R©EmbedTMOS,

FreeRTOSTM, a set of drivers for recommended peripheral

devices, sample applications, and an Autotiler tool. The

Autotiler is a mechanism included into SDK for automated

code generation for compute cluster by using a set of simple

compute kernels and flexible memory access model defini-

tion with C code. The Autotiler library provides a set of

highly optimized kernels for convolutional network layers

and basic image processing.

4. Application Pipeline

The main application pipeline consists of 4 stages: frame

capture, face detection, face recognition and user interac-

tion (e.g. displaying message) with external event activa-

tion. In addition to regular face detection and recognition

loop, application provides functionality to add known peo-

ple to the trusted list using already calculated face descrip-

tors.

Figure 1: ReID pipeline

GAP8 SDK already includes a camera driver and an API

for still image and video stream capture to L2 memory. The

SDK also includes Haar cascade-based face detection demo

derived from OpenCV implementation. The authors re-used

it in the solution. Existing face detector provides very good

trade-off between performance and quality for the doorbell

scenario, since people are standing close to the camera and

there is no need in perfect detection of small or distant faces.

There is one more popular part of the face recognition

system — the face alignment module. Due to the resource

constraints, it was not used in the application.

Face recognition quality is crucial in the application, so

modern deep learning-based approaches were considered.

5. Face Recognition Model

There are three main degrees of freedom for deep

learning-based face recognition solution design: data, net-

work architecture and the loss function. We started from the

resource-affected part of the solution: network architecture.

5.1. Face recognition network training

5.1.1 Network architecture

Recognition network should be integrated into an existing

framework with hardware and face detection. Therefore,

the network memory footprint should be as small as pos-

sible to fit L2 memory size. Several small-sized architec-

tures were considered: MobileNet v1/v2, ShuffleNet v1/v2,

SqueezeNet 1.0 and 1.1.

Table 1 shows that SqueezeNet 1.1 had the minimal

number of parameters (excluding final fully connected

layer) among the examined backbones. MFLOPs were cal-

culated with 128x128 RGB input.



Figure 2: Fire module (image from original paper).

Model name Number of parameters MFLOPs

SqueezeNet 1.1 0.722 85

SqueezeNet 1.0 0.735 235

ShuffleNet 0.905 45

ShuffleNet v2 1.254 45

MobileNet v2 2.224 100

MobileNet 3.207 185

Table 1: Number of parameters and MFLOPs (excluding

fully connected layer) for different models

Another advantage of SqueezeNet architecture is the ab-

sence of residual connections. Residual connections pro-

vide deep models with better training abilities, but have a

major drawback for small memory footprint applications.

The usage of residual connection increases (most of the time

doubles) the memory needed for storing the layer activa-

tions and thus increases the memory required for the net-

work inference.

One more constraint was the set of supported operations

on the target device. For example, depthwise convolutions

weren’t supported by the GAP8 SDK at the moment of im-

plementation.

As a result, SqueezeNet 1.1 architecture was chosen: it

is the smallest and simplest one as it contains only 3x3, 1x1

convolutions, poolings, and a fully connected layer. For the

feature extraction, we don’t need a fully connected layer

and it is removed in the inference time.

The application uses a grayscale camera, so the network

was trained on grayscale images. Since vanilla SqueezeNet

uses colored input ([22]), we added 1x1 convolution with

one input and 3 output channels at the beginning of the net-

work to employ transfer learning from the ImageNet dataset

[32].

5.1.2 Data

VGGFace2 dataset [3] was used for network training. Its

training part contains more than 3 million images of 8631

people. People in the dataset vary in age and ethnicity

Loss function L2 L2norm L1 Cosine

XE 0.9137 0.9303 0.9207 0.9302

XE + LS 0.9638 0.9628 0.9577 0.9643

CosFace [35] 0.8795 0.967 0.9045 0.9675

Table 2: LFW accuracy for different loss functions and dis-

tance metrics

and have different poses. The standard benchmark for face

recognition task is LFW [20] that was used for validation of

the algorithms.

5.1.3 Loss functions

There are several popular loss functions for face recogni-

tion training. The overview can be found in [36]. In brief,

there are two big classes of the loss functions: euclidean-

distance-based losses ([14], [34], [30], [37]) and softmax-

based losses (cross entropy loss or its modifications: [26],

[7], [35]).

The former ones embed images into the Euclidean space

and minimize intra-class L2 distance and maximize inter-

class L2 distance. The latter ones are trying to minimize

and maximize angular or cosine distance between features.

When the networks are trained, test images are passed

through the network to obtain the features. There are two

standard options to calculate the distance when the features

are extracted:

• to use cosine distance 1− a·b
‖a‖‖b‖

• to use L2 distance ‖a− b‖2

We have tried standard Cross Entropy loss (XE), Cos-

Face [35], Lifted Structured loss (LS) [30]. For vali-

dation, several distance metrics were tried: L1, L2, co-

sine distances and L2 along with embedding normalization

L2norm.

The network trained with CosFace [35] loss showed

the best quality with cosine distance and L2 with embed-

ding normalization. The network trained with XE + LS

loss functions and with L2 distance for evaluation showed

slightly worse accuracy, but L2 distance is much simpler in

implementation, especially if the fixed point computations

are used. Thus we used the network trained with XE+LS

loss functions for further quantization and porting process.

5.2. Quantization

The convolution operation provided in the GAP8 SDK

uses 16 or 8-bit integer values. At the same time, deep learn-

ing frameworks use floating-point numbers to represent the

weights and activations in the neural network. Floating-

point numbers cover a much wider dynamic range, but op-



erations with them are more resource consuming in com-

parison with the fixed-point numbers. Thus we need to use

quantization — the way to convert floating-point numbers

to fixed-point numbers while preserving the network qual-

ity.

A usual drawback of quantization is quality drop. To

avoid the quality decrease, we decided to use conservative

16-bit quantization.

Figure 3: Convolution from GAP8 SDK

Convolution in the GAP8 SDK (Figure 3) convolves 16-

bit signed integer input with weights, stores an intermediate

result in 32-bit accumulator, then shifts it to the right by

norm bits, the least 16 bits are saved and, finally, 16-bit

integer convolution bias is added to the result.

Common quantization tools, like the one from TF Lite

[2] or Nervana Distiller [39], use scale parameter to repre-

sent tensors. This way we need to multiply the result of the

fixed-point convolution by the scales of weight and input

tensors. Since multiplication operation is redundant for the

convolution implementation on the device, we are propos-

ing an alternative quantization scheme.

The quantization steps are:

• Estimate the number of bits to store the integer part of

the input, output feature maps, and weight tensors of

every convolution.

Run inference with some batches of data through the

network and estimate the maximum absolute value for

every tensor.

If we have X tensor and the maximum absolute value

in the X tensor is Xmax , then we need ⌈log2 Xmax ⌉
bits to store integer part of numbers in the X tensor.

Let’s denote number of bits to store integer parts of

the input, output feature maps, and weight tensors of

the convolution layer as IN int , OUT int , Wint , corre-

spondingly.

• If we have Ntotal bits to store the activation and weight

values and Nint bits are used for the integer part, then

we have the following number of bits for fraction part:

Nfrac = Ntotal −Nint − 1 (1)

for signed numbers, or

Nfrac = Ntotal −Nint (2)

for unsigned numbers.

Let’s assume that we use signed numbers for simplicity

and let’s denote fraction bits for input, output feature

maps and weight tensors as IN frac , OUT frac , Wfrac.

• The next step is to quantize convolution weights and

biases into Ntotal fixed-point values. The quantization

formula is:

Quantized value = ⌊Value × 2Nfrac⌉. (3)

For example, for convolution weights we do the fol-

lowing:

Quantized weight = ⌊Weight × 2Wfrac⌉. (4)

Convolution bias is added to the output tensor after

the convolution of the input tensor with weights. Be-

cause of that, the convolution bias should have the

same number of fraction bits as output has: Bfrac =
OUT frac .

• The next step is to choose the norm parameter for con-

volution — the number of least significant bits in ac-

cumulator to be deleted. It is essential to keep in mind

2 things: we can’t lose high orders of a number and

should keep as many least significant bits as possible.

The first step is to estimate the amount of bits to store

the output activation result:

ACC int+ACC frac = OUT int+IN frac+Wfrac (5)

Then,

norm = OUT int + IN frac +Wfrac −Ntotal (6)

The problem is that we also had to solve was the overflow

of 32-bit accumulator. The theoretical maximum value of

the output activation tensor if we do k × k convolution of

C channels 16-bit signed input with 16-bit signed weight is

k2 ×C × (215 − 1)2. For example, for k = 3 and C = 512
this value is much higher than maximum accumulator value

(231 − 1), and thus an overflow may occur.

The result of a convolution of input and weight is stored

in the intermediate 32-bit (or, in general, ACC total ) accu-

mulator. The number of fraction bits for accumulator is

ACC frac = IN frac +Wfrac . (7)

The integer bits for accumulator ACC int were estimated

from the data

ACC int = OUT int . (8)

It is necessary to check that

ACC int + ACC frac + 1 ≤ ACC total , (9)

otherwise, the overflow will occur. If this condition is not

met, then the fraction part should be reduced. The easiest

way to do this is to reduce the number of the fraction bits of

convolution weights:

ACC overflow = ACC int + ACC frac + 1− ACC total

Wfrac = Wfrac −max(0,ACC overflow )
(10)

5.3. Ablation study

It is usually convenient for debugging to compare the

network outputs between a PC and the target device. We



Model LFW accuracy

Model with input normalization 0.9638

Model without input normalization 0.9638

Table 3: LFW accuracy with and without input normaliza-

tion

Model LFW accuracy

PyTorch model 0.9638

PyTorch quantized model 0.9633

Table 4: LFW accuracy with and without emulation

compared intermediate feature maps from PyTorch infer-

ence with the feature maps on the target device. They were

significantly different from each other. We emulated the

convolution kernel in PyTorch. We have processed several

batches of the data and ensured that emulated result differs

from board result not more than in last bit. It is caused by

PyTorch roundings and we found it acceptable.

Another advantage of emulation: it allows us to mea-

sure the quality on the target device without using the de-

vice itself. One more step that is required to do it is to

quantize the network input. It is possible to add quantiza-

tion step into the preprocessing, but we propose a different

idea. Usually, data normalization is used for preprocess-

ing images: mean subtraction and division by the standard

deviation. We propose to get rid of these operations. As a

result, we would have a quantized network input and reduce

the amount of image preprocessing operations. Convolution

operation consists of two operations: convolution of input

with weights and bias addition. As convolution is a lin-

ear transformation, then the following chain of operations

is valid:

Conv

(

input −mean

std
,W

)

+ b =

Conv

(

input

std
,W

)

− Conv
(mean

std
,W

)

+ b =

Conv

(

input ,
W

std

)

− Conv
(mean

std
,W

)

+ b,

(11)

where W denotes weights of the convolution and b is a bias.

The last formula is equal to convolution of non-normalized

input with W ′ = W
std

and adding b′ = b−Conv
(

mean
std

,W
)

.

So, we should change weight and bias of the first convolu-

tion with W ′ and b′, respectively. Table 3 shows that this

operation doesn’t affect the quality.

Table 4 shows accuracy values for the floating-point Py-

Torch model and for the quantized model with convolution

emulation on PC. There is only a 0.0005 accuracy drop.

Also, we determined how different aspects affect the

Device Q B A LFW accuracy

PC No ground truth Yes 0.9638

PC No detections No 0.9323

PC Yes detections No 0.9330

GAP8 Yes detections No 0.9300

Table 5: Influence of different aspects on the face recogni-

tion quality

quality of our algorithm: bounding box origination (B), face

alignment (A), quantization (Q) and the device where the

face recognition network was run. We should remember

that in production scenario we won’t have the ground truth

bounding boxes and face alignments provided along with

LFW. We made an accuracy measurement on LFW with

bounding boxes detected by the face detector from OpenCV

dnn module [1] and without face alignment to estimate the

quality decrease. It turns out that bounding box quality and

the face alignment algorithm heavily affect the metric (Ta-

ble 5). At the same time, quantization has only a small

influence on the quality. Our quantized model on PC has

0.0007 higher quality in comparison with usual PyTorch

model. Finally, we measured the quality using embeddings

that were calculated on the target device. Table 5 shows

that after the porting we had only 0.0023 worse quality than

non-quantized model had.

6. Porting to Target Platform

The next step after CNN model training and quantization

is porting to the target platform. The procedure includes the

following steps: data conversion to a suitable layout, DNN

model implementation with existing GAP8 SDK primitives

with operations fusing, memory layout optimization, inte-

gration with existing components like face detection. As

different stages of the pipeline like Face Detection and Face

Recognition are not executed at the same time, the applica-

tion can re-use the same memory buffers, thus reducing L2

footprint. Porting procedure shows that L2 utilization is the

most important bottleneck for the application.

6.1. Autotiler Model

GAP8 SDK provides a set of optimized CNN kernels

for popular layer implementations that allows to work with

CNN application on the per-layer level. All kernels and

primitives included in Autotiler library are implemented

with NHWC memory layout in mind ([11]). It means that

weights values and the test data exported from PyTorch

should be transposed from NCHW format before the model

execution on GAP8 . SqueezeNet architecture includes the

following types of building blocks: 3x3 and 1x1 convolu-

tions, average and max pooling, ReLU and concatenation.



Autotiler library provides all the compute operations in this

list and also gives an opportunity to fuse blocks of convolu-

tion, ReLU, and pooling for better performance and smaller

memory footprint. The last operation of activation concate-

nation does not require channel shuffling and can be done

with proper buffer organization in the device memory.

6.2. Memory Footprint Optimization

Initial analysis shows that 512 KiB of L2 memory is

not enough to store all the weights and activations together

with intermediate data. The only way to achieve the goal is

to store the weights in external L3 memory and download

them to L2 memory before each layer inference. Also, per-

layer inference requires layer input, activations, weights and

biases stored in L2 during inference. The step to the next

layer in the network should produce minimal extra over-

head for efficient compute cluster utilization. Input, output

and weight buffers should be continuous buffers, and dy-

namic memory allocation cannot be applied as very limited

memory resources are available. The only solution found

by authors is static compile-time buffer allocation on top

of the continuous memory pool for each layer individually,

taking into account the layer output usage on the next steps.

This solution requires inference graph analysis and different

techniques for different network subgraphs.

The first subgraph type in SqueezeNet architecture is a

linear chain of layers, where the output of i-th layer is used

as an input of i+1-th layer. For this case, chain of two

buffers with a floating border is applied. Input and out-

put are allocated starting from the beginning of the memory

pool and starting from the floating border. Floating border

address is selected to fit the current input of the layer and

output of the next layer, to not reallocate already calculated

data and achieve continuous memory buffers for free. The

piece of memory after the second buffer is used as an area

for weight and bias loading from external L3 memory. Bor-

der address is calculated by formula (12) and illustrated by

Figure (4).

border = max(ActivationSizei+1, InputSizei) (12)

Figure 4: Simple convolution chain memory layout

The second subgraph type is SqueezeNet Fire module.

The module consists of squeeze convolution and two ex-

pand convolutions that use the squeeze operation output as

input. The results of two expand convolutions are concate-

nated and have to be stored in L2 in continuous buffer dur-

ing both expand stages. The approach with a floating mem-

ory border can be adapted to the Fire module too, but it

includes three layers instead of two in the previous case.

Figure 5: Fire module memory layout

The scheme (Figure 5) illustrates how to use the left part

of the buffer as squeeze input and as a place for concate-

nation of the expand layers. The right side of the buffer

plays the role of the output of squeeze layer and the input

for expand layers and cannot be thrown away as intermedi-

ate data. The border address is calculated by the formula

(13)

border = max(SqueezeActivationSize,

Expand1x1ActivationSize+

Expand3x3ActivationSize)

(13)

It’s important to mention that Fire module is compact in

terms of memory, and therefore two sequential Fire mod-

ules use base memory pool address as input and don’t affect

layout of each other.

By using two memory management approaches, we can

estimate minimal L2 buffer size needed for per-layer net-

work inference without memory movements and interme-

diate data swapping with external memory. The maximum

amount of memory is consumed by the first two convolu-

tions in the architecture and all Fire modules. Memory con-

sumption statistics are shown in the table (6).

6.3. Integration into Pipeline

CNN inference part introduces very significant memory

footprint and requires to reuse the other parts and memory

buffers as much as possible.

The first candidate for memory re-usage is the original

camera frame buffer. The application stops the camera be-

tween the analysis of sequential frames. As soon as the face

area is extracted for the CNN inference, the remaining part

of the frame memory can be re-used. The application uses

the same large memory pool for CNN part and disposes the

frame data before the network inference.

The next memory allocation hot spot is the Face Detec-

tion block that consists of constant cascade data and inter-



Block Name Memory Consumption, bytes

Intro convolutions 221324

Fire 1 295328

Fire 2 106912

Fire 3 203584

Fire 4 113472

Fire 5 42720

Fire 6 208608

Fire 7 351872

Fire 8 351872

Maximum 351872

Table 6: Per-block memory consumption in GAP8

mediate per-frame data like pyramid layers and integral im-

ages. The intermediate data used by the face cascade is dis-

posable and can be thrown away before the CNN inference

that makes memory pool re-usable again. Cascade data con-

sists of a lot of small buffers, and its swap to external mem-

ory takes significant time for recovery after the CNN infer-

ence. Therefore, authors decided to store it in the L2 area

constantly. The only important area that is needed for both

face detection and CNN inference is the buffer for the net-

work input data. Its location in the pool is pre-defined and

re-used on all CNN inference calls to exclude extra memory

operations. Rough memory map is presented on Figure (6).

Figure 6: Fire module memory layout

7. Conclusion

The authors implemented a face detection and recogni-

tion pipeline that runs on a battery-powered IoT device.

Using a small network architecture and a novel quantiza-

tion pipeline, the authors created a face recognition network

with only 1.5 Mb of weights. The quantization also allowed

to switch to 16-bit fixed point integer computations without

accuracy loss.

On the production side, the authors engineered the

pipeline that squeezes into 512 KiB L2 memory and works

under 1 second on the target device. The solution fits the

production requirements on the recognition quality and in-

ference speed.

8. Future work

The authors now continue the performance optimiza-

tions. The next step is to to fuse the first two convolutions

before the Fire modules to reduce the amount of computa-

tions.

GAP8 SoC provides HWCE [5] module for hardware ac-

celeration of convolution networks that was not used in the

project due to limited support of strides and paddings in the

SDK API. This hardware unit is an option for application

performance optimization, but some SDK API changes and

network architecture modifications are required.

Besides the computational optimizations, L3 data trans-

actions are found to be a time-consuming step. Authors are

going to use preemptive micro-DMA calls to do it in paral-

lel with layer computations in all cases where it’s possible.

The current Autotiler library version already has this feature

and can be used in the next versions of recognition pipeline.

References

[1] Opencv dnn face detector. https://github.com/

opencv/opencv/tree/master/samples/dnn.

[2] Tensorflow lite. https://www.tensorflow.org/

lite.

[3] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.

Vggface2: A dataset for recognising faces across pose and

age. In 2018 13th IEEE International Conference on Auto-

matic Face & Gesture Recognition (FG 2018), pages 67–74.

IEEE, 2018.

[4] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.

Compressing neural networks with the hashing trick. In In-

ternational Conference on Machine Learning, pages 2285–

2294, 2015.

[5] F. Conti and L. Benini. A ultra-low-energy convolution en-

gine for fast brain-inspired vision in multicore clusters. In

Proceedings of the 2015 Design, Automation & Test in Eu-

rope Conference & Exhibition, pages 683–688. EDA Con-

sortium, 2015.

[6] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep

neural networks with low precision multiplications. arXiv

preprint arXiv:1412.7024, 2014.

[7] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive

angular margin loss for deep face recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4690–4699, 2019.

[8] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Roten-

berg, and L. Benini. Gap-8: A risc-v soc for ai at the edge

of the iot. In 2018 IEEE 29th International Conference on

Application-specific Systems, Architectures and Processors

(ASAP), pages 1–4, July 2018.

[9] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao,

and K. Keutzer. Squeezenext: Hardware-aware neural net-

work design. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages

1638–1647, 2018.

[10] GreenWaves Technologies. GAP8 Hardware Reference

Manual.

[11] GreenWaves Technologies. GAP8 Software Development

Kit Documentation.



[12] GreenWaves Technologies. GAPuino User’s Manual.

[13] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m:

A dataset and benchmark for large-scale face recognition. In

European Conference on Computer Vision, pages 87–102.

Springer, 2016.

[14] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In 2006 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE,

2006.

[15] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[16] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[17] B. Hassibi and D. G. Stork. Second order derivatives for net-

work pruning: Optimal brain surgeon. In Advances in neural

information processing systems, pages 164–171, 1993.

[18] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[20] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.

Labeled faces in the wild: A database for studying face

recognition in unconstrained environments. Technical Re-

port 07-49, University of Massachusetts, Amherst, October

2007.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Quantized neural networks: Training neural net-

works with low precision weights and activations. The Jour-

nal of Machine Learning Research, 18(1):6869–6898, 2017.

[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[23] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,

H. Adam, and D. Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only in-

ference. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[24] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

arXiv preprint arXiv:1405.3866, 2014.

[25] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and

V. Lempitsky. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553, 2014.

[26] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax

loss for convolutional neural networks. In ICML, volume 2,

page 7, 2016.

[27] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2:

Practical guidelines for efficient cnn architecture design. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 116–131, 2018.

[28] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Ha-

jishirzi. Espnet: Efficient spatial pyramid of dilated convo-

lutions for semantic segmentation. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 552–

568, 2018.

[29] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi. Esp-

netv2: A light-weight, power efficient, and general purpose

convolutional neural network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 9190–9200, 2019.

[30] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4004–4012, 2016.

[31] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International journal of computer vision, 115(3):211–252,

2015.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018.

[34] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A

unified embedding for face recognition and clustering. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 815–823, 2015.

[35] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li,

and W. Liu. Cosface: Large margin cosine loss for deep

face recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5265–

5274, 2018.

[36] M. Wang and W. Deng. Deep face recognition: A survey.

arXiv preprint arXiv:1804.06655, 2018.

[37] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discrimina-

tive feature learning approach for deep face recognition. In

European conference on computer vision, pages 499–515.

Springer, 2016.

[38] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile de-

vices. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6848–6856, 2018.

[39] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik.

Neural Network Distiller, June 2018.

[40] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 8697–8710, 2018.


