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Abstract

In recent years, the task of segmenting foreground ob-

jects from background in a video, i.e. video object segmen-

tation (VOS), has received considerable attention. In this

paper, we propose a single end-to-end trainable deep neu-

ral network, convolutional gated recurrent Mask-RCNN, for

tackling the semi-supervised VOS task. We take advantage

of both the instance segmentation network (Mask-RCNN)

and the visual memory module (Conv-GRU) to tackle the

VOS task. The instance segmentation network predicts

masks for instances, while the visual memory module learns

to selectively propagate information for multiple instances

simultaneously, which handles the appearance change, the

variation of scale and pose and the occlusions between ob-

jects. After offline and online training under purely instance

segmentation losses, our approach is able to achieve sat-

isfactory results without any post-processing or synthetic

video data augmentation. Experimental results on DAVIS

2016 dataset and DAVIS 2017 dataset have demonstrated

the effectiveness of our method for video object segmenta-

tion task.

1. Introduction

Video object segmentation (VOS) aims at segmenting

foreground objects from background in a video with coher-

ent object identities. Such visual object tracking task serves

for many applications including video analysis and editing,

robotics and autonomous cars. Compared to the video ob-

ject tracking task in bounding box level, this task is more

challenging as pixel level segmentation is more detailed de-

scription of an object.

The VOS task is defined as a semi-supervised problem

if ground truth annotations are given for the first several

frames. It is otherwise an unsupervised problem if no anno-

tation is provided. The ground truth annotations are masks

that mark the objects that need to be tracked through the

whole video. In our work, we focus on semi-supervised

video object segmentation task, where the ground truth an-

notations are provided only for the first frame.

There are several challenges that make VOS a difficult

task. First, both the appearance of the target objects and

the background surroundings may change significantly over

time. Second, there could be a large pose and scale varia-

tion over time. Third, there could be occlusions between

different objects, which hinder the performance of track-

ing. Examples of the above three challenges are shown in

Fig. 1. A notable and challenging dataset for the VOS task is

the DAVIS 2016 dataset [43], which is designed for single-

object video segmentation. Later the DAVIS 2017[44] is

brought out focusing on segmentation of multiple video ob-

jects. Both of the datasets are provided with mask annota-

tions of extremely high accuracy.

Most of the current methods for the VOS task, such as

VPN [26], MSK [42] and RGMP [54], are based on the

pixel level mask propagation. However, those methods fail

to give a coherent label within an instance. In this paper, we

introduce a single end-to-end trainable network to predict

masks on instance level, namely the convolutional gated

recurrent Mask-RCNN. It integrates instance segmentation

network (Mask-RCNN [18]) with visual memory module

(Conv-GRU [1]). Instance segmentation network is de-

signed for foreground object segmentation, which is ex-

tended with visual memory for foreground object segmen-

tation in a video. The incorporated visual memory helps to

propagate information across frames to handle the appear-

ance change, the pose and scale variation and the occlusions

between objects. Our network gives a coherent label to a

detected instance and assigns one label to only one detected

instance. The model structure is shown in Fig. 2.

Our Contributions are:

• We propose a novel convolutional gated recurrent

Mask-RCNN to learn instance propagation (LIP) for

video object segmentation (VOS) task. Our model si-

multaneously segments all the target objects in the im-

ages.

• We design a single end-to-end trainable network for

VOS task, enabling both mask propagation in the long

term and bottom-up path augmentation.

• A strategy to successfully train the model for VOS task



Figure 1. Example predictions by our method from DAVIS [44, 43] dataset. Top row: Parkour sequence. An example of large appearance

change over time. One every 20 frames shown of 100 in total. Middle row: Drift-straight sequence. An example of large scale and pose

variation over time. One every 10 frames shown of 50 in total. Bottom row: Dogs-jump sequence. An example of occlusions between

objects. One every 5 frames shown of first 20.

has been brought out. All the training processes are

guided by the instance segmentation losses only.

2. Related work

In this section, we will discuss some relevant work.

Object detectors. Object detection starts with box level

prediction and has a great improvement over the years.

Single-stage detectors [45, 46, 36, 14, 33] have faster run-

ning speed while two-stage networks [15, 47] are more ac-

curate in general. Later, Mask-RCNN [18] merges object

detection with semantic segmentation by combining Faster-

RCNN [47] and FCN [37], which form a conceptually sim-

ple, flexible yet effective network for instance segmentation

task. Mask-RCNN network is suitable for instance segmen-

tation on static images, but lacks the ability for temporal

inference. Our work is to further extend Mask-RCNN with

Conv-GRU module to solve video object segmentation task.

Recurrent neural networks (RNNs). RNNs [22, 48] are

widely used for tasks with sequential data, such as image

captioning [28], image generation [17] and speech recog-

nition [16]. The key for RNNs is the hidden state, which

selectively accumulates information from current input and

the previous hidden state over time. However, RNN has

its limitation as it fails to propagate information for a long

sequence due to the problem of gradient vanishing or ex-

plosion in training [20, 40]. Two RNN variants, LSTM [21]

and GRU [8] are more effective for the long term predic-

tion by taking advantage of gating mechanism. To fur-

ther encode spatial information, they are extended to Conv-

LSTM [56] and Conv-GRU [1] respectively and have been

used for video prediction [13] and action recognition [1].

Methods for VOS. Conv-GRU has already been used for

video object segmentation. It serves as visual memory

in [51] and has been proved to boost the performance for

VOS task. However, their model performs binary seman-

tic segmentation only, which is not suitable for video object

segmentation task with multiple objects.

VPN [26], MSK [42] and RGMP [54] learn to propa-

gate mask for the VOS task. VPN utilizes learnable bilat-

eral filters to achieve video-adaptive information propaga-

tion across frames. MSK learns to utilize both current frame

and mask estimation from the previous frame for mask pre-

diction. RGMP utilizes the first frame and mask as refer-

ence for instant information propagation besides the usage

of current frame and previous mask estimation. Both MSK

and RGMP achieve good results, but they can only propa-

gate information for instances one by one.

Specially, OSVOS [3], OSVOS+ [39] and OnAVOS [52]

tackle video object segmentation from static images,

achieving temporal consistency as a by-product. They learn

a general object segmentation model from image segmen-

tation datasets and transfer the knowledge for video object

segmentation. They all rely on additional post processing

for better segmentation result. OnAVOS further applies on-

line adaptation to continuously fine-tune the model, which

is very time consuming.

[29] explores the benefits from in-domain training data

synthesis with the labelled frames of the test sequences.

[54] synthesizes video training data from static image

dataset to add to limited video training samples. [25,

50] explore fast prediction without online training through

matching based method. CINM [2] achieves good predic-

tion by spatial-temporal post-processing based on results

from OSVOS [3]. To handle the problem of long term oc-

clusion, [31, 30] apply re-identification network to retrieve

the missing objects, which complements their mask prop-

agation methods. Recently, there are still many researches

focusing on single-object video segmentation [55, 23, 9],



Figure 2. Overall model structure. The backbone network distills useful features from each input image. The features are then sent to

Conv-GRU module (visual memory) for feature propagation. The output features from Conv-GRU module are utilized by region proposal

network for proposal generation. Multiple heads finally take the ROI aligned features for video object segmentation. An example output

is shown on the right, including bounding boxes, id predictions and object segments. The class of an instance is named by video sequence

name plus object index.

which are not easily transformed for video segmentation of

multiple objects. MaskRNN [24] is another method for in-

stance level segmentation, but it only predicts for one in-

stance at a time. The best results are achieved by ensemble

of multiple specialized networks. PReMVOS [38] takes the

1st place of recent DAVIS2018 semi-supervised VOS task

by utilizing complex pipeline with multiple specialized net-

works trained on multiple datasets.

3. Method

In this section, we first introduce the structure of our con-

volutional gated recurrent Mask-RCNN, which extracts and

propagates information for multiple objects in a video. It

is comprised of mainly three parts. They are the feature

extraction backbone, the visual memory module and the

prediction heads. The backbone network extracts features

that are forwarded to visual memory module. The visual

memory module then selectively remembers the new in-

put features and forgets the old hidden states. On top of

Conv-GRU, region proposal network (RPN), bounding box

regression head, id classification head and mask segmenta-

tion head are constructed to solve the VOS task. The whole

network is end-to-end trainable under the guidance of in-

stance segmentation losses.

3.1. Mask-RCNN

Mask-RCNN [18] is one of the most popular frame-

work designed for instance segmentation task. It is used

for instance-wise object detection, classification and mask

segmentation, which makes it naturally suitable for multiple

video objects segmentation. Roles of different components

in Mask-RCNN directly shift to fit VOS task as illustrated

below.

Backbone: The backbone network still serves to ex-

tract features from images, but more focused on generating

useful features adaptively for gates of Conv-GRU module.

ResNet101-FPN [19, 32] with group normalization [53] is

used as our backbone network. Detailed structure is shown

in Fig.3.

RPN: Mask-RCNN is known as a two stage instance

segmentation network. Bounding boxes of general objects

are proposed in the first stage, while classes and masks are

predicted instance-wisely in the second stage. Such two

stage framework adopts the same philosophy as the train-

ing stages of OSVOS [3]. For OSVOS, the network first

learns to segment binary mask for general objects in a class-

agnostic manner. Then it learns to segment specific objects

during online training. In Mask-RCNN, RPN learns to re-

ject background objects and to propose foreground objects

in the first stage, which is also class-agnostic. It is in the

second stage that classes and masks of different objects are

determined.

Bounding box regression head: This branch is used to

refine the bounding box proposals. Each predicted box con-

tains one object. The boxes serve to separate different ob-

jects in an image.

Classification head: This branch is used to assign the

object a correct class label. However, class type is unknown

for VOS task. Instead, different objects are associated with

different ids, which need to be predicted coherently in a

video sequence. Classification branch is naturally trans-

formed into an id classification branch.

Mask segmentation head: This branch is used to ex-

tract a mask for each foreground object in the image, which

is the main target of VOS task.

Clearly, for the components in Mask-RCNN, there is a

direct responsibility mapping from instance segmentation

task to VOS task.

3.2. Convolutional gated recurrent unit

One difficulty for video object segmentation is the prob-

lem of long term dependency. The ground truth is pro-

vided only for the first frame, but the objects still need to

be predicted after tens or hundreds of frames based on the
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Figure 3. Model structure details. The left black dashed box shows the ResNet101-FPN backbone structure. The right black dashed box

shows the Conv-GRU module. Our network brings bottom-up path augmentation for output features in Conv-GRU module. The augmented

output features are used for both RPN and the prediction heads. All 5 layers are utilized for multi-level RPN, but only 4 bottom layers are

used for multi-level ROIs.

ground truth from the first frame. The appearance of differ-

ent objects in the videos may vary greatly and the objects

sometimes get partially or even completely occluded, which

makes coherent prediction more difficult.

In order to handle the above problem, we utilize the con-

volutional gated recurrent unit, serving as a visual memory

to handle appearance morphing and occlusion. The mem-

ory module learns to selectively propagate the memorized

features and to merge them with the newly observed ones.

The key role for Conv-GRU module is to maintain a good

feature over time for prediction of region proposal, bound-

ing box regression, id classification and mask segmentation.

Compared to the instance segmentation task, where each

training batch is comprised of multiple randomly sampled

images, the batch in temporal training has less variation

as consecutive images from one sequence are highly cor-

related. This is similar to the problem of small batch size.

To relieve such effect, we further replace the bias term in

Conv-GRU with the group normalization (GN) layer, which

are proved to give consistent performance across different

batch sizes [53]:

zt = σ(GN(Whz ∗ ht−1 +Wxz ∗ xt)) (1a)

rt = σ(GN(Whr ∗ ht−1 +Wxr ∗ xt)) (1b)

ĥt = Φ(GN(Wh ∗ (rt ⊙ ht−1) +Wx ∗ xt)) (1c)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt, (1d)

where xt is the input feature of time t, ht is the hidden state

of time t. zt, rt are update gate and reset gate respectively.

W are convolutional filter parameters. σ and Φ are sigmoid

function and tanh function respectively.∗ and ⊙ denote the

convolution operation and element-wise multiplication re-

spectively.

For each level of the feature pyramid network [32]

(FPN), we create a corresponding Conv-GRU layer. The

layers at different levels learn different transition functions

for the hidden states. As bottom up path augmentation has

been proved to be useful for instance segmentation [35],

we easily achieve it by down-sampling and addition opera-

tion with output features from multi-level Conv-GRU mod-

ule. The structure is shown in Fig. 3. The output features

after path augmentation are used for RPN and prediction

heads. Conv-GRU module is deliberately directly inserted

after backbone network. In this way, information for both

region proposal and instance prediction can be propagated

through time.

3.3. Online inference

As our model predicts mask for each unique instance,

there naturally exist constraints for prediction.

One maximum constraint. For each instance, there

should be at most one object detected. This constraint is

achieved by selecting highest id prediction score.

Location continuity constraint. If an instance is de-

tected in the previous frame with high enough id prediction

score, the location of the current detection should not be far

from its previous location. To achieve this constraint, we

suppress the prediction for the instance, whose boxes iou

between consecutive frames is low.

As probability for id prediction decays over time, we fur-

ther apply a very light weighted fine-tuning process for the

last linear layer of the id head during online prediction. If

there exists a target object detected with a high enough id

prediction score, its predicted bounding box is set as ground

truth for fine-tuning the id head only. By saving and reusing

intermediate tensors, the speed for fine-tuning is fast.

4. Training the network

In this section, we will describe our training strategy in

detail. The training modality for video object segmentation

can be divided into offline training and online training [29,

42]. During offline training, the model is trained with the
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Figure 4. Shortcut in prediction head. In order to let output from

Conv-GRU module have more direct influence towards final pre-

diction, we add a shortcut connection between ROI aligned feature

and head logits by simple addition operation.

training set only. During online training, the model is fine-

tuned with the first frame from the test set. As the class

types of the test set are not known and objects may never be

seen during offline training, online fine-tuning is necessary

to help the model to generalize better for test set.

Our network needs both offline training and online train-

ing. During offline training stage, our network learns the

features to differentiate all the object instances and learns

to predict class-agnostic boxes and masks. During online

training stage, our network is fine-tuned to differentiate ob-

jects for each test sequence and trained with boxes and

masks in a class-specific manner.

4.1. Class-agnostic offline training

To provide our model with as much generality as possi-

ble, we apply class-agnostic training for bounding box and

mask through the whole offline training process. Offline

training for our model can be divided into two steps. First,

our model is trained with instance segmentation dataset.

This step is to provide our model with general object de-

tection ability. Then, we train the model with video dataset

to learn to propagate information over time for video object

segmentation.

4.1.1 Pre-train on instance segmentation dataset

Pre-training on additional dataset is a common practice [52,

3, 39, 30]. We initialize our model by pre-training on Mi-

crosoft COCO dataset [34]. Ms-COCO dataset has been

widely used for object detection task. It targets common

objects in context with annotations including boxes, classes

and masks. By first training on Ms-COCO dataset, our

model learns to extract useful features for general object

detection. As the training is on static images, we set hidden

states to be zeros without update for Conv-GRU module.

After this step, our model gains general region proposal

ability, general bounding box prediction ability and general

object segmentation ability. Our model also learns to dif-

ferentiate general objects by classes defined on Ms-COCO

dataset.

copy

class-agnostic class-specific online 
fine-tuned

fine-tune

Figure 5. Transforming class-agnostic weights to class-specific

weights. During online fine-tuning, the class-agnostic bounding

box and mask predictions are altered to class-specific. The rect-

angles are weights in the last linear layer of bbox head or the last

convolutional layer of mask head. The grey color marks weights

for background and the blue for foreground. Foreground weights

are copied for each foreground instance to be fine-tuned uniquely.

4.1.2 Fine-tune on VOS dataset

In this stage, we train all the modules except the backbone

network. By fine-tuning our model on video object segmen-

tation dataset, the Conv-GRU module learns to tune its gates

to best propagate information. It should be noted that the

class number has changed as the video object segmentation

dataset does not share the class definition with instance seg-

mentation dataset. Instead, we replace the last linear layer

right before softmax layer in the class prediction head with

a new one, which now predicts the ids in the dataset. The

class prediction head turns into an id prediction head.

The network is trained purely with instance segmenta-

tion losses. The different losses guide our model to have

different abilities. The mask loss helps our model to propa-

gate mask segmentation. The losses from id head and bbox

head help our model to propagate information differently

for each instance. Although the mask head and bbox head

are trained in a class-agnostic manner, the id head and bbox

head provide a chance to learn to propagate class-specific

information.

To facilitate the information propagation, we further add

a shortcut connection between the ROI aligned feature and

the head logits as shown in Fig. 4.

4.2. Class-specific online fine-tuning

As the instances in test sequences are not the same as

in training sequences, the last linear layer in id head needs

to be re-initialized and trained to differentiate instances in

the current sequence. We replace the last linear layer in the

same way as in section 4.1.2. We also adopt focal loss [33]

for id head to balance the training for multiple instances.

During online fine-tuning, the parameters in backbone

network and Conv-GRU module are frozen to keep the

learned propagation property. All other parts are fine-tuned

for the new objects in test image. The class-agnostic pre-

diction in mask head and bbox head are altered to be class-

specific in order to have less competition for different in-

stances. The process is illustrated in Fig. 5.



Figure 6. Qualitative results comparison of OnAVOS [52], OSVOS [3], FAVOS [5], OSMN [57] and LIP on DAVIS 2016 dataset [43]. The

index of each image in a sequence is shown on the top.

5. Experiments

To test how our model learns to propagate instance in-

formation in a long term sequence, we evaluate our model

on both DAVIS 2016 [43] and DAVIS 2017 [44] datasets,

which contain video sequences of high quality and accu-

rate mask annotations of objects. DAVIS 2016 dataset fo-

cuses on single-object video segmentation. It has 30 train-

ing and 20 validation videos. As an extension to DAVIS

2016 dataset, DAVIS 2017 dataset brings 30 more video se-

quences for training set and 10 more for validation set. It

also provides another 30 sequences for testing. As DAVIS

2017 dataset focuses on multiple object segmentation, it has

been re-annotated for each individual target object.

5.1. Implementation Details

Our model is implemented with PyTorch [41] library. A

Nvidia Titan X (Pascal) GPU with 12GB memory is used

for experiments. Details of convolutional gated recurrent

Mask-RCNN are shown below.

Model structure. Our backbone network is a ResNet101-

FPN [19, 32] with group normalization [53]. ResNet101 is

initialized with weights pre-trained on Imagenet [10]. In

Conv-GRU module, the channel number of each hidden

state is 256. Kernels of all convolutions in Conv-GRU are

of size 3 × 3 with 256 filters. We apply multi-level RPN

and multi-level ROIs for the network 1. The ROI aligned

feature resolution is 28 × 28 for mask head, and 7 × 7 for

bbox head and id head. In all cases, we adopt image centric

training [15].

1See supplementary material for more details.

Pre-train on Ms-COCO dataset. For each image, we ran-

domly scale it to have its shorter side equal to 1 of 11 dif-

ferent lengths: 640, 608, 576, 544, 512, 480, 448, 416, 384,

352, 320 and its longer size to be maximumly 1333. We

sample 512 ROIs with foreground-to-background ratio 1:3.

RPN adopts 5 aspect ratios (0.2, 0.5, 1, 2, 5) and 5 scales

(322, 642, 1282, 2562, 5122). The model is trained with

stochastic gradient descent (SGD) for 270K iterations. We

fix input hidden states to be zeros for Conv-GRU module,

weight decay 0.0001, momentum 0.9. The initial learning

rate is 0.02 and dropped by a factor of 10 at 210K and 250K.

In the following cases, the configuration is kept the same

unless otherwise stated.

Fine-tune on DAVIS dataset. We generate ground truth

(GT) bounding boxes from GT masks of DAVIS dataset.

The width and height of the boxes are expanded by 10% to

prevent incomplete mask prediction caused by inaccurate

box prediction. The sequences are randomly shuffled and

scaled as in pre-training stage. As there is no causal reason-

ing in the task, we reverse each sequence for more training

data. The backbone network is not trained to prevent over-

fitting for DAVIS dataset. 128 ROIs are sampled from each

image. The model is trained for 12K iterations with an ini-

tial learning rate of 0.002 and dropped by a factor of 10 at

8K and 10K. Due to the GPU memory limitation, it only al-

lows to train with maximum recurrence of 4. We extend the

length to 8 by stopping gradient back propagation between

4th and 5th frames.

Online fine-tuning. The network is fine-tuned with the GT

of the first image for maximally 1000 iterations with early

stopping. If the loss for a prediction head is smaller than an



Method OnAVOS FAVOS OSVOS LIP(Ours) MSK PML SFL OSMN CTN VPN

J&F Mean↑ 85.5 81.0 80.2 78.5 77.6 77.4 76.1 73.5 71.4 67.9

J Mean↑ 86.1 82.4 79.8 78.0 79.7 75.5 76.1 74.0 73.5 70.2

J Recall↑ 96.1 96.5 93.6 88.6 93.1 89.6 90.6 87.6 87.4 82.3

J Decay↓ 5.2 4.5 14.9 0.05 8.9 8.5 12.1 9.0 15.6 12.4

F Mean↑ 84.9 79.5 80.6 79.0 75.4 79.3 76.0 72.9 69.3 65.5

F Recall↑ 89.7 89.4 92.6 86.8 87.1 93.4 85.5 84.0 79.6 69.0

F Decay↓ 5.8 5.5 15.0 0.06 9.0 7.8 10.4 10.6 12.9 14.4

Table 1. Results on DAVIS 2016 [43]. Left column shows different metrics. Up-arrow↑ means the higher the better. Down-arrow↓ means

the lower the better. Methods are in descent order according to J&F mean from left to right.

Figure 7. Qualitative results comparison of OnAVOS [52], OSVOS [3], FAVOS [5], OSMN [57] and LIP on DAVIS 2017 dataset [44]. The

index of each image in a sequence is shown on the top.

empirically chosen threshold, the loss is ignored. If all the

losses are ignored, we stop the training 1. We also stop the

loss back-propagation in id head at its last fully connected

layer, so the features to distinguish ids will not be affected

by the newly initialized head. Focal loss [33] is used to

balance id training 1.

Online inference. For each id, we select 10 detected ob-

jects that have id score above 0.2 and apply one maximum

constraint to select the best candidate. For the location con-

tinuity constraint, we suppress the object instance that has

IOU lower than 0.3 with the detection from previous frame

if the previous id score is higher than 0.4. To relieve the id

score from decaying over time, we apply fine-tuning for id

head for maximally 500 iterations with early stopping 1.

5.2. Compare with other methods

We compare our method with some state-of-the-art

methods on both the DAVIS 2016 benchmark and the

DAVIS 2017 benchmark 2 by using standard evaluation

metrics J and F [43, 44]. The evaluation on DAVIS 2016

benchmark shows the performance for single-object video

segmentation, while the evaluation on DAVIS 2017 bench-

mark shows the performance for video segmentation of

multiple objects. It should be noted that our method does

not apply any post-processing, but has been pre-trained on

Ms-COCO dataset [34]. Among the several top methods,

we remove CINM [2] and RGMP [54] to avoid unfair com-

parison. CINM [2] is built upon OSVOS [3] and further

adopts a refinement CNN and MRF for post-processing.

The better initial prediction, the better its result. RGMP [54]

cannot be successfully trained with static image dataset and

DAVIS dataset alone for mask propagation. It has created

a large number of synthetic video training data from Pascal

VOC [11, 12], ECSSD [49] and MSRA10K [7] datasets. It

is not fair to compare with RGMP as the quality of video

training data are not the same and cannot be controlled. For

2https://davischallenge.org/



Method OnAVOS LIP(Ours) OSVOS FAVOS OSMN

J&F Mean↑ 65.4 61.1 60.3 58.2 54.8

J Mean↑ 61.6 59.0 56.6 54.6 52.5

J Recall↑ 67.4 69.0 63.8 61.1 60.9

J Decay↓ 27.9 16.0 26.1 14.1 21.5

F Mean↑ 69.1 63.2 63.9 61.8 57.1

F Recall↑ 75.4 72.6 73.8 72.3 66.1

F Decay↓ 26.6 20.1 27.0 18.0 24.3

Table 2. Results on DAVIS 2017 [44]. Left column shows different metrics. Up-arrow↑ means the higher the better. Down-arrow↓ means

the lower the better. Methods are in descent order according to J&F mean from left to right.

DAVIS 2017 benchmark, we exclude PReMVOS [38] and

OSVOS+ [39] as they both use multiple specialized net-

works in multiple processes to refine their results.

For DAVIS 2016, we compare with OnAVOS [52],

FAVOS [5], OSVOS [3], MSK [42], PML [4], SFL [6],

OSMN [57], CTN [27] and VPN [26]. We detect mul-

tiple objects and evaluate in the way for single-object.

Our method ranks the 4th among the compared meth-

ods as shown in Table 1. It should be noted that our

results are better than FAVOS and OSVOS if they are

without post-processing. FAVOS achieves J mean and F

mean of 77.9% and 76% respectively without tracker and

CRF [5]. OSVOS achieves J mean and F mean of 77.4%

and 78.1% respectively without boundary snapping post-

processing [3]. OnAVOS achieves J mean of 82.8% with-

out CRF post-processing [52]. In addition, we compare

our method with another visual memory (Conv-GRU) based

VOS method [51]. Both of the methods are trained with ad-

ditional image dataset, but we achieve 4.5% gain in J&F

mean without optical flow and CRF post-processing.

For DAVIS 2017, we compare LIP with OnAVOS [52],

OSVOS [3], FAVOS [5] and OSMN [57] as shown in Ta-

ble 2. LIP has relatively better performance as it is better

at separating different instances and keeping coherent label

within an instance.

Qualitative results on DAVIS 2016 and DAVIS 2017 are

shown in Fig. 6 and Fig. 7, respectively 3. Fig. 6 shows

that our LIP can track single object well on instance level

and preserve good mask extent for an instance. OSMN [57]

and OSVOS [3] fail to keep the mask within an instance. In

Fig. 7, it is obvious that the information of an instance in our

LIP helps segment multiple objects. All the other methods

either assign one label to multiple objects or assign multiple

labels to one object, while LIP handles those issues better.

5.3. Ablation study

We perform ablation study on DAVIS 2017 dataset by

comparing the model with and without dynamic visual

memory as shown in Table 3. We first evaluate the static

3More quantitative results and qualitative examples on DAVIS 2016

and DAVIS 2017 are shown in the supplementary material.

model by fixing input hidden states (ht−1) to zeros for

Conv-GRU module. This is Mask-RCNN with static Conv-

GRU module and bottom up path augmentation. Fine-

tuning on video dataset is done by training with static im-

ages only. The J&F mean score is 59.2%, which is 1 per-

cent lower than the performance of OSVOS [3] with post-

processing. The full version of our model is trained with dy-

namic video images. It reaches the best J&F mean score of

61.1%. The dynamic visual memory contributes as it learns

to propagate masks. The static model lacks such property

to handle large appearance change, as shown in Fig. 8.

Figure 8. A qualitative example of prediction with (top row) and

without (bottom row) dynamic visual memory.

Mask-RCNN Conv-GRU J Mean F Mean J&F Mean

� input zero 56.9 61.5 59.2

hidden states

� � 59.0 63.2 61.1

Table 3. Ablation study results on DAVIS 2017 dataset.

6. Conclusions

We have presented a single end-to-end trainable neural

network for video segmentation of multiple objects. We ex-

tend the powerful instance segmentation network with vi-

sual memory for inference ability across time. Such de-

sign serves as an instance segmentation based baseline for

VOS task. The newly designed convolutional gated recur-

rent Mask-RCNN learns to extract and propagate informa-

tion for multiple instances simultaneously and achieves the

state of the art results.
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Taixé, D. Cremers, and L. Van Gool. Video object segmen-

tation without temporal information. TPAMI, 2018.

[40] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of

training recurrent neural networks. In ICML, pages 1310–

1318, 2013.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017.

[42] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and

A.Sorkine-Hornung. Learning video object segmentation

from static images. In CVPR, 2017.

[43] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In CVPR, 2016.

[44] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-
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