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Abstract

In this article we present 5G-CAGE, an ongoing project

aimed to deploy a city safety solution that enables moni-

toring and analytics of video streams collected from dis-

tributed sources of a Smart City. Unlike current proposals

based on inflexible architectures or limited networks, 5G-

CAGE leverages 5G’s high throughput and low latency, as

well as its enhanced dynamism and adaptability with ad-

vanced virtualization-based technologies. In this context,

5G-CAGE defines a virtualization-enabled solution called

City Object Detection (CODet), which allows recognizing

interest objects in safety related situations, such as vehicles

(e.g. license plates or brands), obstacles in emergency set-

tings, or human faces recognition, to name a few. It can

process multiple streams collected from fixed and moving

cameras used as a distributed visual sensing system, ade-

quately combining image processing and computer vision

algorithms in a virtualized ecosystem. This paper presents

initial tests in the specific task of locating and recogniz-

ing vehicle license plates, where the CODet virtualized so-

lution has been successfully integrated and tested in the

5GINFIRE platform, an EU-funded project which provides

a playground wherein new components, architectures, and

APIs may be tried and proposed before being ported to 5G

networks.

1. Introduction

Existing computer vision solutions in public safety sce-

narios are currently implemented to operate with TCP/IP

protocols running on dedicated wired or wireless networks.

Nevertheless, porting these solutions to take advantage of

the upcoming 5G technologies is an open issue currently un-

der investigation, whose relevant proposed approaches are

still being tested in lab environments [12]. The evolved,

faster, and more robust 5G networks can enable more con-

nected devices and autonomous systems and applications,

thus opening a whole new set of opportunities for the Pub-

lic Safety industry. Video surveillance and new genera-

tion Public Safety Networks (PSN) are intrinsically tied to-

gether, as the number of distributed devices such as static

or moving cameras, recorders, and wearable visual sen-

sors keeps growing in the Smart Cities, while technologies

for automatic (non-human driven) scene interpretation con-

stantly progress. Thus, with 5G the amount of data poten-

tially available for public safety applications can tremen-

dously increase, mostly in terms of video and audio stream-

ing, location information, and context-awareness. This

huge mass of data produced from heterogeneous sources

opens clear opportunities to be used in a more coordinated

and autonomous way. Computer vision, big data analytics,

and machine learning algorithms can then be used to gener-

ate machine-based knowledge which can drastically speed

up response times for public safety interventions (e.g. fires

and crimes).

In a Smart City context, leveraging on the expected large

number of 5G connected citizens (with multiple personal

devices) and IoT sensors, PSN and applications need to

evolve towards more flexible and scalable approaches by

following the Network Functions Virtualization (NFV) and

Software-Defined Networking (SDN) principles [16]. In

fact, SDN/NFV platforms for 5G networks allow dynamic

and fully virtualized deployment, automated orchestration,

and configuration of specialized virtual functions imple-

menting scene monitoring, video/audio transcoding, data

analysis, and object detection. Existing approaches on the

public safety management still lack the flexibility and dy-

namism to efficiently manage PSN in highly dynamic sce-

narios, as the ones related to Smart Cities [6].

Our main paper contribution in this context is the 5G-



CAGE1 proposal, which is able to deploy and test a PSN

solution that, analyzing video streams collected from het-

erogeneous and distributed sources in a Smart City, aims

to provide advanced features for early detection of specific

objects related to city safety. To this end, 5G-CAGE offers

a new Virtual Network Function (VNF), called City Ob-

ject Detection (CODet), which accesses live video streams

available from all sorts of moving cameras and visual sen-

sors connected to the network edge, either in city or automo-

tive environments, and provides monitoring and analysis of

features of such video streams. This virtualization-enabled

city safety solution is able to recognize and detect given ob-

jects such as vehicle license plates and brands, obstacles in

emergency settings, and human faces recognition, to name

a few. As a first testing standpoint, the CODet VNF has

been integrated and tested successfully in the 5GINFIRE

virtualized platform [1], which is initially devoted to detect

vehicle license plates for city safety purposes, e.g. police

staff interested in certain vehicle license plates of interest.

The remainder of the paper is structured as follows. Sec-

tion 2 references previous works on 5G computing and

computer vision techniques relevant to the targeted PSN

scenario. Section 3 describes in thorough detail the 5G-

CAGE deployment, while Section 4 details the experimen-

tal results. Finally, conclusions and future works are drawn

in Section 5.

2. Related work

It is a well-known fact that the number of visual sen-

sors connected to the network has grown exponentially

in the last years [2]. With 5G, the amount of available

data can increase tremendously, mostly in terms of video

and audio streaming, location information, and context-

awareness [14]. Big data analytics and machine learning al-

gorithms can be used to exploit these large amounts of data

but, in order to scale the computation adequately, advanced

techniques for distributing the processing work must be

adopted to avoid overload and achieve maximum efficiency,

following the so called edge computing paradigm [15].

In the more specific field of computer vision tasks, which

can be considered of interest in public safety, one of the

key applications is Automatic License Plate Recognition

(ALPR). This problem is essentially considered as solved

if the input image has adequate resolution and lighting, and

good results can be obtained with a classical approach of

three stages: i) performing some kind of feature extraction

in the input image using edges, morphological operations,

contours, local binary patterns, etc.; ii) using a binary clas-

sifier to detect candidate plate positions in the input image;

1The acronym stands for 5G-enabled Context and situational

Awareness detection with machine learninG techniques of city objects in

Experimental vertical instances.

and iii) using some well-trained Optical Character Recog-

nition (OCR) on the set of countries plate styles [4].

Not only plates [8], but also cars themselves [17] can also

be detected and located with end-to-end trained Convolu-

tional Neural Networks (CNN) in more challenging scenar-

ios under less constraints, though these kinds of techniques

need more computational power. Long Short-Term Mem-

ory (LSTM) networks –a kind of Recurrent Neural Net-

work (RNN)– have also been used for this purpose [13].

Other works have also been dedicated to even classify ve-

hicle brands and models from images [5, 9]. More tradi-

tional approaches based on ad-hoc feature extraction (e.g.

Histograms of Gradients, HoG) have also been successfully

applied to efficient vehicle detection and location [7]. Most

of these techniques can also be trained and adapted to detect

and classify other type of objects which can be of interest in

a PSN scenario, such as bikes, people, signals, road obsta-

cles, and so on.

Solutions based on computer vision and machine learn-

ing algorithms such as the ones outlined above can be en-

forced and exercised in multiple and diverse application ar-

eas. For example, in Smart City scenarios a plethora of so-

lutions for vehicle classification, human behavior, vehicu-

lar traffic flow, crowd analysis, and emergency situations,

among others, have been widely proposed [10, 11]. How-

ever, few of these works benefit from the advantages of up-

coming 5G networks, such as high throughput and com-

putational power resources that can enable advanced deep

learning techniques (e.g. CNNs and RNNs) with high ac-

curate classification results. It should be noted that a hu-

man behavior recognition solution for Smart Cities was re-

cently presented in [3], where the problems and challenges

for future Smart City applications that want to leverage

5G capabilities were also discussed. In spite of these new

works, none of them, to the best of our knowledge, leverage

the new advanced virtualization-based technologies such as

NFV as a main key driver of 5G.

Despite the advances made by the works discussed

above, the application of computer vision and machine

learning techniques on virtualization platforms is still a

great challenge to explore in more detail, in order to decou-

ple the monitoring capabilities in collecting video streams

by distributed sources from the analytics phases deployed

in virtualized environments.

3. Proposed 5G-CAGE deployment

This section outlines the 5G-CAGE deployment in which

the CODet VNF is embedded, by detailing the implementa-

tion and its main operational workflow, as well as the 5GIN-

FIRE platform used for exercising the 5G-CAGE proposal

in a virtualized environment.



3.1. 5GINFIRE platform

In the context of upcoming 5G advanced communica-

tion networks, the existence of a complex ecosystem made

of multiple physically interconnected devices implies that

they will have to address issues such as flexibility, scala-

bility, and extensibility. 5GINFIRE is an open and exten-

sible 5G NFV-based ecosystem that lays down the founda-

tions for instantiation of fully softwarized architectures and

deployments of vertical industries and experimenting with

them [14]. It therefore provides an experimental playground

where new components, architecture designs, vertical de-

ployments and APIs may be tried and proposed before they

are ported to more mainstream 5G networks.

Following experimental principles, for the 5G-CAGE

deployment the CODet city safety solution is instantiated as

a new NFV Network Service into 5GINFIRE Experimental

Vertical Instances (EVI), which are simply integrated ap-

plications designed for a specific purpose. As shown in

Figure 1, the 5GINFIRE platform provides multiple video

streams produced by heterogeneous sources, namely mov-

ing cameras of citizens (e.g. smartphones), connected car

cameras, traffic light cameras and, in general, any available

city video surveillance and visual sensing source. Our new

CODet VNF is devoted to localize sought vehicle license

plates in this context as an initial proof-of-concept imple-

mentation, and is integrated with other existing video re-

lated 5GINFIRE VNFs such as the ones providing video

cache, storage, and transcoding functionalities.

Figure 1. Integration in the 5GINFIRE infrastructure.

Of course, computing resources are required for the op-

eration of the proposed CODet automated detection and

recognition services. And, obviously, the more advanced

the techniques, the more computing resources are needed.

Instances of the designed CODet VNF are virtualized as

replicable images, and subsequently executed using the

standard OpenStack VIM platform2. On top of it, the NFV

2https://www.openstack.org

orchestration is carried out by the Open Source MANO3

(management and orchestration module for the automa-

tion of the deployment, configuration, coordination, and

lifecycle management of the whole process), which is in-

cluded in the 5GINFIRE platform. This module is provided

by the global 5G Telefonica Open Innovation Laboratory

(5TONIC)4.

Once the CODet VNF instances are deployed in the

5GINFIRE experiment virtualized infrastructure, they can

be dynamically configured to access specific video streams

available from video transcoders and/or video caches, thus

enabling the automated image/video analysis techniques to

detect specific sought objects.

3.2. CODet typical lifecycle

The lifecycle of a CODet VNF deployment and subse-

quent exploitation is made up of the following steps:

1. The CODet VNF is deployed in the 5GINFIRE infras-

tructure, which allows connecting/accessing to other

VNFs of the platform.

2. Video streams from selected moving sources (e.g.

Smart City bikers, connected cars, or surveillance cam-

eras) are made available in video caches either directly

or after video transcoding.

3. An external end-user (for example, a policeman) ac-

cesses the CODet VNF to configure the detection of

a specific object (in our case, a given vehicle license

plate number) in live video streams.

4. The CODet VNF executes the needed computer vision

algorithms over the available video streams to detect

the given required city object (a specific plate in our

initial proof-of-concept).

5. If detected, the CODet VNF generates an alert to the

end-user consisting of an image of the found object, as

well as some additional information such as the cor-

responding timestamp and location of the detection,

capturing device details, and so on, depending on the

availability of such data from the corresponding video

source.

Within an actual 5G network, the ideal case would

be to deploy the CODet VNF (together with caches and

transcoders) at edge locations, which means to use NFV

Points-of-Presence (PoP) as close as possible to the video

sources. This would allow reducing latency in the video

streams transfer, while optimizing the performances of the

early detection system itself.

3https://osm.etsi.org
4https://www.5tonic.org







successfully detected, all the relevant information would be

displayed by the web application as shown in Figure 4: orig-

inal text entered as license plate; GPS coordinates of the

physical location where the detection took place; embedded

web frame showing this location on the map; detection date

and time; confidence of the result; and the image of the li-

cense plate, but cropped from the original complete frame.

The image is cropped to just the interest region around the

plate in order to preserve privacy issues, since its utility is

just to allow the end-user to check visually if the result re-

ally corresponds to the license plate sought.

Figure 4. License plate results in detection.

Finally, all this information is also saved in a central

database which is later accessible through a REST API in

JSON format. Observe as well that the system also keeps

continually providing some relevant performance statistics,

such as the global processing time per input image or the

time taken to process each individual plate, among others.

4. Experimental results

This section outlines the experimental results obtained

when executing the CODet VNF, both in local tests for ini-

tial testing and in the 5GINFIRE platform to get more real

results in the IT-Av Automotive Environment testbed. Both

types of tests are detailed in the following two subsections,

where the experimental results depicted in Figure 5 will be

presented.

4.1. Results in local laboratory tests

We first conducted a local test by running the Open-

ALPR based CODet implementation in a real (i.e. not vir-

tualized) machine whose main processor was an Intel 3.7

GHz CPU with 6 cores and hyperthreading (for a total of up

to 12 real threads running in parallel). The associated per-

formance results are shown in Figure 5(a). In it, we show

the processing time stacked for each execution in which at

least one license plate has been found in the image. Each in-

dividual bar in the graph illustrates the processing time for

each detected plate, as well as an extra time (in green) that,

as can be clearly seen, mostly corresponds to the detection

phase. It is worth noting, therefore, that the computational

load for input images which do not contain any readable

plate tends to be a bit lower, but not that much, because the

detection stage (and not the posterior OCR interpretation of

the detected plates, shown in red in the figure) is the one

that takes more computational load. The yellow process-

ing times shown for some input frames stand for (sporadic)

false plate positives that can appear in some cases due to

adverse environmental conditions.

The average total processing time is 141ms, which may

seem a bit high (as it allows only for ∼7 processed frames

per second on average). The reason is that the input image

in this test had a (relatively high) resolution of 1920x1080

pixels, a fact that logically makes the detection stage more

involved (127ms on average). In comparison, the aver-

age processing time for interpreting each detected plate is

just 13ms, clearly much lower. In certain cases, the detec-

tion time can even reach slightly higher values, of up to

140∼160ms. These peaks tend to be caused by input frames

eventually containing regions that, though lately correctly

discarded, were initially considered as license plates, mak-

ing the detection phase longer than usual.

It is finally worth mentioning that the image resolution,

which has a very important impact on the obtained per-

formance, imposes a logical trade-off between the time re-

quired by the ALPR process and its accuracy: a plate image

needs to have a certain minimum of pixels to be detected

and correctly interpreted by the APLR process, whereas in-

creasing the pixels of the image will make the detection

phase slower and could cause a variable quantity of input

frames to be lost.

As of the average confidence obtained by the overall

plate recognition system is 87.78% in our tests, which how-

ever can be considered as acceptable. A result can be con-

sidered good in case the license plate has been detected with

an OCR confidence over ∼80%. This however not necessar-

ily means that all detections are correct, as some of the high

confidence values sometimes correspond to wrong results.

However, it is obviously better to consider these images

rather than discarding them directly, configuring the CODet

VNF to allow for some uncertainty in the detected plates so

as to allow the end-user to check these potential matches vi-

sually in the corresponding cropped images shown in Fig-

ure 4. This makes more sense than simply discarding the

plate, which could eventually lead to lose an important (i.e.

searched for) one. Of course, it is also possible for a given

plate to be repeated in the detection output, which can also

be used to reinforce the confidence on the obtained result.



✵

✹✵

✽✵

✶�✵

✶✁✵

�✵✵

�✂✄☎✆✝✝✞✟✠ ✡✞☛✆

❚
☞✌
✍
✎✌
✏✑

❙✒☎☎✆✝✝✓✒✔ ✆✕✆☎✒✡✞✄✟✝

✖ ✗ ✼ ✖✘ ✖✙ ✖✚ ✖✛ ✷✷ ✷✜ ✷✢ ✙✖ ✙✗ ✙✼ ✗✘ ✗✙ ✗✚ ✗✛ ✜✷ ✜✜

✵

✶✵✵

�✵✵

✸✵✵

✹✵✵

✺✵✵

✁✵✵

✣✵✵

❚
☞✌
✍
✎✌
✏✑

✖ ✜ ✛ ✖✙ ✖✼ ✷✖ ✷✜ ✷✛ ✙✙ ✙✼ ✗✖ ✗✜ ✗✛ ✜✙ ✜✼ ✚✘

♣✔✤✡✆✥✦

♣✔✤✡✆✥✧

✆✕✡✂✤

Figure 5. Performance results in processing time when executing the CODet implementation (a) in local laboratory tests and (b) the

5GINFIRE virtualized platform.

4.2. Results in the 5GINFIRE platform

A vehicle with an OBU, a Raspberry Pi attached to the

In-Car Node Processor and its connected camera (see Fig-

ure 3) was taken out at the IT-Av Automotive Environment

testbed in order to execute this second set of tests. The vehi-

cle went around a circuit with 6 known a priori Portuguese

license plates. The camera resolution was 1280x720 to re-

duce the amount of network traffic, which obviously con-

ditioned the distance at which license plates were analyzed

correctly.

Worse results than the ones obtained in the local lab tests

of the previous section were obtained, which was expected

for several reasons. The first one is that the VNFs deployed

in the 5GINFIRE platform runs on much less powerful vir-

tual CPUs running at just 2 GHz, having only 1 core with

no hyperthreading. A second handicap comes from network

issues (low bandwidth and high volume of traffic) due to

the current network infrastructure used by the IT-Av Au-

tomotive Environment testbed, which, as specified above,

conditioned the image resolution and compression level of

input streams. Besides, the relatively lower performance of

the virtualized machine made the OpenALPR system dis-

card several real time frames while processing each one, a

fact that, together with the diminished resolution, reduced

significatively the number of processed frames where the

license plates were seen closely enough.

Still, platform results in terms of performance are still

acceptable, as can be seen in Figure 5(b). These are quali-

tatively similar to the results obtained from tests conducted

in our local lab, formerly shown in Figure 5(a), though with

processing times of all stages approximately multiplied by

3 (for a total of ∼473ms on average). The detection phase is

still the most time-consuming phase and maintains its time

spikes depending on the complexity of the input frame.

Regarding accuracy, the total number of 6 different li-

cense plates on the controlled experiment was known in ad-

vance, so that would be the final number of different results

expected in case everything worked properly. But the in-

put video stream performed a total of 60 detections, since

in the route the same plates appeared in different frames.

The confidence was of 84.11% on average, a bit lower than

in the local results, but still consistent with the experiment

conditions.

Finally, Figure 6 shows the amount of network traffic

required by the CODet VNF to gather video streams from

the In-Car Node Processor of the vehicle used in the ex-

periment. The plot displays only the transmission rate of

the data plane network interface, by using the Speedometer

tool which measures and displays the rate of data across a

network connection.

We observe in Figure 6 a sustained data rate of around

121 KB/s on average for the particular conditions of our ex-

periment. But, of course, this will be very dependent on as-

pects (available bandwidth, image resolution, compression

codecs, overall traffic, etc.) that will clearly vary a lot in the

upcoming large scale 5G scenarios. In any case, it is clear

that the volume of traffic will be an important issue to con-

sider in real automotive scenarios with a greater number of

vehicles in motion. However, we believe that this potential

traffic congestion could be mitigated by decoupling some

of the CODet functions and transferring them, when possi-

ble, to each vehicle’s OBU, trying to reduce the amount of

traffic in video stream delivery.



Figure 6. Network traffic performance (in KB/s) displayed by the Speedometer tool.

5. Conclusion and future works

In this work we have described 5G-CAGE, a project

aimed to implement a proof-of-concept distributed vehicle

license plate recognition system using a heterogeneity of

input video stream sources as the underlying monitoring in-

frastructure, taking advantage of the upcoming 5G networks

in a Smart City ecosystem. Our approach leverages on the

NFV paradigm to scale adequately using the available vir-

tualized computing infrastructure located on both the edge

and/or the network core, converging with other vertical ser-

vices such as video caching or transcoding already present

in those infrastructures. In this context, our specifically de-

veloped CODet VNF has been deployed as a new asset in

the existing 5GINFIRE platform, which ensures that it will

be easy to reuse and adopt in future experiments and plat-

form enhancements.

Our experimental results obtained in a real vehicular en-

vironment confirm the viability of the proposal, encourag-

ing us to explore a number of lines of future work. First,

it will be a priority to test the developed virtualized envi-

ronment in a more realistic 5G scenario, without the current

limitations imposed by the current platform hardware. The

influence on both the computational performance and the

accuracy of key aspects such as the specific placement of

the moving cameras in realistic environments (from cars to

static webcams or surveillance cameras) and the quality het-

erogeneity of the images obtained from the different sources

should also be further studied. Finally, adding wider de-

tection functions that might be linked to PSN applications,

such as vehicle brands or human faces recognition, can be

also an attractive scenario in the near future.
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Gonçalves, W. R. Schwartz, and D. Menotti. A robust real-

time automatic license plate recognition based on the YOLO

detector. In 2018 International Joint Conference on Neural

Networks, pages 1–10, 2018. 2

[9] B. Li, Y. Dong, Z. Wen, M. Liu, L. Yang, and M. Song. A

machine learning-based framework for analyzing car brand

styling. Advances in Mechanical Engineering, 10(7):1–17,

2018. 2

[10] M. Magrini, D. Moroni, G. Palazzese, G. Pieri, G. Leone,

and O. Salvetti. Computer vision on embedded sensors for

traffic flow monitoring. In 18th International Conference on

Intelligent Transportation Systems, pages 161–166, 2015. 2

[11] N. Mohammad, S. Muhammad, A. Bashar, and M. A. Khan.

Formal analysis of human-assisted smart city emergency ser-

vices. IEEE Access, 7:60376–60388, 2019. 2

[12] U. Raza, M. Usman, M. R. Asghar, I. S. Ansari, and

F. Granelli. Integrating public safety networks to 5G: Appli-



cations and standards. Enabling 5G Communication Systems

to Support Vertical Industries, pages 233–251, 2019. 1

[13] P. Shivakumara, D. Tang, M. Asadzadehkaljahi, T. Lu,

U. Pal, and M. H. Anisi. CNN-RNN based method for li-

cense plate recognition. CAAI Transactions on Intelligence

Technology, 3(3):169–175, 2018. 2

[14] A. P. Silva, C. Tranoris, S. Denazis, S. Sargento, J. Pereira,

M. Lus, R. Moreira, F. Silva, I. Vidal, B. Nogales, R. Neja-

bati, and D. Simeonidou. 5GinFIRE: An end-to-end open5G

vertical network function ecosystem. Ad Hoc Networks,

93:101895, 2019. 2, 3

[15] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili. Col-

laborative mobile edge computing in 5G networks: New

paradigms, scenarios, and challenges. IEEE Communica-

tions Magazine, 55(4):54–61, 2017. 2

[16] J. Wang, B. He, J. Wang, and T. Li. Intelligent VNFs

selection based on traffic identification in vehicular cloud

networks. IEEE Transactions on Vehicular Technology,

68(5):4140–4147, 2019. 1

[17] Y. Zhou, H. Nejati, T. Do, N. Cheung, and L. Cheah. Image-

based vehicle analysis using deep neural network: A system-

atic study. In 2016 IEEE International Conference on Digital

Signal Processing, pages 276–280, 2016. 2


