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Abstract

Face recognition has advanced considerably with the

availability of large-scale labeled datasets. However, how

to further improve the performance with the easily accessi-

ble unlabeled dataset remains a challenge. In this paper,

we propose the novel Unknown Identity Rejection (UIR)

loss to utilize the unlabeled data. We categorize identi-

ties in unconstrained environment into the known set and

the unknown set. The former corresponds to the identities

that appear in the labeled training dataset while the lat-

ter is its complementary set. Besides training the model to

accurately classify the known identities, we also force the

model to reject unknown identities provided by the unla-

beled dataset via our proposed UIR loss. In order to ‘reject’

faces of unknown identities, centers of the known identities

are forced to keep enough margin from centers of unknown

identities which are assumed to be approximated by the fea-

tures of their samples. By this means, the discriminativeness

of the face representations can be enhanced. Experimental

results demonstrate that our approach can provide obvious

performance improvement by utilizing the unlabeled data.

1. Introduction

In recent years, face recognition has been extensively

studied and applied both in academic and industrial commu-

nities. This is largely imputed to the high capacity of convo-

lutional neural networks (CNNs) for learning discriminative

representations in image classification. Current state-of-

the-art approaches for face identification, verification and

clustering mainly take the advantage of the learned face rep-

resentation, which is obtained by mapping the face image

into a lower dimensional embedding through a deep con-

volutional network. Generally speaking, there exist three

factors that affect the discriminativeness of the learned face

representation. The first one is the network structure. Well-

designed backbone networks (e.g. [11] [24]) provide high

capacity for learning the features. Secondly, the loss func-

tion (e.g. [27] [5] [26]) for training also plays an important

role, determining how images are mapped into the feature

space. Last but not least is the dataset deployed for train-

ing the network. Empirically a large-scale dataset of good

quality (e.g. [10] [4] [17]) can sometimes compensate the

withdraws of the backbone network and the loss function.

Big data has been considered one of the most significant

factors in boosting the performance of deep CNN models.

In recent years, several large-scale face recognition

datasets have been made available to the public (e.g. [4]

[19] [10] [29] [13]). Among them, MS-Celeb-1M [10] is

currently the largest static image dataset, which contains

more than 10K identities and 10m of images. The recently

released iQIYI-VID [17] contains 5K identities and 600K

video clips. However, the process of annotating these large-

scale datasets is complicated. On the other hand, obtain-

ing unlabeled face images is much easier. For example,

a web crawler equipped with a face detector can produce

large amounts of in-the-wild face images. Meanwhile, face

recognition is not a closed-set classification problem. The

number of identities in an unconstrained environment can

be unlimited and hundreds of thousands of identities within

an annotated dataset can not represent the vast variety of

identities in the world. Supplementing the number of iden-

tities with unlabeled data for learning discriminative rep-

resentation is thus worth considering. Therefore, how to

leverage these unlabeled data has become a challenging is-

sue in face recognition.

Although this problem seems reminiscent to traditional

semi-supervised learning (SSL), utilizing unlabeled data for

learning discriminative face representation differs from tra-

ditional SSL approaches due to the following two chal-

lenges. Firstly, web-crawled face images can suffer severely

from long-tailed distribution. Given an identity, there may
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Figure 1: Geometrical interpretation of the normalized fea-

tures. (a): Features and their centers (W1 and W2) of

two identities that have enough margin between them. (b):

When a sample with an unknown identity (Wu) is encoun-

tered, the decision margins become insufficient. Therefore

extra space must be allocated to the sample with unknown

identity, rendering the centers distributed as sparsely as pos-

sible. Best viewed in color.

exist only one corresponding image. Therefore, assigning

pseudo-labels by clustering the unlabeled images may not

provide accurate results. Meanwhile, the overlap between

the identities of labeled and unlabeled dataset is never guar-

anteed. Identities of both the labeled and unlabeled datasets

usually have very small overlap. Hence, label propagation

[32] can not be applied here.

To overcome the aforementioned challenges, we probe

into approaches for leveraging unlabeled data. Currently, a

discriminative feature extractor is usually trained in a clas-

sification manner. Given face images distributed in many

different identities, a CNN model is trained to classify an

image into its corresponding identity. However, face recog-

nition is an open-set problem [3] [9]. Under unconstrained

environment, there exist many identities that the classifica-

tion model did not encounter when it was trained (i.e. iden-

tities that are not included in the training dataset, whose

centers therefore are not represented by the row vectors of

the last fully-connected layer). Ideally at query time, when

such a sample appears, the probabilities produced by the

classifier (usually a fully-connected layer followed by the

softmax function) should be as small as possible so that this

face can be rejected by any of the categories by a predefined

threshold.

Based on this principle, we designed a loss function,

called unknown identity rejection (UIR) loss function to uti-

lize the unlabeled data. We categorize the identities in an

open environment into two sets. The first set is the identi-

ties that appear in the labeled dataset and represented in the

weights of the fully-connected layer, denoted as S . We call

them the known identities. Another set is the identities that

do not exist in the labeled dataset, denoted as U . We call

them unknown identities. Note that S ∩ U = ∅. Given the

fact that the unlabeled dataset has negligible identity over-

lap with the labeled dataset, we approximate the set U with

our unlabeled dataset. We feed these data into the classifica-

tion model and train the model to ‘reject’ them. In this man-

ner, the unlabeled data can be utilized. From the perspec-

tive of geometrical interpretation, rejecting unknown iden-

tities can also enlarge the inter-class distance. The feature

of an ‘unknown’ sample approximates the center of its own

identity, therefore extra space must be allocated to its corre-

sponding identity, rendering the distribution of the centers

sparse (see Fig. 1).

In general, the main contribution of this paper is the

novel Unknown Identity Rejection loss function and its ad-

vantages can be summarized as follows:

a). It can utilize the unlabeled dataset to implicitly in-

crease the number of classes in the classification task hence

approximating the real-world distribution of identities in the

open environment. This not only enhances the discrinina-

tiveness of the learned representation but also benefits the

performance of open-set recognition.

b). It is robust to unbalanced distribution over identities

(e.g. long-tailed distribution [31]). Even many of the iden-

tities have only one or two images in the unlabeled dataset,

our proposed UIR loss is still able to utilize them without

attenuating the performance.

c). UIR loss is easy to implement and can be applied to

various tasks without any modification.

2. Related Work

2.1. Deep Face Recognition

The advancement in face recogintion in recent years has

been focusing on designing various loss functions to op-

timize the distance metrics among the extraced face fea-

tures. These works can be classified into two categories.

One category is loss functions that optimize the Euclidean

distance. Examples include contrastive loss [23], range loss

[31], triplet loss [22], center loss [27] and marginal loss [8].

They cluster samples from the same identity by minimizing

the intra-class Euclidean distances. The other category is

cosine-similarity-based loss functions, e.g. L-Softmax [16],

SphereFace [15], additive cosine margin [26], ArcFace [5].

These works studied different approaches to compress the

angular margin of samples from the same identity.

However, all these proposed loss functions rely heavily

on annotations. Labels in the training dataset serve as super-

visory signals to distinguish between intra-class and inter-

class samples. Our proposed UIR loss function, on the other

hand, is constructed without the label information, while at

the same time is able to compress the decision boundary of

diverse identities.



2.2. Semi-supervised Deep Learning

To our knowledge, we classify semi-supervised deep

learning approaches into two categories. The first category

is consistency-based approaches and the second category

relies heavily on clustering.

Consistency-based approaches: These algorithms are

based on the fact that, given an object, one should draw the

same conclusion of what it is when viewing it from differ-

ent perspectives. Examples of this approaches include Π-

model and Temporal Ensembling [14], Mean Teacher [25],

Deep Co-Training [20], etc. They construct different en-

semble models (either explicit or implicit) to provide differ-

ent ‘views’ for the unlabeled data and optimize various ver-

sions of consistency loss functions to utilize the unlabeled

data. The drawback of these approaches is that the imple-

mentation can be very complicated when handling members

of the overall ensemble model, especially when the ensem-

ble model is constructed implicitly.

Clustering-based approaches: Clustering is a very

commonly used unsupervised learning approach. When

handling unlabeled data, one can first cluster these data, as-

signing fake labels to these data and then use these pseudo-

labels to train a classification model. Works like [30] [18]

have applied clustering to deep face recognition. However,

as mentioned above, web-crawled unlabeled data face the

problem of diverse identity distribution. When there exists

only one image within a class, the clustering result can be

highly unreliable. In the aforementioned two works, the

experiments were done by separating the off-the-shelf an-

notated dataset into two parts and treat one of them as unla-

beled. This practice has actually avoided facing the problem

of diverse identity distribution. Moreover, when the amount

of unlabeled data is huge, clustering so many images can be

extremely computationally expensive. Based on these, we

do not take it for granted that clustering is a good solution

to semi-supervised face recognition.

3. Approach

In this section, we first illustrate the formulation of our

proposed loss function, and then we discuss some details on

the implementation.

3.1. Unknown Identity Rejection Loss Function

Given a CNN classification model, we denote the out-

put (softmax-normalized) of the last fully-connected layer

as p1, p2, ..., pn, where n is the number of classes. Gener-

ally the classification result is i such that i = argmax
i

pi.

p1, p2, ..., pn indicate how close a sample is to the centers of

different identities. However, given a sample x with an un-

known identity, since this identity has never appeared in the

closed-set classification and belongs to none of the classes,

ideally all p1, p2, ..., pn must be as small as possible so that

it can be rejected by a predefined threshold. Based on the

fact that p1, p2, ..., pn satisfy p1 + p2 + ... + pn = 1, we

formulate the problem as:

minimize p1, p2, ..., pn

s.t.

n∑

i=1

pi = 1

This is a multi-objective constrained minimization prob-

lem, which does not have one single solution. However,

based on the fact that this identity does not belong to any of

the known classes, we hope that the probability distribution

(p1, p2, ..., pn) does not bias to any of the classes. Hence, a

plausible solution to this problem can be formulated as

p1 = p2 = ... = pn =
1

n

We notice that this solution is also the optima for the

problem

maximize p1 · p2 · ... · pn

s.t.

n∑

i=1

pi = 1

A maximization objective cannot serve as a loss func-

tion. Therefore, we convert the objective to the following

minimization form to construct the unknown identity rejec-

tion loss function (denoted as Luir):

Luir = −
n∑

i=1

log(pi)

During the training process, the model is trained in a

semi-supervised manner. We combine the fully-supervised

loss function (denoted as Lsup) and our proposed semi-

supervised loss function by weighted sum:

Loverall = Lsup + w · Luir,

where w is a hyperparameter and we found w = 0.1 is the

best setup for our experiments through trial and error.

An intuitive perspective for observing the feature vec-

tors and the weights in the fully-connected layer is to treat

them as points distributed in the high dimensional space.

It is assumed that features of the same class cluster around

the corresponding center which is one of the row vectors

in the fully-connected layer’s weight matrix. Therefore, to

enhance the discriminativeness of the model, centers for

different identities must be distributed as sparsely as pos-

sible. When a model is well trained, for any of the sam-

ples, its feature vector is assumed to be able to approxi-

mate its center. Given a sample with an unknown iden-

tity, we denote its normalized feature vector as fu, which
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Figure 2: Overview of the semi-supervised training strategy. A data batch contains both labeled and unlabeled samples. Their

features are extracted via a backbone network. Then the predictions of labeled and unlabeled data are used to separately

calculate the fully-supervised loss and the UIR loss. The total loss is a weighted sum of the two losses. Best viewed in color.

should approximate the center of its corresponding identity.

We denote the weight of the fully-connected layer as W

and the centers inside as W1,W2, ...,Wn. Then minimizing

fu · W1, fu · W2, ..., fu · Wn can be considered as enlarg-

ing the distance between the center of fu and the centers of

known identities. Hence it seems that the number of classes

has been increased and extra space must be allocated to the

new classes (represented by unlabeled samples), forcing the

known classes to distribute more sparsely (see Fig. 1).

3.2. Implementation Details

Numberical stability: For a classification model that is

capable of classifying a large amount of categories, since

the activation values after softmax normalization sum up to

1, there can exist very small pi’s. This can result in nu-

merical unstability when calculating log(pi) for the UIR

loss function. To overcome this problem, we applied one

more softmax layer after these activation values. Since soft-

max will not change the relative magnitude relationships

between activation values, this operation can avoid unstable

computations while at the same time keep the classification

result unchanged. We also found that this operation helps

the model better converge to the optima.

Identity overlap between labeled and unlabeled

datasets: Our assumption of the unlabeled dataset is that

it contains no identities that appear in the labeled dataset.

However, identity overlap can be inevitable, albeit it occurs

infrequently. To remove the noisy data, we first use the face

recognition model trained in a fully-supervised manner to

do inference on these unlabeled data. We discard the im-

ages whose maximum activation value from the last fully

connected layer is above a predefined threshold (0.9). We

try to ensure that our assumption gets satisfied to the utmost

extent.

Training strategy: Since our goal of utilizing the un-

labeled data is to further improve the performance of the

trained model, there are two steps within our training pro-

cess. Firstly we train the model in a fully-supervised man-

ner until it converges. Then we deploy the UIR loss function

along with the fully supervised loss function, training in a

semi-supervised manner (See Fig. 2). When we conduct

the semi-supervised training, we keep the overall batch size

unchanged, but decreasing the number of labeled images

within a single batch to its 3/4 and supplement the rest 1/4

with unlabeled data. The two losses are calculated sepa-

rately on these two portions of the batch data.

4. Experiments

4.1. Datasets and Networks

Training datasets: We use the currently largest pub-

lic face recognition dataset MS-Celeb-1M [10] to serve as

our labeled dataset. It contains about 100K identities and

over 10M images. However, the original MS-Celeb-1M

dataset suffers seriously from long-tailed data and noisy

data. Therefore, we instead deploy MS1MV2 [7], a refined

version of MS-Celeb-1M. The refined dataset contains over

90K identities and 5 million images. To construct the un-

labeled dataset, we crawled large amounts of face images

from the Internet. After removing the face images with low

quality or identity overlap with the labeled dataset, we ob-

tained over 4.9 million images. All the face images are de-

tected and preprocessed with RetinaFace [7] for the training

process.

Testing Datasets: We evaluate the effectiveness of our

proposed approach on three large-scale benchmarks: IJB-C

[28], iQIYI-VID [17] and Trillion-Pairs [2]. For the IJB-

C dataset, we validate the performance of our models on



Table 1: Performance (%) of ResNet50 on the IJB-C benchmark.

TAR@FAR

Methods model 10−6 10−5 10−4 10−3 10−2 10−1

N0F0
baseline 89.96 94.26 96.02 97.38 98.32 99.06

ours 90.41 94.33 96.03 97.38 98.30 99.08

N0F1
baseline 90.53 94.42 96.03 97.38 98.30 99.12

ours 90.91 94.57 96.27 97.47 98.38 99.12

N1F0
baseline 88.78 93.75 95.79 97.29 98.29 99.06

ours 88.81 93.86 95.78 97.27 98.27 99.07

N1F1
baseline 89.13 93.92 95.99 97.39 98.40 99.11

ours 89.53 94.16 96.04 97.38 98.35 99.10

Table 2: Performance (%) of ResNet100 on the IJB-C benchmark.

TAR@FAR

Methods model 10−6 10−5 10−4 10−3 10−2 10−1

N0F0
baseline 89.66 94.70 96.57 97.64 98.43 99.03

ours 91.46 94.96 96.70 97.68 98.42 99.06

N0F1
baseline 89.07 94.80 96.77 97.78 98.48 99.11

ours 91.36 95.12 96.90 97.81 98.46 99.12

N1F0
baseline 88.82 94.42 96.47 97.60 98.40 99.02

ours 90.35 94.60 96.55 97.65 98.38 99.04

N1F1
baseline 88.42 94.45 96.66 97.71 98.43 99.07

ours 90.22 94.67 96.76 97.73 98.44 99.11

Table 3: Performance (%) of MobileNet-V1 on the IJB-C benchmark.

TAR@FAR

Methods model 10−6 10−5 10−4 10−3 10−2 10−1

N0F0
baseline 84.18 89.09 92.83 95.54 97.53 98.93

ours 84.69 89.50 92.95 95.55 97.49 98.93

N0F1
baseline 84.61 89.44 93.16 95.87 97.69 99.03

ours 85.24 89.96 93.32 95.85 97.70 98.99

N1F0
baseline 81.44 87.34 92.06 95.17 97.45 98.93

ours 82.03 88.07 92.26 95.20 97.44 98.94

N1F1
baseline 80.02 87.63 92.27 95.53 97.59 99.04

ours 82.21 88.40 92.56 95.59 97.63 99.05

Table 4: Performance (%) of MobileNet-V2 on the IJB-C benchmark.

TAR@FAR

Methods model 10−6 10−5 10−4 10−3 10−2 10−1

N0F0
baseline 79.56 87.61 92.28 95.36 97.42 98.85

ours 79.77 87.96 92.36 95.44 97.44 98.85

N0F1
baseline 79.85 88.03 92.68 95.63 97.53 98.91

ours 80.98 88.48 92.71 95.66 97.53 98.89

N1F0
baseline 76.88 85.32 91.33 95.09 97.32 98.80

ours 76.98 86.09 91.56 95.17 97.37 98.80

N1F1
baseline 75.66 85.91 91.70 95.35 97.45 98.90

ours 76.51 86.38 91.93 95.37 97.53 98.89

the 1:1 verification task, which contains 23,124 templates

along with 19,557 genuine matches and 15,639,932 impos-

tor matches. We report the True Accept Ratios (TAR) at

different False Accept Ratios (FAR). For iQIYI-VID, we

test the performance on the large-scale video test set, which

includes 200K videos of 10K identities. We follow the



protocol described in [6] to assess the performance. The

Trillion-Pairs dataset contains 1.58m images from Flickr as

the gallery set and 274K images as the probe set. Again, we

follow the protocol described in [6] for evaluation.

Networks: We deploy four popular networks to serve

as the feature extractor, namely ResNet50, ResNet100 [11],

MobileNet-V1 [12] and MobileNet-V2 [21]. The dimen-

sionality of the feature is set to 512. Our implementation

is based on the open source repository InsightFace [1]. For

the supervised loss function, we use the state-of-the-art Ar-

cFace loss function [5]. We normalize the weigths in the

last fully-connected layer and the features. Features are fur-

ther rescaled to an amplitude of 64. These are the common

practice in previous works [5] [15].

4.2. Performance Evaluation

We trained a total of 8 models for performance evalu-

ation. For each of the four backbone networks, we train

two models, namely the baseline model trained in a fully-

supervised manner and our improved model further trained

with unlabeled data by our proposed approach.

We firstly tested our models on the IJB-C benchmark.

To construct the face representation, we explored two ap-

proaches for the postprocess of the extracted features,

namely feature normalization and image flip, denoted as

N and F . Specifically for flip, we extract features from

both the original and horizontally-flipped face images and

aggregate the features by element-wise summation. There-

fore, the combination of whether to apply feature normal-

ization or image flip results in four methods for construct-

ing the final representation (denoted as N0F0, N0F1, N1F0

and N1F1).

From Tab. 1 2 3 4 we can notice obvious improvement

on the IJB-C benchmark under different backbone networks

and different forms of face representation. Specifically for

the ResNet100 network, we compare our performance with

those reported in the work [7], which deployed the same

labeled dataset, supervised loss function and backbone net-

work. At an FAR of 10−6, we achieved a TAR of 89.66%

with the vanilla features and a TAR of 91.36% with flip,

both outperforming the reported 88.73% and 89.12% in [7].

We also provide our experimental results on the Trillion-

Pairs benchmark and the iQIYI-VID benckmark separately

in Tab. 5 and Tab. 6. Here we construct the final repre-

sentation with both flip and feature normalization. Com-

pared to the baseline models, again we witness a consider-

able amount of performance gain. This indicates that fea-

tures learned via our approach is indeed more discrimina-

tive than those from the baseline model. Our approach does

enhanced the discriminativeness by utilizing the unlabeled

data.

Table 5: Performance Evaluation (%) on the TrillionPairs

benchmark.

TAP@FAR=10−4

ResNet50
baseline 90.041

ours 90.525

ResNet100
baseline 92.955

ours 93.325

MobileNet-V1
baseline 70.040

ours 71.176

MobileNet-V2
baseline 68.699

ours 69.326

Table 6: Performance Evaluation (%) on the iQIYI-VID

benchmark.

TAP@FAR=10−8

ResNet50
baseline 60.228

ours 62.041

ResNet100
baseline 65.139

ours 67.214

MobileNet-V1
baseline 35.161

ours 37.656

MobileNet-V2
baseline 28.780

ours 29.808

4.3. Further Analysis on Classification

Sparsity of the center distribution: To improve the dis-

criminativeness, we train the model to reject those faces

with unknown identities. This process renders the distri-

bution of the centers in the last fully-connected layer sparse

(see Fig. 1) so that samples with unknown idnetities will not

be misclassified to any of the known identities. To illustrate

this effect, we further probe into the sparsity of the distri-

bution of the centers. We extract the row vectors (which

represent centers of the corresponding identities) from the

last fully-connected layer and calculate the pairwise dis-

tance between them. The distance metric we used here is

the cosine distance:

dcos(�u,�v) = 1−
�u · �v

‖�u‖ · ‖�v‖

Tab. 8 lists the average pairwise distances between cen-

ters. Note that the more discriminative the representation is,

the larger the pairwise distances are (see the baseline col-

umn of Tab. 8). We can notice that by further training the

model with unlabeled dataset, the ours model has a larger

pairwise distance between centers, indicating that the dis-

tribution of the samples are distributed more sparsely.

UIR loss can improve the open-set recognition perfor-

mance: Open set recognition categorize objects into two

sets: the known set and the unknown set. It aims at accu-

rately recognizing objects that belongs to the known set and



Table 7: Cumulative distribution of the activation values (softmax-normalized) from the ‘unknown’ face images.

Cumulative distribution (%) of the Activation Values

<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9

ResNet50
baseline 0.57 9.30 23.88 38.52 51.42 62.42 72.60 81.56 89.23

ours 0.63 10.06 25.74 40.50 53.77 64.46 74.43 82.32 89.90

ResNet100
baseline 0.59 8.02 22.27 36.60 49.41 59.65 68.35 77.03 85.30

ours 1.28 11.42 26.55 41.54 53.64 63.56 72.23 79.91 87.51

MobileNet-V1
baseline 0.52 9.74 25.80 41.33 54.52 65.69 74.87 83.15 90.32

ours 0.68 9.71 26.21 42.25 56.03 66.50 75.42 83.28 90.82

MobileNet-V2
baseline 0.60 9.02 24.29 40.37 53.83 65.21 74.46 82.27 90.02

ours 0.75 9.61 25.18 41.00 54.88 65.90 74.63 82.71 90.38

Table 8: Average pairwise distances between centers (row

vectors of the last fully connected layer). This distance in-

dicates how sparse these centers are distributed. The more

discriminative the representations are, the larger the average

pairwise distance is.

Average Pairwise Distance

Networks baseline ours

MobileNet-V2 0.998089 0.998109

MobileNet-V1 0.998765 0.998784

ResNet50 1.000923 1.000937

ResNet100 1.001652 1.001657

rejecting those belonging to the unknown set. Specifically

for face recognition, it is also an open-set problem where

‘unknown’ identities must be rejected. A common practice

for this problem is to threshold the maximal activation value

which serves as a confidence score with a predefined value.

However sometimes samples with unknown identities can

also produce large activation values. Here we show that

our UIR loss function can improve the open-set recognition

performance by suppressing the activation values to some

extent.

To illustrate this, we collected extra 10K face images

whose identities are not included in our training set and

preprocessed them in the same way as we processed our

unlabeled training data. We fed them into the networks and

collect statistics from their final activation values for clas-

sification. Tab. 7 shows the cumulative distribution of the

maximal activation values over the 10K images. It lists the

amount of activations of the 10K face images with unknown

identities under various thresholds. We can notice that un-

der a certain threshold, the percentage of the activation val-

ues for our improved model is always higher than that of the

baseline model. This shows the improvement on the ability

of rejecting unknown samples brought by our UIR loss.

We also list the average values for these activations in

Tab. 9. We can notice an obvious drop of the average ac-

tivation value in our improved model compared with the

baseline. This also indicates that our UIR loss function can

Table 9: Average activation values (softmax-normalized) of

the 10K face images with unknown identities. The lower

the value is, the better.

Average Activation Value

Networks baseline ours

ResNet50 0.5226 0.5098

ResNet100 0.5454 0.5141

MobileNet-V1 0.5054 0.5002

MobileNet-V2 0.5115 0.5064

improve the open-set recognition performance to some ex-

tent.

5. Conclusion

In this paper, we proposed a novel Unknown Identity Re-

jection (UIR) loss that utilizes unlabeled data to further en-

hance the discriminativeness of the learned feature repre-

sentation. We provide both mathematical explanation and

geometrical interpretation of our proposed UIR loss. More-

over, extensive experiments have illustrated the effective-

ness of out approach. UIR loss is simple and easy to be

deployed to many other frameworks. Since most of the face

representation learning tasks are based on the classification

of different identities, we believe that our approach is also

possible to be applied to other classification-based tasks.

For future work, we will conduct experiments on other

classification-based deep learning tasks, such as person re-

identification, fine-grained image recognition, etc. More-

over, based on the improvement on open-set face recog-

nition, we will also probe into possible means to further

suppress the activation values of the images with unknown

categories. We hope that more potentials can be further ex-

ploited from our proposed approach.
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