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Abstract

With the development of convolutional neural network,

significant progress has been made in computer vision

tasks. However, the commonly used loss function softmax

loss and highly efficient network architectures for common

visual tasks are not as effective for face recognition. In

this paper, we propose a novel loss function named Li-

ArcFace based on ArcFace. Li-ArcFace takes the value

of the angle through a linear function as the target logit

rather than through cosine function, which has better con-

vergence and performance on low dimensional embedding

feature learning for face recognition. In terms of network

architecture, we improved the the perfomance of Mobile-

FaceNet by increasing the network depth, width and adding

attention module. Besides, we found some useful training

tricks for face recognition. Under all the above effects, we

won the second place in the deepglint-light challenge of L-

FR2019 [6].

1. Introduction

The development of deep convolutional network-

s(DCNN) has made remarkable progress in a series of com-

puter vision tasks. However, it is not so effective while

using the common method for face recognition. Softmax

loss, which is commonly used in classification, cant’t maxi-

mize inter-class variance and minimize intra-class variance

of embedding feature vectors. In order to obtain highly dis-

criminative embedding features(See Figure 1), a series of

novel loss functions have been proposed in recent years,

such as A-Softmax [12], CosFace/AM-Softmax [21, 19],

ArcFace [5]. Among them, ArcFace achieved state-of-the-

art performance by adding additive margin between classes

in the angle space. But, when ArcFace is used to train some

efficient networks with small(128) embedding size, it’s hard

to train from scratch(for example, the embedding feature

size of MobileFaceNet [4] is 128, it can’t converge when

trained from scratch with ArcFace). As a result, to guar-

antee the convergence of training, pre-training is always re-

Figure 1. Schematic diagram of discriminative embedding fea-

tures. W1 refers to the center of the class 1, f1 refers to the em-

bedding feature of class 1, f2 refers to the embedding feature of

class 2. During training , the variance of the same person becomes

smaller, and the variance of different people becomes larger.

quired with softmax loss. To overcome this problem, we

carefully designed a novel loss function named Li-ArcFace

based on ArcFace, which performs better in convergence.

Face recognition technology is now widely used on mo-

bile devices, which requires that the computational cost of

the model should not be too large. In recent years, some

highly efficient neural network architectures have been pro-

posed, such as MobileNetV1 [10], ShuffleNet [23], and Mo-

bileNetV2 [16], but they’re all designed for common visu-

al recognition tasks instead of face recognition. Their per-

formance is really general when used for face recognition

directly. MobileFaceNet is designed for face recognition

based on MobileNetV2, achieved remarkable accuracy on

LFW [11], AgeDB [15]. And it is even comparable to state-

of- the-art big DCNN model on MegaFace [14] Challenge

1 under the much smaller computational resources. In this

paper, with limited amount of computation, we carefully de-

signed a higher performance network architecture based on

MobileFaceNet.



2. Related Work

Loss function. Softmax loss is the most commonly used

loss function in classification, which is presented as:
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where xi denotes the embedding feature of the i-th sample

belonging to the yi-th class, and the dimension of the em-

bedding feature(hereinafter referred to as embedding size)

is set as d. Wj ∈ R
d denotes the j-th column of the weight

W ∈ R
d×n and bj ∈ R is the bias term. The batch size is

N and the class number of training data is n. However, the

traditional softmax loss lacks the power to supervise the em-

bedding feature to minimize inter-class similarity and max-

imize intra-class similarity. In SphereFace [12] and Norm-

Face [20], the bias term is being removed at first and then

fixing the ‖Wj‖ = 1, ‖xi‖ = s by l2 normalisation, such

that the logit is:

WT
j xi = ‖Wj‖ × ‖xi‖ × cos θj = s× cos θj (2)

Where θj denotes the angle between xi and Wj . Thus the

logit is only depend on the cosine of the angle. The modi-

fied loss function can be formulated as :
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Although L2 guarantees a high similarity of features of the

same person, it can’t separate different classes very well. In

this paper, we use N-Softmax denotes L2. In ArcFace [5],

the authors added an additive angular margin m within

cos θyi
, which can enhance the intra-class compactness and

inter-class discrepancy, the ArcFace is formulated as :
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1

N
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When using ArcFace to train models with 512-dimensional

embedding feature, it has well convergence and state-of-

the-art performance. However, it will be difficult to con-

verge while training some highly efficient networks with

128-dimensional embedding feature from scratch.

network architectures. Face recognition is being used

more and more on mobile devices. So it’s really impor-

tant to optimize the trade-off between accuracy and com-

putational cost when designing deep neural network ar-

chitecture. In recent years, some highly efficient neu-

ral network architectures have been proposed for common

visual tasks. MobileNetV1 [10] used depthwise separa-

ble convolution instead of traditional convolution to reduce

Figure 2. Target logit curves.

Figure 3. Decision margins of different loss functions under binary

classification case. The yellow areas are the decision margins, the

red areas are the overlap area of class1 and class2.

computational cost and improve network efficiency. Mo-

bileNetV2 [16] introduced inverted residuals and linear bot-

tlenecks to further improve network efficiency. However,

these lightweight network architectures are not so accurate

when using these unchanged for face recognition. The au-

thor of MobileFaceNet [4] found the weakness of common

mobile networks for Face recognition, and solved it by re-

placing global average pooling with global depthwise con-

volution(GDC). And the network architecture of Mobile-

FaceNet is specifically designed for face recognition with

smaller expansion factors in bottlenecks and more output

channels at the beginning of the network architecture.

3. Proposed Approach

3.1. Li-ArcFace

In ArcFace, the authors added an angular margin m with-

in cos θyi
, which takes s× cos(θyi

+m) as the target logit.

The loss function proposed by us takes the angle after a lin-

ear function as the logit rather than cosine function . In the

same way, we remove the bias term and then fix the ‖Wj‖ =
1, ‖xi‖ = s by l2 normalisation, the θj denotes the angle be-



tween xi and Wj , thus θj = arccos
(

WT
j xi/s

)

∈ [0, π]. At

first, we constructed a linear function f(x) = (π − 2x)/π,

and we have f(θj) ∈ [−1, 1]. Then we add an additive

angular margin m in the target logit. In the end we have

s × (π − 2(θyi
+ m))/π as the target logit. We call this

novel loss function Li-ArcFace, the prefix Li refers to the

linear function. The whole Li-ArcFace can be formulated

as follows
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1
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There are two main advantages of using this linear func-

tion to replace cosine function. Firstly, it is monotonic de-

creasing when the angle is between 0 and π + m, which

will have better convergence, especially for model with s-

mall embedding size. For example, when training Mo-

bileFaceNet with ArcFace, it will lead to divergence(NaN).

Therefore, softmax loss must be used for pre-training before

convergence. The proposed loss does not require these two-

stage training. Secondly, the penalty of the proposed loss

function increases linearly as the angle between embedding

feature xi and center Wyi
increasing, so that the target logit

decreases linearly which is more intuitive(See Figure 2). It

will not decline rapidly in some angles, but slowly in oth-

ers (corresponding to the gradient value of the target logit

curve), which makes the proposed loss function have bet-

ter performance in the end. In terms of geometric decision

margins, ArcFace will have a part of overlap area when the

xi deviates too much from the center Wyi
, because of its

non-monotonicity of the target logit curve. This area can

be distinguished as class 1 and class 2 with ArcFace. The

proposed loss function would’t have this overlap area(See

Figure 3).

3.2. Network Architectures

In this section, we introduce our proposed network archi-

tecture. Our network architecture is based on a deeper Mo-

bileFaceNet(y2) [5], so the residual bottlenecks proposed in

MobileNetV2 are used as our main building blocks. Table 1

shows the details of our network architecture. We follow

the MobileFaceNet, expansion factors for bottlenecks in our

architecture are much smaller than those in MobileNetV2

and using PReLU as the non-linearity rather than Relu. N-

evertheless, we noticed the importance of network width

in face recognition. MobileFaceNet is significantly wider

than MobileNetV2 at the beginning of the network. But

MobileFaceNet does not double the output channels of the

network when sampling at last stage. We did that within

limited amount of computation. At the same time, we care-

fully adjusted the depth of the network, and we introduced

the attention module CBAM [22] into every bottleneck in

the network. But we changed the last activation function in

Input Operator t c n s

112x112x3 conv 3x3 - 64 1 2

56x56x64 depthwise conv3x3 - 64 1 1

56x56x64 bottleneck 2 64 1 2

28x28x64 bottleneck 2 64 9 1

28x28x64 bottleneck 4 128 1 2

14x14x128 bottleneck 2 128 16 1

14x14x128 bottleneck 8 256 1 2

7x7x256 bottleneck 2 256 6 1

7x7x256 conv1x1 - 1024 1 1

7x7x1024 linear GDConv7x7 - 1024 1 1

1x1x1024 linear conv1x1 - 512 1 1

Table 1. The proposed network architecture, n refers to the num-

ber of repetitions, c refers to output channels, t refers to The ex-

pansion factor.

the attention module from sigmoid to 1+tanh. The range of

1+tanh is 0 to 2. When a channel or spatial position need-

s to be enhanced, it is multiplied by a weight between one

and two; when it needs to be weakened, it is multiplied by a

weight between zero and one. Using 1+tanh instead of sig-

moid is more intuitive and makes training converge faster.

3.3. Training Tricks for Face Recognition

During the competition of LFR, we found some useful

training tricks for face recognition. Firstly, using a vari-

ety of loss functions to fine-tune the model will make the

features more robust and improve the accuracy to some ex-

tent. In the competition, we used Li-ArcFace, ArcFace,

combined loss to fine-tune our model. Secondly, in 512-

dimensional embedding feature space, it is difficult for the

lightweight model to learn the distribution of the features.

It is an effective method to use some large models to guide

the feature distribution of lightweight models [9, 13].

4. Experiments

4.1. Ablation Experiment of Li-ArcFace

In this section, we mainly introduce some comparative

experiments of different loss functions.

Implementation Details. We use the MobileFaceNet as

the network architecture, in which the embedding size is set

as 128. And batch size is set as 256 x 4. Training models on

four NVIDIA TITIAN XP GPUs. We use SGD with mo-

mentum 0.9 to optimize models. The scale of the feature is

set as 64. The training data set is CASIA- Webface, which

contains 10K Identity 0.5M pictures. The learning rate s-

tarts at 0.1, divides by 10 at 18k, 26k and 29K iterations, and

finally stops training at 30K iterations. At last, we compare

the performance on Labelled Faces in the Wild (LFW) [11],

Celebrities in Frontal Profile (CFP) [18] and Age Database

(AgeDB) [15]. In this paper, ArcFace (m=0.5, NS) refers



Weight decay LFW CFP-FP AgeDB

5e-4 99.17 94.09 92.95

5e-4 wdml10 99.18 93.86 93.18

4e-5 wdml10 99.05 92.07 92.00

Table 2. Verification performance(%) of different weight decay

values. Wdml10 represents the weight decay multiplier (wd mult)

parameter of the last convolution layers is 10.

Loss LFW CFP-FP AgeDB

N-Softmax 97.87 90.46 86.55

Li-ArcFace(m=0.35) 99.20 94.20 92.87

Li-ArcFace(m=0.4) 99.27 94.11 93.25

Li-ArcFace(m=0.45) 99.23 94.20 93.15

Li-ArcFace(m=0.5) 99.20 94.10 92.93

Li-ArcFace(m=0.4, NS) 99.23 94.51 92.90

Li-ArcFace(m=0.45, NS) 99.27 94.39 93.22

ArcFace(m=0.4, NS) 99.27 93.93 92.72

ArcFace(m=0.45, NS) 99.27 94.00 92.98

ArcFace(m=0.5, NS) 99.18 93.86 93.18

CosFace/AM-Softmax 99.20 93.39 92.55

Table 3. Verification performance (%) of different loss functions.

ArcFace (m=0.5, NS) refers to the margin of ArcFace is set as 0.5,

and pre-training via N-Softmax before using ArcFace.

to the margin of ArcFace is set as 0.5, and pre-training via

N-Softmax before using ArcFace.

Weight decay. Before we start the comparison of differ-

ent loss functions, we first do the numerical experiment of

weight decay, and finally determine that the weight decay

is set to 5e-4, except the weight decay parameter of the last

layer to the embedding layer being 5e-3. According to the

experimental results(See Table 2 ), the weight decay of the

last layer is more demanding.

Effect of Hyper-parameter m. In Table 3, we firstly

explored the optimal setting for m of Li-ArcFace, and then

we found it was between 0.4 and 0.45. We tried training

model from scratch with ArcFace, but diverged after about

1600 iterations. Therefore, all the experiments with Arc-

Face were pre-trained by N-Softmax. Since the embedding

size is smaller than 512, we also explored the optimal set-

ting for m of ArcFace, and we found it was between 0.45

and 0.5.

Comparison with state-of-the-art loss functions. In

Table 3, the difference between Li-ArcFace, ArcFace and

Cosface is tiny on LFW, but all of them are obviously bet-

ter than N-Softmax; On CFP-FP and AgeDB, Li-ArcFace is

slightly better than ArcFace and CosFace. We have drawn

the accuracy On CFP-FP and AgeDB during the training,

which makes the contrast more obvious(See Figure 4). We

also compared Li-ArcFace and ArcFace in the same situ-

ation pre-trained by N-Softmax. On CFP-FP, Li-ArcFace

Figure 4. The accuracy of the verification sets during training.

CFP-FP is on the left, AgeDB is on the right.

Methods Id(%) Ver(%) Flops

FaceNet [17] 70.49 86.47 -

CosFace [21] 82.72 96.65 -

R100,MS1MV2,ArcFace [5] 81.03 96.98 27G

R100,MS1MV2,CosFace [5] 80.56 96.56 27G

R100,MS1MV2,ArcFace,R [5] 98.35 98.48 27G

R100,MS1MV2,CosFace,R [5] 97.91 97.91 27G

MobileFaceNet [4] - 90.16 440M

MobileFaceNet,R [4] - 92.59 440M

AirFace,MS1M-retina 80.80 96.52 1G

AirFace,MS1M-retina,R 98.04 97.93 1G

Table 4. Identification and verification evaluation on MegaFace

Challenge1. Id refers to the rank 1 face identification accuracy

with 1M distractors, and Ver refers to the face verification TAR

under 1e − 6 FAR. R refers to data refinement on both probe set

and 1M distractors. The list of data cleansing and the code for

calculating flops are from InsightFace [1]

achieves the highest accuracy, and Li-ArcFace is still s-

lightly better than ArcFace on AgeDB. In general, there

is little difference in accuracy on the verification sets, but

Li-ArcFace has better convergence and does not need pre-

training stage when training the model with small embed-

ding size.

4.2. Evaluation Results of Network Architecture
and Training Tricks

We name our model that contains our network architec-

ture and training tricks as AirFace. Under the same training

data set MS1M-retina [2] and model constraints, ( MS1M-

retina is cleaned from [8] by [5], and [7] is the face

detector and alignment tool used to pre-process the data)

the accuracy of AirFace reached 88.415%@FPR=1e-8 in

deepglint-light challenge of LFR19 [6, 3]. Meanwhile, we

verified the performance of AirFace in MegaFace Challenge

1 compared with the previous state-of-the-art models. In

Table 4, AirFace has reached incredible efficiency and per-

formance.



5. Conclusions

In this paper, first of all, we propose a novel additive

margin loss function for deep face recognition based on

ArcFace. The proposed loss function solves the problem

that ArcFace does not converge in training model with s-

mall embedding feature size. And it achieves the state-of-

the-art results on several face verification datasets. Second,

we have carefully designed an efficient network architecture

and explored some useful training tricks for face recogni-

tion, which makes our model AirFace extremely efficient at

both deepglint-light challenge and MegaFace Challenge 1.
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