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Abstract

Low resolution (LR) face recognition (FR) is a challeng-

ing, yet common problem for FR task, especially for surveil-

lance scenario. The issue addressed here is not just to

build a LR-FR model, more importantly to make it run fast.

Here, the knowledge distillation method is adopted for our

task, where the teacher’s knowledge can be ‘distilled’ into a

small student model by guiding its training process. For LR-

FR task, the original knowledge distillation scheme would

update the teacher’s weights first by tuning it using LR aug-

mented train set, and then the student model is trained using

same train set under updated teacher’s guidance. The prob-

lem of this method is that the weights tuning of large teacher

model is time-consuming, especially for large-scale dataset.

In this paper, we proposed an improved scheme to enable us

to avoid the teacher retraining and still be able to train the

small model for LR-FR task. Here, different from the origi-

nal scheme, the train sets for teacher and student model be-

come different, where the train set for teacher model keeps

unchanged and the one student is LR augmented. Therefore,

it becomes unnecessary to update teacher model any more

since the train set is the unchanged. Only the small stu-

dent model needs to be trained under the original teacher’s

guidance. This can speed up the whole training process, es-

pecially for large-scale dataset. The different train sets for

teacher and student will increase the data distribution dis-

crepancy. To solve this problem, we constrained the multi-

kernel maximum mean discrepancy between outputs to re-

duce this influence. Experimental results show our method

can accelerate the training process by about 5 times, while

preserving the accuracy. Our student model has same level
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with respect to state-of-art accuracy on LFW and SCFace.

It can achieve 3× acceleration comparing to teacher model

and only takes 35ms to run on a CPU.

1. Introduction

Low resolution (LR) is a common problem for face

recognition (FR) task, especially for surveillance video. In

this task, the probe face image is often of low resolution

(LR), while the gallery image is usually high resolution

(HR). The issue we addressed here is how to train a fast

LR-FR model. Among various model compression tech-

niques [1, 2, 3, 4, 5, 6], we adopted the knowledge distilla-

tion (also known as teacher-student training) [5, 6] for our

purpose. The idea is to force the small student model‘s out-

put to be the same with large teacher model‘s output during

training process. This scheme can be formulated as equa-

tion (1), where S represents student model, T represents

teacher model, and x denotes the training sample.

Soutput(x) = Toutput(x) (1)

Due to the lack of LR training data from surveillance

scenario, the common way is to augment the existing train

set by simulating LR image. If adopting the original knowl-

edge distillation scheme for LR-FR task, it usually contains

two steps: (1) use LR augmented train set to update the

teacher‘s weights; (2) use same train set to train the student

model under the new teacher‘s guidance. These two steps

are illustrated as Figure.1.A. The problem of this scheme

is the parameter tuning for the large teacher model is com-

plex, which makes the whole process time-consuming, es-

pecially for large-scale train set. Also, there are some other

cases that the teacher model is provided by some third party,



which means we don‘t have any information about the train-

ing details. This could make the teacher retraining more

difficult, sometimes even impossible to reproduce.

Our goal is to investigate about how to avoid the cumber-

some retraining of teacher model and still be able to train a

fast student model for LR-FR task. We proposed an im-

proved knowledge distillation scheme, where the teacher

model still uses the original train set and the student uses

the LR augmented train set. Since the teacher train set is

unchanged, it‘s unnecessary to update the teacher model.

We only need to perform a single step, i.e. training the fast

student model under the original teacher‘s guidance. This

scheme is illustrated in Figure.1.B. Our improved scheme

can make it much faster to get a small student model for LR-

FR task, since the training of light weighted student is much

less complex. This scheme can be formulated as equation

(2), where S ,T ,x and have same meaning with equation

(1), and ∆ represents the LR variance that is used for data

augmentation.

Soutput(x+∆) = Toutput(x) (2)

A problem come along with the improved scheme is

that since the teacher and student models use different train

sets, the distribution discrepancy between the two train sets

may harm the accuracy. Therefore, we adopted the domain

similarity metric multi kernel maximum mean discrepancy

(MK-MMD) [7, 8] as our loss function to reduce the domain

discrepancy and improve the performance.

Our contribution in this paper can be summarized as two

aspects:

1. Proposed an improved knowledge distillation scheme

to speed up the whole process of fast LR-FR model training.

In our scheme, only the student’s trainset is LR-augmented,

while the teacher’s input stays unchanged. This method can

significantly accelerate the training process by avoiding the

time-consuming weights updating of teacher model.

2. Constrain the MK-MMD metric to reduce the distri-

bution discrepancy introduced by the different trainsets of

teacher and student.

2. Method

In this part, first we will introduce the details about orig-

inal knowledge distillation scheme, in which the selection

of loss function, student model network architecture, and

useful tricks will be explained in detail. Then the improved

knowledge distillation scheme is introduced, including the

details about LR simulated train set preparation, MK-MMD

loss integration, etc.

2.1. Review of original knowledge distillation
scheme

In knowledge distillation scheme, the output of the small

student model is forced to be equal with teacher model‘s

output. In this way, we can transfer the representation ca-

pability of teacher model to the student model. Here, we

use combination of different loss function to implement this

idea. The loss functions include: soft loss; hard loss; feature

L2 loss.

Let‘s denote the final score output as Z , the soft label for

teacher model T can be defined as Xτ
T = softmax(zT /τ)

where τ is the temperature parameter. Similarly, the soft

label for student network S is Xτ
S = softmax(zS/τ) .

The soft loss is the cross entropy between Xτ
T and Xτ

S :

Lsoft = H(Xτ
T , X

τ
S) (3)

The hard loss is the cross entropy between unsoften class

probability XS and ground truth y:

Lhard = H(XS , y) (4)

Here, H(.) represents for cross entropy.

For the hint learning, we used the feature layer as hint to

train the student model. The hint loss is actually feature L2

loss:

LFeature = ‖FS − FT ‖ (5)

FS and FT are the features from student and teacher.

Among the three losses, the soft loss can transfer the

knowledge from teacher to student by using soft label, the

hard loss can make the student develop its own classifica-

tion ability, and the hint learning can boost the performance

and accelerate the convergence according to [6]. Here the

feature is normalized before calculating L2 loss. This will

enhance the overall performance according to [9]. The

loss combination can be formulated as equation (6), where

LFeature Norm denotes the L2 loss for normalized feature

and λ1, λ2 , and λ3 represent the weights for hard, soft and

normalized feature loss.

Loverall = λ1LHard + λ2LSoft + λ3LFeature Norm (6)

In this paper, our teacher model is a 64-layer ResNet

[10] model. For the choice of network architecture for

student training, several light weighted network architec-

ture are available, including SqueezeNet [11], MobileNet

[12], and ShuffleNet [13], state-of-art architecture model,

including DenseNet [14], and Inception-ResNet [15], and

thinner/deeper model. In [9], it‘s concluded that the thin-

ner/deeper model will generate best performance when the

student network has the similar network architecture but

with less channels, and/or more depth. In our work, we

adopted a 36-layer thinner ResNet network as our student

model. The detailed network architecture will be demon-

strated in the following part.



Figure 1. Comparison between original and our improved knowledge distillation schemes for training fast low resolution (LR) face recog-

nition (FR) model. The original scheme is shown as 1.A, where the train datasets for teacher and student models need to be same. For

training with LR FR model , original scheme adopts two steps: 1st step: update teacher using LR augmented train dataset; 2nd step: train

student with same LR augmented trainset. Our improved scheme is shown as 1.B, where the updating of teacher model is avoided. It only

have a single step: train student with LR augmented data, where teacher model’s train dataset is unchanged.

2.2. Improved knowledge distillation scheme for
LR-FR task

To augment the train set using LR variance, we can add

Gaussian blur to the original train set. The Gaussian blur

can be applied by convolve each pixel with a Gaussian filter.

The size of the Gaussian kernel determines the downscale

ratio. For fair comparison with other works, the CASIA

Webface dataset [16] is used as training set. MTCNN [17]

is used to detect and align the face region as 112×96 image.

Among these face images, 40 percent of the training set are

randomly selected for downscaling as LR samples. The size

of the LR samples includes 8×8, 12×12, 16×16, 20×20

and 30×30.

In our improved knowledge distillation scheme, the train
set for teacher model is unchanged, while the train set for
student model is LR-augmented. This scheme may increase
distribution discrepancy between teacher and student‘s train
sets. In our work, we adopted the multi kernel maximum
mean discrepancy (MK-MMD) [7, 18, 8] as our loss func-
tion to reduce the dataset discrepancy. MMD is widely used
as a distribution distance to measure the discrepancy be-
tween two domains. It compares the distributions in the Re-
producing Kernel Hilbert Space (RKHS) [18]. The equation
for MMD can be formulated as:

LMMD(x, y) = ‖
1

N

∑
N
i=1φ(x

i)−
1

N

∑
N
j=1φ(y

j)‖ (7)

In the equation (7), φ(.) is an explicit mapping function.

xi and yj represent two samples independently drawn from

distributions of teacher and student‘s training datasets. By

expanding equation (7), the equation can be reformulated

as:

LMMD(x, y) =
1

N2

N
∑

i=1

N
∑

i′=1

k(xi, xi′)

+
1

M2

N
∑

j=1

N
∑

j′=1

k(yj , yj
′

)−
2

MN

N
∑

i=1

N
∑

j=1

k(xi, yj)

(8)

From equation (8), we can see that MMD use kernel

method k(., .) to project the sample vectors into higher di-

mension. Here, we use the Gaussian kernel k(x, y) =

exp(−‖x−y‖2

2σ2 ). The σ2 is set as the mean of squared dis-

tance of the pairs. In MK-MMD, we consider five Gaus-

sian kernels by setting Gaussian distribution variance as

σ2 × (1, 21, 22, 23, 24) respectively [7].

To integrate the MK-MMD metric into the overall

loss function, we replace the normalized feature L2 loss

LFeature Norm in equation (6) with the normalized feature

MK-MMD. Here, the x and y in equation (8) represents

the feature extracted by teacher and student model respec-

tively. In our method, instead of using the original x and

y, the features used in equation (8) are normalized as x
‖x‖

and y
‖y‖ to make them have the same scale. We also try

to apply MK-MMD for the soft label, but it slightly hurts

the accuracy. Therefore, we only used MK-MMD for the

normalized feature. The new overall loss function can be

formulated as equation (9), where LMK−MMD
Feature Norm denotes

the MK-MMD for normalized feature and λ̄1, λ̄2, and λ̄3

represent the weights for hard, soft, and normalized feature

MK-MMD loss.



Conv1.x Conv2.x Conv3.x Conv4.x FC

[3× 3, 64]× 1, S2
[

3× 3, 64
3× 3, 64

]

× 3

[3× 3, 128]× 1, S2
[

3× 3, 128
3× 3, 128

]

× 8

[3× 3, 256]× 1, S2
[

3× 3, 256
3× 3, 256

]

× 16

[3× 3, 512]× 1, S2
[

3× 3, 512
3× 3, 512

]

× 3
512

Table 1. Network Configuration of Teacher Model. Here, [3×3, 128]×4, S2 denotes 4 cascaded convolution layers with 128 filters of size

3×3, stride is set as 2. The default stride is set as 1. ’FC’ is the fully connected layer.

Conv1.x Conv2.x Conv3.x Conv4.x FC

[3× 3, 18]× 1, S2
[

3× 3, 18
3× 3, 18

]

× 2

[3× 3, 36]× 1, S2
[

3× 3, 36
3× 3, 36

]

× 4

[3× 3, 72]× 1, S2
[

3× 3, 72
3× 3, 72

]

× 8

[3× 3, 144]× 1, S2
[

3× 3, 144
3× 3, 144

]

× 2
512

Table 2. Network Configuration of Student Model. Here, [3×3, 128]×4, S2 denotes 4 cascaded convolution layers with 128 filters of size

3×3, stride is set as 2. The default stride is set as 1. ’FC’ is the fully connected layer.

L̄overall = λ̄1LHard + λ̄2LSoft + λ̄3L
MK−MMD
Feature Norm (9)

3. Experiments and Result

3.1. Experiment Setting

Here, the test sets include LFW [19] and SCFace [20].

The LFW dataset is a widely used test set for face recogni-

tion engine. The faces in LFW are detected using MTCNN

and aligned to 112×96 resolution. To simulate the setting

of LR-FR, we modified the original LFW dataset, where

the gallery image remains unchanged and the probe image

is preprocessed to low resolution image by convolving with

Gaussian kernels. The probe image resolution can be 8×8,

12×12, 16×16, 20×20, and the original 112×96. This new

dataset is referred as low-resolution LFW (LR-LFW).

SCFace is a widely-used benchmark for evaluation of LR

face recognition engine [21]. The SCFace database contains

images of 130 subjects taken in uncontrolled indoor envi-

ronment using five video surveillance cameras of various

qualities. For each subject, there are 15 images in total taken

at three different distances, 4.20m, 2.60m, and 1.00m, by

surveillance cameras, and one frontal mugshot image taken

by a digital camera. Here, the frontal mugshot images are

used as gallery images, and images taken by surveillance

cameras at different distances are used as probe image. The

setting of detection and alignment are the same with LFW

data processing.

3.2. Deep Neural Network Architecture Configura-
tion

In our experiments, we used a pre-trained 64-layer

ResNet network trained with Sphereface loss [22] as teacher

model. The training data is the CASIA Webface dataset

[16]. The teacher‘s network architecture is the same with

the description in [22]. Here, the student model used a 36-

layer thinner network. It can achieve 3× acceleration rate

comparing to the teacher model. The network architecture

for teacher and student models are shown as Table 1 and 2

respectively. In Table 1 and 2, Conv1.x, Conv2.x, Conv3.x

and Conv4.x denote multiple convolution layers and resid-

ual units that are shown in double-column brackets. E.g.,

[3×3, 128]×4, S2 denotes 4 cascaded convolution layers

with 128 filters of size 3×3, stride is set as 2. The default

stride is set as 1. ’FC’ is the fully connected layer.

3.3. Evaluation of improved knowledge distillation
scheme

In this part, firstly, we compare the whole train time for

the original and improved schemes, and then the perfor-

mance of MK-MMD is evaluated. Finally, the method is

compared with other state-of-art methods.

3.3.1 Evaluation for different knowledge distillation

schemes

In this part, we conducted experiments to evaluate the whole

training time and performance of LFW and SCFace of two

different knowledge distillation schemes:

KD: Original knowledge distillation scheme, containing

2 steps. Step1, use LR augmented data to update teacher‘s

weights; Step2, use same train set to train student model

under updated teacher‘s guidance.

KDim: Improved knowledge distillation scheme, con-

taining a single step: using LR augmented train set to train

student model under original teacher model‘s guidance.

In these two different strategies, KD adopted the orig-

inal knowledge distillation scheme. KDim is our im-

proved knowledge distillation scheme where only the stu-

dent model is trained using LR augmented train set un-

der the original teacher‘s guidance. The CASIA-webface

dataset is used here for training. Here, we use 4 Nvidia

Titan Xp GPUs with batchsize as 512. Caffe is adopted for

training and the process will last for 20 epochs. The training

for teacher model will roughly take 2 days to finish while



the student model training only take 0.5 days since it‘s much

smaller. Therefore, the two steps in KD will take about 2.5

days in total to accomplish, while the KDim scheme‘s sin-

gle step procedure only take 0.5 days. Since the improved

scheme (KDim) avoids the time consuming teacher retrain-

ing, the whole training process can be speeded up by about

5 times. The training time of these two different schemes

are shown in Table 3.

For the large scale train set, the reduction of training time

will be much more important. For example, if the Deep-

Glint [23] train set is adopted, which contains 181K ids and

6.75M images, the training of KD scheme may take more

than a week by using same training parameter and hardware

setting. By using KDim scheme, we can avoid the time con-

suming teacher‘s weights tuning and still be able to get the

fast LR-FR model in about 1.5 days.

Train Scheme Training Time

KD 2.5 days

KDim 0.5 days

Table 3. Training time of different training strategies. ’KD’ rep-

resents the original knowledge distillation scheme. ’KDim’ repre-

sents our improved knowledge distillation scheme.

Besides the acceleration of training time, the perfor-

mance of these two knowledge distillation schemes are also

compared on LR-LFW and SCFace dataset. The results are

shown in Table 4 and Table 5. From the table, we can see

that the student models trained with KDim scheme and KD

scheme have same-level performance. Therefore, we can

draw a conclusion that the student model with our improved

knowledge distillation scheme can preserve the accuracy

while accelerate the training process by 5 times.

In Table 4 and Table 5, the teacher model is only tested

on the 112×96 LFW and d=1.0m SCFace images. These

two image sets can be considered as high resolution (HR)

images. The reason is that the teacher model used here

hasn‘t been retrained using LR augmented dataset. There-

fore, it‘s unfair to evaluate the accuracy on LR images.

PS 8×8 12×12 16×16 20×20 112×96

T 99.42

SKD 93.95 95.08 97.00 97.10 99.17

SKDim 94.05 95.20 96.74 97.13 99.03

Table 4. Accuracy of different models on LR-LFW dataset. Here,

’PS’ is the abbreviation for ’probe size’. ’T’ represents teacher

model. ’SKD’ represents student model trained with original

knowledge distillation scheme. ’SKDim’ represents student model

trained with our improved knowledge distillation scheme.

Distance d = 4.2m d = 2.6m d = 1.0m

T 99.13

SKD 73.88 93.50 98.34

SKDim 73.20 93.95 98.03

Table 5. Face Recognition rates of different models on SCFace

dataset. Here, ’T’ represents teacher model. ’SKD’ represents stu-

dent model trained with original knowledge distillation scheme.

’SKDim’ represents student model trained with our improved

knowledge distillation scheme.

3.3.2 Performance of MK-MMD loss

In this part, we mainly focused on the evaluation of MK-

MMD loss function in our improved knowledge distillation

scheme. We compared two experiments:

L2 loss: Use equation (6) as loss function in improved

knowledge distillation scheme, where the feature L2 loss is

adopted instead of MK-MMD loss.

MK-MMD loss: Use equation (9) as loss function in

improved knowledge distillation scheme, where the feature

MK-MMD loss is adopted.

The results on two datasets (LR-LFW, SCFace) are

shown are shown in Table 6 and Table 7.

PS 8×8 12×12 16×16 20×20 112×96

SL 90.36 91.75 94.66 96.83 99.00

SM 94.05 95.20 96.74 97.13 99.03

Table 6. Evaluation on LR-LFW for student model trained with

different loss combination. ’PS’ is the abbreviation for ’probe

size’. ’SL’ represents the student model trained with L2 loss com-

bination. ’SM ’ represents the student model trained with MK-

MMD loss combination.

Distance d = 4.2m d = 2.6m d = 1.0m

SL 69.37 91.54 97.98

SM 73.20 93.95 98.03

Table 7. Evaluation of SCFace face recognition rates using student

model trained with different losses. ’SL’ represents the student

model trained with L2 loss combination. SM represents the stu-

dent model trained with MK-MMD loss combination.

From Table 6 and Table 7, we can see that results of

MK-MMD loss constantly outperform L2 loss on both test

sets, especially on smaller size probe image scenarios, such

as 8×8, 12×12 LR-LFW images and d = 4.2m SCFace

images. The reason is that when using original feature L2

loss, the data distribution discrepancy between teacher‘s un-

changed train set and student‘s LR-augmented train set can

harm the performance due to the weak constraint of l2 loss

function. This problem will become more severe when the

probe image size becomes smaller and smaller. The influ-



ence of this problem can be reduced by adopting feature

MK-MMD loss function, which can be seen as a combi-

nation of kernel trick and L2 loss and will exert stronger

constraint on features during the training process.

3.3.3 Performance comparison on SCFace

In this part, results on SCFace are compared with three

state-of-art methods, including Deep Coupled Resnet model

(DCR) method [24] , multidimensional scaling (MDS) [25],

and discriminative multidimensional scaling (DMDS) [26],

(Table 8). The inference time of best performance meth-

ods, including DCR and our student model are tested on

an Intel Core 2.5GHz CPU to simulate embedded systems’

hardware performance. The inference time is shown in Ta-

ble 9. From the results, we can safely draw a conclusion

that our model can achieve comparable, sometime even bet-

ter performance while be able to reduce the inference time

to 35ms.

Distance d = 4.2m d = 2.6m d = 1.0m

Teacher 99.13

SKDim 73.20 93.95 98.03

DCR[24] 73.30 93.50 98.00

DMDS[26] 62.70 70.70 65.50

MDS[25] 60.30 66.00 69.50

Table 8. Face recognition rates of different models at different dis-

tances on SCFace. ’Teacher’ represents the 64-layer resnet teacher

model. ’SKDim’ represents the student model trained with our im-

proved knowledge distillation scheme.

Model Inference Time

SKDim 35ms
DCR[24] 132ms

Table 9. Inference time of our model and DCR model on CPU.

SKDim represents the student model trained with our improved

knowledge distillation scheme.

The reason behind the better performance may be con-

cluded as two aspects:

(1) Better teacher model: the 64-layer teacher model has

higher performance on HR face images, i.e. d = 1.0m
SCFace, comparing with DCR and other approaches (Ta-

ble 8). The larger scale network structure and superior

Sphereface loss function are the major reasons for teacher‘s

better performance. Thanks to the improved knowledge

distillation scheme, our student model‘s performance only

drops slightly comparing to teacher model on the high res-

olution image sets.

(2) The improved knowledge distillation scheme only

use LR augmented train set for student model, this forces

the student model’s output to be the same with teacher’s

output regardless of the LR variance. This can transfer the

teacher’s better representation capability to student model

no matter the input is LR or HR, which increases student

model‘s performance w.r.t. LR image.

4. Conclusion

In this paper, we proposed an improved knowledge dis-

tillation scheme for fast LR-FR model training. To avoid the

time-consuming training process of teacher model, we keep

the teacher model’s train set unchanged, while only adding

LR augmentation to the student model’s train set. This can

allow us to avoid the updating of teacher model’s weights

and still be able to train a LR-FR student model, which will

reduce the time cost of the whole training process. Only

adding LR augmentation to the student model’s train set

will increase the distribution discrepancy between teacher

and student’s training inputs. This discrepancy can be re-

duced by minimizing MK-MMD loss function. The results

show that our method can reduce the training time by about

5 times while preserving the student model’s accuracy. Our

student model can achieve 3× acceleration comparing to

teacher model and only takes 35ms to run on a CPU. The

improved scheme can also be generalized to other data vari-

ance, such as illumination, pose, etc.
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