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Abstract

Face recognition has achieved significant advances with

the rise of deep convolutional neural networks (CNNs) and

the development of large annotated datasets. However, how

to design deep models in lightweight face recognition is still

a challenge when aiming at mobile and embedded devices.

In this paper, we focus on recent efficient CNN architec-

tures, speedup skills and reduction methods to design mod-

els for lightweight face recognition. We combine octave

convolution with MobileNet and ResNet for those models

sensitive to computation complexity, replace feature output

layer for those models sensitive to memory and explore net-

work scaling for more powerful representation. Further, we

extract a subset from the whole training dataset to speed

up the performance evaluation of different models. We pro-

vide a scaling method on MobileFaceNet to boost the per-

formance with the limit of computational cost, and propose

a simple supplementary method for average pooling which

throws up those noise frames based on the cluster informa-

tion in video face recognition. With the upper bound of 1G

FLOPs computation complexity and 20MB model size, our

best model achieves 99.80% accuracy on LFW, 98.48% on

AgeDB, 98% on CFP-FP and 97.67% TAR@FAR 10
−6 on

MegaFace.

1. Introduction

Deep learning has been widely used in many applica-

tions with impressive performance in recent years. Face

recognition also has achieved significant advances on var-

ious datasets such as LFW[18] and MegaFace[21]. How-

ever, for applications in mobile and embedded devices such

as face unlock, face login and mobile payment, it is diffi-

cult to deploy very deep nerual networks or use test aug-

mentation methods of the competition to boost accuracy

because of consumption of memories and computational

resources. For common visual recognition, several effi-

cient CNN architectures have been proposed, for example,

MobileNet[16][29], SqueezeNet[19], ShuffleNet[39][26].

Also, there are some lightweight face recognition models

proposed, such as ShiftFaceNet[37] and MobileFaceNet[3].

But reducing the model size always degrades the perfor-

mance, and it is hard to make a tradeoff decision without

a comprehensive understanding about the effectiveness of

CNNs.

In this paper, we utilize several recent efficient neural

network architectures, speedup skills and reduction meth-

ods to design different lightweight CNN models for image-

based face recognition and video-based face recognition.

Octave convolution[4], bottleneck and channel scaling are

adopted to reduce FLOPs, average pooling for the last fea-

ture map and smaller embedding size are adopted to re-

duce the number of parameters, and the existing lightweight

CNN models are used as backbone models for both. We

also investigate how to scale up MobileFaceNet that can

achieve better accuracy and efficiency. Then a small train-

ing dataset is constructed to evaluate these models and se-

lect better models. In video face recognition, average pool-

ing is a commonly adopted strategy to aggregate features

considering all face frames. So we propose a simple sup-

plementary method for average pooling aiming at removing

some noisy faces.

The major contributions of this work can be summarized

as follows:

• We implement different lightweight CNNs with recent

efficient architectures and effective model reduction

methods.

• We provide a scaling method on MobileFaceNet for

boosting performance and a simple supplementary

method for feature aggregation.

• Experiments on LFW[18], AgeDB[27], CFP-FP[31],

MegaFace[21] and deepglint-light[8] show that the se-

lected model has comparable performance, and the

supplementary method has a slight improvement on

iQIYI-VID-light[8].



2. Related Work

Since AlexNet[22] won the ImageNet competition,

CNNs has shown its power in common visual recognition

tasks. Going deeper and bigger makes CNNs increasingly

more accurate, but with large parameters and high mem-

ory consumption. Recently, lots of works focus on de-

signing efficient architectures and how to strike an optimal

balance between accuracy and speed. MobileNetV1[16]

uses depthwise separable convolution, MobileNetV2[29] is

based on an inverted residual structure with linear bottle-

neck, SqueezeNext[12] optimizes SqueezeNet[19] by sim-

ulating its performance on a multi-processor embedded

system, ShuffleNet[39] utilizes pointwise group convolu-

tion and channel shuffle to reduce computation cost and

ShuffleNetV2[26] gives practical guidelines for efficient

network design. CondenseNet[17] combines dense con-

nectivity with learned group convolution. [23][32] utilizes

global average pooling over feature maps which reduces

large numbers of parameter and is less prone to overfit-

ting. [15] firstly proposes a bottleneck design, OctConv[4]

can boost accuracy while reducing memory and compu-

tational cost. Also, neural architecture search (NAS) has

made remarkable progress in producing models that tran-

scend handcraft models. EfficientNet[34] studies CNNs

scaling for width, depth and resolutions to meet different

resource constraints. MNASNet[33] incorporates model la-

tency to balance between accuracy and latency on mobile

phones.

For image-based face recognition, many works

[30][24][25][36][35] [7] focus on loss function to further

improve the discriminative power of the model. To address

issues of deployability, there are also many approaches

proposed recently. ShiftFaceNet[37] presents a parameter-

free, FLOP-free ”shift” operation to reduce parameters.

MobileFaceNet[3] replaces the global average pooling

layer with a global depthwise convolution layer (GDConv).

Compressing pretrained network methods like [20][11][10]

use knowledge transfer and distillation to train a student

model studying from a teacher model. [40] intergrates

NAS technology info face recognition to customize a more

suitable network which requires a lot of training time and

computing capability. In this paper, we build models by

prior knowledge with current practicable methods and

construct a small training dataset for quickly performance

evaluation.

For video-based face recognition, the key issue is to build

an appropriate representation of the faces in video, effec-

tively intergrating the information across different frames

together and discarding noisy information. The most com-

monly adopted strategies may be average pooling and

maxpooling[2][5][28]. To seek for an adaptive aggregation

approach, Neural Aggregation Nework[38] is designed to

adaptively calculate the weights for each of frames. Re-

cently, C-FAN[13] automatically learns to retain salient

face features with high quality scores while suppressing fea-

tures with low quality scores. In this paper, we focus on a

cheap computation method without neural networks.

3. Approach

In this section, we will describe how we build efficient

models under the limitation of memories and computational

resources. Following to LSR2019[8], we set the upper

bound of computational complexity to 1G FLOPs, the up-

per bound of model size to 20MB and the upper bound of

the feature dimension to 512. Quantization methods are not

discussed in this paper. Meanwhile, we introduce our scal-

ing method for MobileFaceNet and supplementary method

of average pooling.

3.1. Efficient Models

FLOPs reduction. Convolution layers are computation-

ally more efficient than fully connected layers (FC) be-

cause neurons receive only a restricted subarea of the pre-

vious layer with the same shared weights, however, when

CNNs goes deeper and wider, it still need large compu-

tational resources and memories, so the variants of CNNs

aiming at efficient computation and limited storage are pro-

posed. Depthwise convolution and group convolution are

frequently referred to, as they do not need entire channels

of the previous layer when a kernel matrix applys to. So

depthwise convolution and group convolution are useful for

designing CNNs. Octave convolution operation is proposed

to replace the regular convolution operation as it can re-

duce spatial redundancy. The convolutional feature maps

are factorized into two groups at different spatial frequen-

cies hence the resolution for low frequency maps can be

reduced, saving both storage and computation. In this pa-

per, we choose ResNet and MobileFaceNet as base mod-

els to modify. We put group convolution into bottleneck in

ResNet and MobileFaceNet is already equipped with depth-

wise convolution. Following [4], we use average pooling

and up-sampling operation via nearest interpolation to im-

plement octave convolution. It can directly replace the reg-

ular convolution in ResNet without special adjustment and

for depthwise convolution case, the information exchange

paths are eliminated, leaving only two depthwise convolu-

tion operations. The built models are called Oct-ResNet-

Neck, Oct-ResNet and Oct-MobileFaceNet.

Model Size reduction. For common CNNs, the early

layers cost large computational resources and the last layers

like FC need large numbers of parameter. Several previ-

ous works[32][23] already use global average pooling and

1×1 convolution to replace FC, and the recent global depth-

wise convolution[3](GDC) further improves global average

pooling by learning different importances at different spa-

tial positiions. So we will use GDC to replace FC if the



Figure 1. Green: after the average pooling, yellow: after removing

outliers .

candidate model is oversize.

Both reduction. Reducing embedding size, scaling net-

work depth and width can reduce the computation complex-

ity and the number of parameter simultaneously. Mobile-

FaceNet’s last convolutional output has a stride of 16, fol-

lowing a GDC to get the final feature embedding. We keep

the first convolution layer unchanged which has a stride of

2, and scale the block number of rest stages which have dif-

ferent resolutions i.e. 56, 28, 14 and 7. Our scaling method

will focus on the high-level features which contains stronger

semantic information, becasuse we find that increasing the

computation complexity of previous stages gains a slower

improvement. So we modify Y2[6], a variant of mobile-

facenet, with different stage’s block number of different res-

olutions to get different candidate models.

3.2. Feature Aggregation

Feature aggregation method should choose more dis-

criminative faces and prevent poor faces from jeopardizing

the recognition. The commonly adopted average pooling

strategy is equal to find a centroid of all face feature vectors,

i.e. KMeans. Actually, there is no difference for KMeans

to choose between euclidean distance and cosine simlariy

distance if the feature vectors are normalized. So, the av-

erage pooling can be an effective method in many works.

Our supplementary method is simple: the poor faces which

have adverse impacts on face recognition will deviate from

the cluster center, so it is not necessary to use all faces to

do average pooling. As shown in Figure 1, the green area

represents the histogram of the distances to the cluster cen-

ters of faces after the average pooling. There are still many

faces which have low similarity with their cluster centers

and we call them outliers. Based on these similarity infor-

mation, we can simply throw up those outliers which con-

tribute little to or affect the aggregated feature. The yellow

Model Stage1 Stage2 Stage3 Stage4

Yoa 1.24 1.1 1.35 1.72

Yob 1.24 0.57 1.47 4.64

Yoc 1.48 1.63 0.88 2.09

Yod 1.0 0.57 1.47 4.64

Yoe 1.0 0.57 0.94 8.46

Table 1. All models are scaled from Y2 using different ratio-to-

origin for each stage.

area shows that after removing outliers the rest faces are

more compact with each other and the new aggregated fea-

ture is closer to the rest faces. This method almost cost no

computing resources.

4. Experiments

4.1. Implementation Details

Our training dataset is cleaned MS-Celeb-1M[14] pre-

processed by [6] which has 5.1M images of 93K iden-

tities with dozens to hundreds of faces in each identity.

All face images are preprocessed to the size of 112×112

by the five facial landmarks predicted by RetinaFace[9].

LFW[18], AgeDB[27] and CFP-FP[31] are our face verifi-

cation datasets. To quickly select the best model, we extract

a subset of MS-Celeb-1M called Retina-S and expect the

relative performance of different trained models on Retina-

S can match that on cleaned MS-Celeb-1M. We filter the

dataset with the upper bound of face number, and an iden-

tity will be discarded from training set if its number of face

images is over a threshold set to 50. So Retina-S dataset

has enough identities (1.1M) and fewer face images (42K).

This step prevents from quick convergence and bad gener-

alization.

With the upper bound of computational complexity and

model size, we find original Y2[6] is already small, so we

scale up Y2 by adjusting the block number of stage of differ-

ent resolutions as Section 3.1. For ablation studies, we build

different models as shown in Table 1 which have different

scaling ratios for each stage. All variants of MobileFaceNet

have a 256-D embedding feature. Based on ResNet[15], the

block numbers of Oct-ResNet-Neck model are (3, 8, 36, 3)

and the bottleneck module contains a 1×1 convolution layer

for reducing channels following a group convolution layer

and a 1×1 convolution layer for expanding channels, we use

GDC as the feature output layer, set embedding size to 256

and add octave convolution to further reduce the FLOPs so

that we do not change the original channel numbers. With-

out the bottleneck module, we get a regular Oct-ResNet

model. We set embedding size to 192 to get Oct-ResNet-

A and scale up the depth to get Oct-ResNet-B. We combine

depthwise convolution and octave convolution to get Oct-

MobileFaceNet, and scale up the depth or width to get two



Model Size FLOPs LFW AgeDB CFP-FP

Yod 15MB 992M 99.71 96.18 97.21

Yoa 11MB 985M 99.70 96.35 97.24

Yob 16MB 993M 99.70 96.03 97.11

Y2 7.5M 768M 99.68 95.85 96.75

Yoc 9.1MB 939M 99.66 96.00 96.77

Yoe 19MB 898M 99.66 96.16 97.02

Oct-ResNet-A 19MB 856M 99.65 95.63 96.31

Oct-ResNet-B 20MB 976M 99.65 95.90 96.70

Oct-MobileFaceNet-A 19MB 963M 99.65 96.38 96.91

Oct-MobileFaceNet-B 15MB 897M 99.60 95.75 96.05

Oct-ResNet-Neck 17MB 963M 99.51 95.75 96.92

MNAS-1.25 19MB 870M 99.40 94.70 95.72

Table 2. Performance (%) comparison of different models trained on Retina-S without test augmentation.

Model Size FLOPs LFW AgeDB CFP-FP

ShiftFaceNet[37] 3.1MB - 96.00 - -

TD-student[11] 2.3MB - 99.27 94.25 -

MobileFaceNet[7] 3.9MB - 99.50 95.91 88.94

MobileFaceNet[3] 4.0MB 419M 99.55 96.07 -

LResNet34E-IR[7] 131MB 8.3G 99.65 97.70 92.12

ShrinkTeaNet-MFNR[10] 3.73M - 99.77 95.14 97.63

NAS A[40] - - 99.80 - -

Ours 11MB 985M 99.80 98.00 98.48

Table 3. Performance (%) comparison with previous methods on LFW, AgeDB, CFP-FP.

version. For MNASNet, we scale up original network with

a factor of 1.25 and modify the last channel number.

We train all candidate models on eight 1080Ti GPUs

and set the batch size to 110 per GPU. We adopt Additive

Anguler Margin Loss[7] and use cosine annealing learning

rate, and it starts from 0.1 then reduces to 1e-4 in the 26

epochs. We set momentum to 0.9 and weight decay to 5e-4.

After comparing the performance of models trained on the

Retina-S, we set the total epochs to 96 and use the cleaned

MS-Celeb-1M to train the selected model. For image-based

face recognition, we test on large-scale image dataset (e.g.

MegaFace[21] and deepglint-light[8]), For video-based face

recognition, we take the iQIYI-VID[1] as our test set. We

remove a fixed proportion (set to 0.2) of faces based on

the cosine distance between the face feature vectors and the

cluster center.

4.2. Evaluation Results

Results on LFW, CFP-FP, AgeDB In Table 2, we ob-

serve the scaled models have better performance on LFW,

CFP-FP and AgeDB. Yoa, Yob and Yod achieve above

99.7% on LFW, and they all scale up high-level (i.e. stage

3 and stage 4) in Table 1. Although those models with oc-

tave convolution are better than MNAS-1.25, this reduction

method drop the performance. We think this happens be-

Model Size Id(%) Ver(%)

FaceNet[30] - 70.49 86.47

CosFace[35] - 82.72 96.65

TD-student[11] 2.3MB - -

MobileFaceNet[3] 4.0MB - 90.16

MobileFaceNet,R[3] 4.0MB - 92.59

LResNet34E-IR,R[7] 131MB 96.59 98.92

ShrinkTeaNet-MFNR[10] 3.73M - 95.64

NAS A[40] - - -

Ours 11MB 97.67 98.56

Table 4. Face identification and verification evaluation of different

models on MegaFace Challenge1. ”Id” refers to the rank-1 face

identification accuracy with 1M distractors, and ”Ver” refers to the

face verification TAR at 10−6 FAR. ”R” refers to data refinement

on both probe set and 1M distractors.

cause the low frequency component damages the feature

representation. We use Yoa to train more epochs, and it can

achieve 99.80% accuracy on LFW, 98.48% on AgeDB and

98% on CFP-FP which shows comparable accuracy with

previous methods (see Table 3).

Results on MegeFace In Table 4, our model achieves

the best identification and verification performance outper-

forming other lightweight models. And, our model surpass-



ing the LResNet34E-IR on identification with only 8.4%

parameters and 11.6% computational cost. Our model can

be an efficient model in image-based face recognition.

Results on deepglint-light and iQIYI-VID-light In

LFR19 challenge, we use Yod to train more epochs, and we

reach 86.335% at 10−8 FPR on deeplint-light. On iQIYI-

VID-light, we achieve 57.169% at 10−4 FPR using the pro-

posed supplementary method which is 0.62% higher than

that using average pooling only.

5. Conclusion

In this paper, we implement different lightweight face

recognition models with recent efficient architectures and

model reduction methods. Then we provide a scaling

method in image-based face recognition and a simple sup-

plementary method in video-base face recognition. Our ex-

periments show that our lightweight model has comparable

accuracy and our supplementary method can enhance the

face feature with cheap computational cost. In the future,

we plan to investigate network scaling in face recognition

using NAS like EfficientNet.
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