
Towards Flops-constrained Face Recognition

Yu Liu∗ Guanglu Song∗ Manyuan Zhang∗ Jihao Liu∗

Yucong Zhou Junjie Yan

yuliu@ee.cuhk.edu.hk

{songguanglu, zhangmanyuan, liujihao}@sensetime.com
The Chinese University of Hong Kong

SenseTime Research

Abstract

Large scale face recognition is challenging especially

when the computational budget is limited. Given a flops

upper bound, the key is to find the optimal neural network

architecture and optimization method. In this article, we

introduce the solutions of team ’trojans’ for the ICCV19

- Lightweight Face Recognition Challenge [2]. Our team

mainly focuses on the two ‘large’ tracks, image-based and

video-based, respectively. The submissions of these two

tracks are required to be one single model with compu-

tational budget no higher than 30 GFlops. We introduce

a network architecture ‘Efficient PolyFace’, a novel loss

function ‘ArcNegFace’, a novel frame aggregation method

‘QAN++’, together with a bag of useful tricks in our imple-

mentation (augmentations, regular face, label smoothing,

anchor finetuning, etc.). Our basic model, ‘Efficient Poly-

Face’, takes 28.25 Gflops for the ‘deepglint-large’ image-

based track, and the ‘PolyFace+QAN++’ solution takes

24.12 Gflops for the ‘iQiyi-large’ video-based track. These

two solutions achieve 94.198% @ 1e-8 and 72.981% @ 1e-

4 in the two tracks respectively, which are the state-of-the-

art results1 in this competition.

1. Lightweight Face Recognition Challenge

The ICCV19-Lightweight Face Recognition Chal-

lenge [2] is one of the most strict competitions in open-

set face recognition. It requires the strict consistency of

training data [4], face detector [3] and alignment method

between different submissions. There are four tracks in

∗They contributed equally to this work
1The 72.981% result achieves the 1st place on the IQIYI-large track

and the 94.198% achieves the 2nd place on deepglint-large. However, the

result on deepglint-large needs further deliberation. Note that our 94.189%

result on deepglint-large is adjusted by AdaBN, which uses image-level

information of test set. For a fair comparison, the accuracy of Efficient

PolyFace w/o AdaBN is 93.801% as shown in Tab. 4

this competition: small image-based, large image-based,

small video-based and large video-based. The computa-

tional budged is 1Gflops and 30Gflops for the small and

large tracks respectively.

2. Image-based baseline model

We adopt two different CNN architectures R100 [1] and

a proposed PolyFace as our base models. The input sizes of

the two basic architectures are both 112 × 112 as required

by the challenge [2].

PolyFace. Similar to the structure of PolyNet [11], the

basic PolyFace is designed by repeating its basic blocks.

Details of the basic blocks are shown in Fig 1. In the stem

block of the proposed PolyFace, the spatial size is first up-

sampled to 235 × 235 and then downsized to 112 × 112
by an upsampling and a convolutional layer, which we call

’stem-enrichment block’. The data flow in the whole Poly-

Face is:

Stem block -- A × blockA -- blockA2B

-- B× blockB -- blockB2C -- C× blockC.

At the end of all backbones, a fully connected layer with

256 out-channels is adopted to generate the representation,

followed by a BatchNorm1d layer. The block number of

[A,B,C] in base model is [10,20,10].

Training details. During the training process of the base

models, 16 GPUs are used to enable a global batch size of

1,024. Synchronized BN is used with group size 1. The to-

tal training iterations is set to 100,000, and the initial learn-

ing rate is 0.001 and warms up to 0.4 during the first 10,000

iterations. The weight decay is set to 1e-5 and momentum

is set to 0.9. Dropout with drop rate of 0.4 for the final

embedding is used to prevent overfitting.

The results of two base models on the challenge test

server [2] are shown in Tab 1.



Figure 1. The details of blocks in PolyFace. The numbers in block Conv+BN+ReLU represent the input channel, output channel, kernel

size, stride, and padding. The numbers in block Max Pooling represent the kernel size and stride. The numbers in block Conv + BN

represent the input channel, output channel, kernel size, stride, and padding.

Model Flops Loss TPR@FPR=1e-8

R100 24.22G ArcFace 90.972

PolyNet 16.62G ArcFace 90.829

Table 1. The comparison between different base models. The

Flops is computed by the public tool in https://github.

com/Swall0w/torchstat (the total MAdd in the public

tool).

3. New loss function: ArcNegFace

We introduce a new robust loss named ArcNegFace in

this section. Unlike most of the recent novel losses that try

to find an ‘optimal’ logits curve to regularize the margin

between embedding and class anchors, ArcNegFace takes

the distance between anchors into consideration.

Define θyi
as the angle between the feature f with label

yi and the anchor weight Wyi
, the original ArcFace can be

defined as:

L = − 1

n

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j �=yi
escosθj

(1)

where hyperparam s and m represent the scale and margin.

In order to utilize hard negative mining and weaken the in-

fluence of the error labeling, we improve the ArcFace to

ArcNegFace formulated as:

L = − 1

n

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j �=yi
es(tj,yicosθj+tj,yi−1)

(2)

where tj,yi
is G(Cj,Cyi), Cj and Cyi mean the cosθj and

cos(θyi
+m). The function G(·, ·) is the Gaussian function

which is formulated as:

G(x, y) = α ∗ e−
(x−y−µ)2

2σ (3)

where α, µ and σ are set to 1.2, 0 and 1, respectively. The

performance of ArcNegFace is shown in Tab 2

Model Loss TPR@FPR=1e-8

PolyNet ArcFace 90.829

PolyNet ArcNegFace 91.639

Table 2. The comparison between different loss functions.

4. Efficient PolyFace

Inspired by the idea of efficientnet [10], we launch a

NAS processing to expand the basic models in depth and



Block number Channel number TPR@FPR=1e-8

[3,13,30,3] [64,128,256,512] 88.652

[3,13,30,3] [72,144,288,576] 90.243

[3,16,37,3] [65,130,260,520] 90.188

[3,20,46,3] [59,118,236,472] 89.954

[3,25,57,3] [53,106,212,424] 89.875

[3,13,50,3] [61,122,244,488] 89.789

[3,9,19,3] [84,168,336,672] 89.734

[3,9,31,3] [74,148,296,592] 89.699

Table 3. The performance of different modified R100 models.

width with the constraint of the computation budget. Some

selected results on R100 are shown in Tab 3. Note that all of

the experiments are trained under the same basic setting. Fi-

nally, we found one of the expanded PolyFace models out-

performs all searched candidates with the same Flops (∼28

Gflops), so we adopt it, called Efficient PolyFace, as the

final backbone 2. Some selected results are shown in Tab 7.

Model AdaBN TPR@FPR=1e-8

Efficient PolyFace 93.801

Efficient PolyFace ABN
√

94.198

Table 4. Performance of AdaBN. The performance 94.198 is the

final submission on the leaderboard.

Model margin TPR@FPR=1e-8

PolyNet 0.5 90.829

PolyNet 0.3 91.332

Table 5. The performance of different margin based on ArcFace.

5. Bag of tricks

5.1. Anchor finetuning

We introduce a new regularization term named anchor

finetuning. Given a convergent model, we extract the fea-

tures of the training set and re-init the weight W in the clas-

sification layer by the mean feature of the corresponding

identity. Then, the model will be finetuned based on this as

shown in Tab 6.

5.2. Scale & Shift augmentations

Data augmentation is used during the training process for

all settings. The original image will be re-scaled and shifted

within ±1% randomly. The performance is shown in Tab 6.

5.3. Color jitter

The brightness, contrast, and saturation are set to 0.125

when adding color jitter.

2Model architecture and parameters will be open-source

Figure 2. The details of cosine decay.

5.4. Flip strategy

The flip strategy is adopted during the training stage.

During the inference stage, we extract the features for both

the original and the flipped image. The final feature is the

average of them. Results are shown in Tab 6.

5.5. Regular face

Regular face [12] is adapted to constrain the inter-class

distance, but we find it can rarely bring improvement while

consuming a large memory.

5.6. Label smooth

We explore the label smooth strategy, which is widely

used in ImageNet classification. The result is shown in

Tab 6.

5.7. AdaBN

Considering the domain shift between the training set

and the testset, we perform the AdaBN [7] on the conver-

gent model to improve its performance. Results are shown

in Tab 4.

5.8. Modification of margin

We modify the margin in ArcFace and it brings a few

improvements as shown in Tab 5.

5.9. Cosine learning rate and stochastic depth

We explore the cosine learning rate decay and stochastic

depth [6] to achieve further gain. The keep rate in stochas-

tic depth is set to 0.8 in all experiments. The function of

learning rate w.r.t. iteration is shown in Fig 2, and results

are shown in Tab 7. The losses during the training of basic

PolyFace is shown in Fig 2.



Model ArcNegFace Scale&Shift aug Flip Regular Face [12] Label smooth Fc finetune Arch finetune [5] TPR@FPR=1e-8

R100
√

81.503

R100
√ √

80.59

R100
√ √

81.628

R100
√ √ √

80.819

R100
√ √ √

81.085

R100
√ √ √ √

81.272

R100
√ √ √ √

81.922

R100
√ √ √ √

81.638

Table 6. The comparison of the different training strategy. Note that the performance is evaluated on the deepglint-large without cleaning

up error label.

Model Flops Blocks Cosine decay Stochastic depth Color jitter TPR@FPR=1e-8

PolyNet [11] 16.62G [10,20,10]
√ √ √

93.066

PolyFace 24.04G [20,30,20]
√ √ √

93.729

Efficient PolyFace 28.25G [23,38,23]
√ √ √

93.801

Table 7. The performance of cosine decay and stochastic depth based on ArcNegFace. The Scale&Shift aug and Flip are adopted in

these experiments. ArcNegFace with margin 0.3 is used.

6. Enhanced quality aware network for video

face recognition

To generate the robust video representation for set-to-

set recognition in IQIYI track [2], inspired by QAN and

RQEN [8, 9], we propose a new quality estimation strat-

egy called enhanced quality aware network (QAN++) to ap-

proximate the quality of each image. The representation of

the image set can be aggregated by the weighted sum of

frame representations with the assistant of the image qual-

ity.

Different from the subjective quality judgment of image,

our method assigns the image quality from the characteris-

tics of feature discrimination. Define the dataset D with C

identities and the weight anchor Wi, i ∈ [1, C] in the final

classification layer, the quality of image I with ID c can be

computed by:

QI =
cos(FI ,Wc)

max{cos(FI ,Wj)|j ∈ [1, C], j �= c} (4)

The image quality is computed on the training set and in

order to obtain the image quality during the inference stage,

we add a lightweight quality generation branch to regress

the quality value computed on the training set. To better

regress the quality, we normalize it as:

QI = σ(
QI −mean(Q)

std(Q)
) (5)

where σ(·), mean(Q) and std(Q) mean the sigmoid func-

tion, mean value and standard deviation value in the whole

training set respectively. The L2 loss is adopted as the train-

ing loss.

During the inference stage, given the video Ii, i ∈ [1, n]
where n means the total image number and the correspond-

ing feature representation Fi, we extract the quality value

Qi of Ii. The quality value will be re-scaled by:

Qi = K ·Qi +B (6)

K =
1

max{Qi} −min{Qi}
, i ∈ [1, n] (7)

B = 1−K ·max{Qi}, i ∈ [1, n] (8)

Finally, the video-level feature can be aggregated by:

F =

n∑

i

Qi · Fi

Qi

, i ∈ [1, n] (9)

If the image number n in the image set is less than 3, we

directly adopt Eq 9 to aggregate them without re-scaling the

quality value.

6.1. Performance of different aggregation strategies

We evaluate the effectiveness of the proposed quality es-

timation strategy on IQIYI in LFR. Results are shown in

Tab 8. We embed a new quality branch into PolyFace. The

new branch looks like a tiny version of ResNet-18. The

block number in each stage is [2, 2, 2, 2] and the channel

number in each stage is set to [8,16,32,48]. We add a fully

connected layer with output number 1 after the global aver-

age pooling to regress the quality. The flops of the quality

net is 81.9 Mflops and the input is the same as the PolyFace.



Model (w/o ABN) Deepglint aggregation IQIYI

R100 92.433 Avg 65.843

R100 92.433 Weighted Sum 67.381

R100 92.433 Top1 Quality 65.217

R100 92.433 QAN++ 69.048

PolyFace 93.729 QAN++ 72.981

Table 8. Comparison with different quality strategies on IQIYI-

large track in LFR. The performance 72.981 is the final submission

on the leaderboard.

7. Conclusion

In this article, we show the details of our solution to

ICCV19-LRF challenge. For the image-based and video-

based tracks, We introduce a new backbone Efficient Poly-

Face and a new loss function ArcNegFace. For the video

based track, we propose a novel quality estimator QAN++

to generate quality score for each frame. Besides, we also

explore some useful tricks in face recognition model. Re-

sults on the challenge test server demonstrate the effective-

ness of the proposed methods.

References

[1] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Addi-

tive angular margin loss for deep face recognition. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2019. 1

[2] J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, S. Shi, and

S. Zafeiriou. Lightweight face recognition challenge. In In

Proceedings of the IEEE International Conference on Com-

puter Vision, 2019. 1, 4

[3] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou.

Retinaface: Single-stage dense face localisation in the wild.

arXiv preprint arXiv:1905.00641, 2019. 1

[4] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m:

A dataset and benchmark for large-scale face recognition. In

European Conference on Computer Vision, pages 87–102.

Springer, 2016. 1

[5] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag

of tricks for image classification with convolutional neural

networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 558–567, 2019.

4

[6] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.

Deep networks with stochastic depth. In European confer-

ence on computer vision, pages 646–661. Springer, 2016. 3

[7] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou. Revisiting

batch normalization for practical domain adaptation. arXiv

preprint arXiv:1603.04779, 2016. 3

[8] Y. Liu, J. Yan, and W. Ouyang. Quality aware network for

set to set recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017. 4

[9] G. Song, B. Leng, Y. Liu, C. Hetang, and S. Cai. Region-

based quality estimation network for large-scale person re-

identification. In Thirty-Second AAAI Conference on Artifi-

cial Intelligence, 2018. 4

[10] M. Tan and Q. V. Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019. 2

[11] X. Zhang, Z. Li, C. Change Loy, and D. Lin. Polynet: A

pursuit of structural diversity in very deep networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 718–726, 2017. 1, 4

[12] K. Zhao, J. Xu, and M.-M. Cheng. Regularface: Deep

face recognition via exclusive regularization. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019. 3, 4


