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Abstract

Few-shot learning (FSL) for action recognition is a chal-

lenging task of recognizing novel action categories which

are represented by few instances in the training data. In a

more generalized FSL setting (G-FSL), both seen as well

as novel action categories need to be recognized. Con-

ventional classifiers suffer due to inadequate data in FSL

setting and inherent bias towards seen action categories

in G-FSL setting. In this paper, we address this problem

by proposing a novel ProtoGAN framework which synthe-

sizes additional examples for novel categories by condi-

tioning a conditional generative adversarial network with

class prototype vectors. These class prototype vectors are

learnt using a Class Prototype Transfer Network (CPTN)

from examples of seen categories. Our synthesized exam-

ples for a novel class are semantically similar to real ex-

amples belonging to that class and is used to train a model

exhibiting better generalization towards novel classes. We

support our claim by performing extensive experiments on

three datasets: UCF101, HMDB51 and Olympic-Sports. To

the best of our knowledge, we are the first to report the re-

sults for G-FSL and provide a strong benchmark for future

research. We also outperform the state-of-the-art method in

FSL for all the aforementioned datasets.

1. Introduction

Action recognition has been a long-standing and ac-

tively pursued problem in the computer vision community

due to its practical applications in areas such as surveil-

lance, semantic video retrieval and multimedia mining. Re-

cently, Convolutional Neural Network (CNN) based meth-

ods [3, 22, 24] have achieved tremendous success in recog-

nizing actions from videos in supervised learning paradigm.

However, the performance of these methods deteriorates

drastically [25] when recognizing action classes that are not

adequately represented in their training data (novel classes).

This problem limits the deployment of these methods in real

world applications where the number of action classes to

be recognized increases rapidly with use cases. In certain

cases, the number of samples for novel classes are quite

few for even traditional data augmentation techniques [11]

to work. Therefore, systems with more advanced learning

paradigm like Few Shot Learning [8], which learns to rec-

ognize novel classes from only a few examples (few-shots),

have come into prominence.

Few-shot learning problem can be classified into two

broad settings [8] based on their evaluation protocols: stan-

dard FSL (FSL) and the more realistic Generalized-FSL (G-

FSL). FSL focuses on recognition of only novel classes dur-

ing evaluation whereas under G-FSL, a combination of both

seen (adequately represented at training) and novel classes

is considered. The presence of seen classes during evalua-

tion can incorrectly bias a classifier to predict a seen class

when the input belongs to a novel class. Hence, the G-

FSL setting is considered more challenging. There have

been several approaches [29, 19, 8] to tackle FSL for im-

age classification. The most notable among them use meta-

learning, representation learning and generative modelling.

Meta-learning mimics the few-shot inference time scenario

during training, representation learning tries to learn the

similarity of new samples to existing few-shots and gen-

erative modelling augments the novel classes with synthetic

data. However, similar approaches for action recognition

remain quite under-explored.

Generative methods like Conditional GAN (CGAN) [13]

synthesizes additional data for novel classes using a condi-

tioning element. In image classification, Antoniou et al. [1]

explored data augmentation GAN which uses the few-shot

samples directly as a conditioning element to generate syn-

thetic data. Zhang et al. [29] use statistics from the samples

as an alternative for the conditioning element. However,

when the number of shots is less, conditioning element in



Figure 1: Illustration of our proposed ProtoGAN framework. (a) Encoder extracts video features using spatio-temporal CNN

(b) Class Prototype vector φn for a novel class is learnt by mapping video features of seen data xn in CPTN to target formed

through feature aggregator function M using cosine similarity loss LCOS . The solid line denotes the training time path

and dotted line denotes the inference path. (c) Learnt class prototype vector is used as a conditioning element in CGAN to

synthetically generate more samples using generator g and discriminator f using adversarial loss LGAN . Decoder h is used

to reconstruct the prototype vector from generator’s output using LRECON to ensure discriminative properties. (d) Classifier

takes real seen features, few-shot features and synthetic features of novel classes to train with LCE loss

these methods does not represent the class semantics.

To this end, we propose the ProtoGAN framework which

conditions CGAN on a class-prototype vector to synthesize

additional video features for the action recognition clas-

sifier. Class-prototype vector is learnt through a feature

aggregator network called Class Prototype Transfer Net-

work (CPTN). The synthetic features generated using our

learned conditioning element for a class are semantically

similar to actual features of videos belonging to that class.

We justify our claims by performing extensive experiments

on three publicly available datasets namely UCF101 [20],

HMDB [12] and Olympic-Sports [16] under G-FSL and FSL

settings. We focus the necessary ablations in our framework

on G-FSL as it presents a more practical setting applicable

for real world scenarios. The key contributions of our paper

can be summarized as follows:

1. Introducing a learned class-prototype vector for videos

capturing class level semantics which is subsequently

used as conditioning element for a CGAN to generate

relevant synthetic features for novel classes.

2. To the best of our knowledge, we are the first to

demonstrate results for Generalized-Few Shot Learn-

ing (G-FSL) on publicly available action recognition

datasets and hence provide a strong benchmark for fu-

ture research.

3. Outperform state-of-the-art method under the standard

FSL setting for the three aforementioned datasets and

across different number of samples or shots.

2. Related Work

FSL approaches in image classification literature are pre-

dominantly based on meta-learning [18, 29, 6]. Under the

umbrella of meta-learning, various approaches like metric

learning [19, 23, 21], learning optimization [17] and learn-

ing to initialize and finetune [6] are proposed. Metric learn-

ing methods learn the similarity between images [23] to

classify samples of novel classes at inference based on near-

est neighbors with labelled samples. Learning optimiza-

tion involves memory based networks like LSTM [26] or

memory augmented networks [15] which aim to replace

stochastic gradient descent optimizer with the help of ex-

ternal memory. Learning to initialize and fine-tune aims

to make minimal changes in the network when adapting to

new task of classifying novel classes with few examples.

Although, all the works mentioned above attempt to solve

the broad problem of few-shot learning, many of them do

not consider the full potential of seen classes as they learn

the models in k-shot n-way method [15]. In [8], the authors

propose a method of representation learning of visual fea-

tures from the seen classes and translate it to novel classes

for images. Recently, GAN based synthesizing of novel

classes is gaining importance [1] where the novel class is

augmented with synthetic features. In [29], a generic frame-

work to augment data with conditioning GAN on sample

mean class-representative vector is explored. A detailed

overview of existing methods of FSL in images is given

in [4].

In contrary to FSL in images, video-based FSL methods



such as action recognition have got less attention. In [30],

authors have proposed a compound memory architecture

which transforms a variable length video sequence into a

fixed length matrix helping in few shot classification. A

method for action localization in FSL setting is explored

in [27]. Attribute-based feature generation for unseen

classes from GAN by using Fisher vector representation

was explored in zero-shot learning in [28]. Authors in [14]

used Gaussian based generative approach to augment data

for novel classes, where each action is represented in the

visual space as a probability distribution. Since, the exper-

imental setup in [14] includes classifying all novel classes

together in contrary to k-shot n-way setting, this forms a

strong baseline to compare with our proposed framework in

FSL setting.

Our approach: To avoid classifier’s bias towards seen

classes, unlike the approaches mentioned above, we pro-

pose learning a prototype vector which captures the seman-

tics of a class by using features from seen classes. A CGAN

is trained to learn the mapping from prototype vector to vi-

sual features. Additional data for novel classes is synthe-

sized by using the predicted prototype vector from CPTN

as conditioning element in CGAN.

3. Proposed Method

An overview of our proposed framework can be seen

in Fig. 1 which can be broadly segregated into four ma-

jor blocks: (a) Encoder for extracting video features (b)

Class-Prototype Transfer Network for creating class pro-

totype vector, (c) CGAN for generating synthetic features

when conditioned on class-prototype vector, and (d) Classi-

fier for predicting correct action class.

3.1. Preliminaries

Let x, x̄, y, φ̂ represent real video features, synthetic

video features, class labels and class prototype vectors, re-

spectively. Let S = {(xs, ys | xs ∈ X s, ys ∈ Ys} be the

training set for seen classes where xs ⊂ R
dx denotes

the spatio-temporal features, ys denotes the class labels

in Ys = {ys
1
, . . . , ysS} with S seen classes. The class

prototype vector φ̂s ∈ Φs ⊂ R
dφ is calculated from xs

video features. Let the cardinality of each member in Ys

be denoted by Ks = {ks
1
, . . . , ksS}. Additionally, N =

{(xn, yn) | xn ∈ Xn, yn ∈ Yn} is available during training

from novel categories where yn is a class from a disjoint la-

bel set Yn = {yn
1
, . . . , ynN} of N novel labels. Similarly,

the cardinality of each member in Yn is denoted by Kn =
{kn, . . . , kn} where kn ≪ min(Ks) and min() is defined

as minimum value in the set. The class prototype vector of

novel class φ̂n is inferred through CPTN. In GFSL, the task

is to learn a classifier Qgfsl : X
s ∪ Xn → Ys ∪ Yn and in

FSL the task is to learn a classifier Qfsl : X
n → Yn.

3.2. Class Prototype Transfer Network (CPTN)

Generation of synthetic samples for a class using a

CGAN [13] requires a conditioning element capturing the

semantics of that class. When the number of samples be-

longing to the class is high, statistical methods like mean

of the samples tend to accurately represent those seman-

tics [7]. However, in the case of novel classes with few

examples, this doesn’t hold true as such methods are sus-

ceptible to capture noisy intricacies due to lack of suffi-

cient data. To this end, we learn a mapping function Class-

Prototype Transfer Network (CPTN) through feature aggre-

gation where features of each video belonging to a particu-

lar class is mapped to a lower dimension embedding serv-

ing as the representative of that class. We term this vector

embedding as the class-prototype vector φ̂. We use seen

classes data containing large number of samples to model

this mapping and then transfer the mapping to novel cate-

gories.

Feature aggregation M is a two step process where the

sample representation R is followed by dimensionality re-

duction T as per the following equation:

M
xs

→φ̂s = T (R(xs)) ; R(xs) =
1

n

n
∑

i=1

xs
ci (1)

where n is the number of instances of class c, R is the

mean of the samples, T is a spatial dimensionality reduction

function like average/max pool which is applied on the out-

put of R and φ̂s is the prototype vector of seen class formed

through process M. We have used average-pool in our ap-

proach. The feature aggregation step ensures that meaning-

ful information is retained while getting rid of intricate and

noisy details specific to individual videos. Cosine similarity

loss LCOS is used as a loss function for training the CPTN

and is given by the equation:

LCOS =
φs

‖φs‖
˙
φ̂s

∥

∥

∥
φ̂s

∥

∥

∥

(2)

where, φs is the predicted class-prototype vector and φ̂s

is the target formed by the Eq. 1 for seen classes. Once

the network is trained, the prototype vector φ̂n
c for a sample

video belonging to a novel class c is obtained by passing

its input video features xn
c through the CPTN. For subse-

quent stages, we use φ̂n and φ̂s as class prototype vectors

for novel and seen classes, respectively. The training frame-

work is shown in (b) block of Fig. 1.

3.3. Conditional GAN

This module in our ProtoGAN framework involves a

CGAN [13] to generate synthetic video features (x̄n) for

novel classes by using the conditioning element φ̂n learned



UCF101

1-shot 3-shot 5-shot

S N H S N H S N H

Base-Classifier 82.7±0.6 38.4±2.0 52.4±1.9 83.1±5.4 61.2±3.0 70.3±1.2 88.2±0.9 68.8±1.9 77.3±0.9
Heuristic-Proto 88.0±1.0 46.3±2.2 60.7±2.0 92.0±0.7 62.1±1.9 74.1±1.2 94.0±1.4 68.7±1.5 79.3±0.7
Sample-Proto 88.0±1.9 45.9±2.4 60.3±2.2 92.0±0.9 61.9±1.9 74.0±1.3 94.4±0.8 68.4±1.3 79.3±0.8
Learned-Proto 75.3±1.3 52.3±2.2 61.7±1.6 87.7±0.8 64.9±1.7 74.6±1.0 90.5±0.9 71.3±1.2 79.7±0.8

HMDB

1-shot 3-shot 5-shot

Methods S N H S N H S N H

Base-Classifier 59.9±1.3 12.7±2.4 20.9±3.3 52.5±1.1 35.7±2.0 42.4±1.4 61.4±4.6 38.7±3.0 47.2±1.0
Heuristic-Proto 53.3±0.9 19.5±1.6 28.5±1.8 59.7±2.4 35.4±2.1 44.3±1.3 57.9±1.9 44.5±1.4 50.3±0.6
Sample-Proto 53.4±1.8 19.7±1.6 28.7±1.6 59.6±2.1 35.3±2.0 44.3±1.3 58.8±3.5 43.8±1.7 50.1±0.7
Learned-Proto 51.9±1.5 25.8±1.4 34.4±1.3 58.9±1.8 37.4±1.4 45.7±0.9 61.6±3.0 43.3±1.5 50.9±0.6

Olympic

1-shot 3-shot 5-shot

Methods S N H S N H S N H

Base-Classifier 94.5±3.1 16.9±3.1 28.6±4.4 93.2±3.2 41.1±2.9 56.9±2.9 92.0±3.3 54.9±3.2 68.7±2.0
Heuristic-Proto 95.5±3.2 18.5±2.9 30.9±4.0 95.3±3.5 41.2±2.8 57.5±2.6 95.0±3.7 54.8±3.2 69.4±2.1
Sample-Proto 95.5±3.7 18.6±2.9 31.0±4.8 95.1±3.4 41.9±2.8 58.1±2.6 94.8±3.9 55.7±3.4 70.0±2.3
Learned-Proto 94.8±3.4 20.9±2.6 34.1±4.7 93.5±3.0 46.0±2.7 61.5±2.2 93.2±3.4 59.2±3.4 72.2±2.0

Table 1: Comparison of Action Recognition accuracy (%) of our proposed framework with other baselines on UCF101,

HMDB and Olympic datasets under G-FSL settings. Base-Classifier denotes vanilla classifier with standard augmentation.

Heuristic-Proto and Sample-Proto denotes proposed baselines inspired from prototype-vectors used in image classification.

S, N, H represents seen, novel and harmonic mean, respectively. We report mean accuracy from 20 different training runs

and standard deviation is reported by ±.

in the previous CPTN stage. The Wasserstein loss [2] is

chosen over vanilla GAN loss as it provides more stability

in training in low-data regime [28]. The Wasserstein loss in

a CGAN between real features pr and synthetically gener-

ated feature ps is given by,

LWGAN = Ex∼pr

[

f(x, φ̂)
]

− Ez∼pz

[

f(g(x̄), φ̂))
]

−

αE[(||∇x̄f(x̂, φ̂)||2 − 1)2] ;
(

x̄ = g(φ̂, z)
)

∼ ps

(3)

where x’s are real video features drawn from pr. x̂ is

a convex combination of x and x̄, φ̂ is the conditioning el-

ement of a particular class, (f ) is the discriminator, (g) is

the generator, z ∼ N(0, I) is the noise vector and α is

the penalty coefficient. The first two terms in Equation. 3

approximate the Wasserstein distance and the third term is

the penalty for constraining the gradient of (f ) to have unit

norm along the convex combination of real and generated

pairs. The Class-prototype vector embedding φ̂ along with

random noise z are sent as input the generator (g). It gener-

ates an output with a dimension same as that of input video

features. The generated video features x̄ along with real

video features x are passed to the discriminator (f ) which

is trained with an adversarial loss as per Eq. 3. Hence at

equilibrium, the generator produces video features which

are similar to the real features.

The generated features of a particular class yi should be

similar to the real features of the that class and farther away

from the features of other classes. As it is compute inten-

sive to find the closest match for a generated feature from a

set of real features of that class, generated and real features

are grouped to form unmatched pairs (for different classes).

Cosine embedding loss LEMD = max(0, cos(xi, x̄j)) (for

j 
= i) is used to compute the distance for unmatched pairs.

To ensure that the generated features contain class se-

mantics for subsequent supervised classification, similar

to [5], an decoder (h) is used. It generates φRECON as

an output in an attempt to reconstruct back φ̂ from gθ(φ̂, z).
We use cosine similarity loss LRECON for the reconstruc-



tion. Thus, the net loss of CGAN is given by,

Ltotal = min
g

max
f

LWGAN + λLRECON + γLEMD

(4)

where λ is the hyper-parameter for weighting the recon-

struction loss and γ for embedding loss. Training frame-

work of the current stage is shown in (c) block of Fig. 1.

3.4. Classifier

We utilize the generator (g) learned in the previous stage

to produce additional video features for novel classes given

their corresponding class-prototype φn
c obtained through

the CPTN network. The classifier is trained in a super-

vised learning paradigm with the real features of seen and

novel classes and synthetic features of novel classes. We

subsequently train action recognition classifiers Qgfsl and

Qfsl for G-FSL and FSL settings, respectively, with Cross-

Entropy loss LCE .

We made an insightful observation that generated sam-

ples having high reconstruction error (LRECON ) are not

suitable for training the classifier as they are semantically

different than its corresponding class. Hence, we use a

pruning method to remove all the synthetic features with

high reconstruction loss. Features with low reconstruction

loss tend to be more discriminative. This is because the de-

coder tries to reconstruct the class-prototype vector which

is the representative of the class.

4. Experimental Setup

Details about the experimental setup are discussed in this

section. Implementation details such as network architec-

ture and training procedures are explained in Section. 4.1,

dataset used for evaluation are described in Section. 4.3 and

evaluation protocol followed for experiments under G-FSL

and FSL setting are highlighted in Section. 4.2.

4.1. Implementation Details

• Encoder - We extracted video features from C3D net-

work [22] pre-trained on Sports-1M dataset [9] where

each video was divided into non-overlapping chunks of

16 frames and the mean of the fc6 layer outputs in [22],

of size 4096, was taken.

• Class-Prototype Transfer Network (CPTN) - A two-

layer MLP was used with an input size of 4096, a

hidden layer of 1024 and output layer (class-prototype

vector embedding φ̂) of 128 neurons with Sigmoid as

activation function. The model was trained with co-

sine similarity loss with ADAM [10] optimizer initial-

ized with a learning rate of 0.005 and weight-decay of

0.0005. The training was run for 50 epochs.

• CGAN - The generator (g) is a two layer fully con-

nected network with input size of 256 (128(φ̂c) +

128(noise)) and output size of 4096. The decoder

(h) used in cyclic-reconstruction is a two-layer fully

connected with input and output size being 4096 and

128, respectively. The discriminator (f) is a two layer

fully connected neural network with input dimension

of 4096 and output dimension of 1 deciding whether

the features are real or fake. Learning rate of 0.001

and with a weight decay of 0.0001 was used to train

the CGAN for 25 epochs using ADAM optimizer.

LeakyReLU was used as activation function for (g),
(f) and (h). We set λ and γ in Eq. 4 to be 0.01 and

0.1, respectively. The gradient penalty parameter α for

WGAN is set to 10.

• Classifier - The final action recognition classifier is a

single layer MLP with input as 4096 and output as the

number of classes. Cross-entropy loss was used with

ADAM optimizer with a learning rate of 0.001. For

each novel class, we generated twice the maximum

number of samples present in a seen class, sort them

in ascending order of their reconstruction loss and pick

the top 50%.

4.2. Evaluation Protocols

To highlight the efficacy of our proposed framework, we

thoroughly evaluate our method under G-FSL and FSL set-

ting for all the action recognition datasets. A brief descrip-

tion of the evaluation protocol are as follows:

• G-FSL setting - In this setting, the test set consists of

seen S and novel N classes and the model is evaluated

based on their classification accuracy. The accuracy of

seen, novel and harmonic mean H as per Eq. 5 of the

two are reported.

Acch =
2.Accs.Accn

Accs +Accn
(5)

where Accs and Accn are accuracy of seen and novel

classes, respectively.

• FSL setting - In this setting, the test split consists of

only novel classes N .

In our experiments, under k-shot setting, k random sam-

ples were chosen from a set of available examples for each

novel class. To eliminate bias towards any given set of sam-

ples and (seen, novel) class split, we repeat our experiments

20 times, with randomly chosen splits and samples. We re-

port the mean results. For instance, in the 3-shot learning

setting, for each of the 20 training runs over different class

splits, 3 random samples were drawn for each novel class.



UCF101 HMDB Olympic

Method 1-shot 5-shot 1-shot 5-Shot 1-shot 5-shot

Sample-Proto 0.248 0.117 0.341 0.205 0.297 0.193

Learned-Proto 0.219 0.106 0.323 0.198 0.272 0.191

Table 2: Cosine distance between mean of synthetic features and mean of test data for novel classes. Results are reported for

all the datasets in 1-shot and 5-shot setting. Lower number is better.

UCF101 HMDB

T Function 1-shot 5-shot 1-shot 5-Shot

No-Pool 57.8±1.7 79.8±1.1 23.3±2.3 51.2±0.8
Max-Pool 60.6±1.3 79.6±0.9 24.3±2.5 50.7±0.8
Average-Pool 61.7±1.6 79.7±0.8 34.4±1.3 50.9±0.6

Table 3: Comparison of Action Recognition accuracy (%) of our proposed framework with different dimensionality reduction

function T on UCF101 and HMDB datasets under G-FSL settings. No-Pool denotes use of no dimensionality reduction

function, Max-Pool denotes max-pooling and Average-Pool denotes average-pooling. We report harmonic mean accuracy

from 20 different training runs and standard deviation is reported by ±.

4.3. Datasets

We evaluate our method on three publicly available

datasets for action recognition,

• UCF101 [20]: contains 13320 videos spanned over

101 classes. For our experiments we randomly split

the data into 51 seen and 50 novel classes.

• HMDB51 [12]: contains 6766 videos spanned over 51

classes. For our experiments we randomly split the

data into 26 seen and 25 novel classes.

• Olympic Sports [16]: contains 783 videos spanned

over 16 classes. We refer Olympic Sports as Olympic

in subsequent sections. For our experiments we ran-

domly split the data into 8 seen and 8 novel classes.

5. Experimental Results

Details about our experimental results are discussed in

this section. Results for our proposed framework under G-

FSL setting are compared with different baselines in Sec-

tion. 5.1. Section. 5.2 describes ablation studies highlight-

ing the importance of various components in our frame-

work. Comparison with state-of-the art method under FSL

setting is discussed in Section. 5.3.

5.1. Generalized-Few Shot Learning (G-FSL)

As the results under G-FSL on the aforementioned ac-

tion recognition datasets are reported for the first time, we

designed the baseline methods by taking inspiration from

the Few-Shot Learning methods proposed in image clas-

sification tasks. Similar to [29], sample mean of the ex-

amples from a class was taken as its class-prototype and

we term this method as Heuristic-Proto in our experiments.

In Sample-Proto the video features were directly taken as

the class-prototype as described in [1]. Our proposed class

prototype vectors generated through CPTN are termed as

Learned-Proto in the experiments. To evaluate the perfor-

mance of the entire framework, a vanilla classifier - Base-

Classifier was directly trained on C3D video features with

standard augmentation mentioned in [11]. The results for

all the above approaches on UCF101, HMDB and Olympic

datasets are reported in Table. 1.

As can be seen in Table. 1, Heuristic-Proto, Sample-

Proto and Learned-Proto outperform the Base-Classifier

with a huge margin for all the shots in all the datasets. This

establishes that, the addition of generated features removes

classifier’s bias towards seen classes which is depicted by

the gain of accuracy for novel classes. Taking mean of

the samples for novel classes, decreases the performance of

Heuristic-Proto for 1-shot while giving competitive results

for 5-shots. This can be attributed to poor representation of

the conditional element by taking mean of single example.

Sample-Proto performs better than other two baselines but

shows higher standard deviation. This is because its perfor-

mance depends on the quality of chosen samples as the class

prototype is represented by the samples themselves without

any aggregation. In contrast, transferred statistics through

CPTN in our proposed ProtoGAN framework reduces this

adverse effect. Learned-Proto outperforms baseline meth-

ods by a maximum of 1.4%, 5.7% and 2.9% on UCF101,

HMDB and Olympics, respectively, for the 1-shot setting.

Figure. 2 illustrates the comparison of per class mean

accuracy of our proposed ProtoGAN framework with other



Figure 2: Mean classification accuracy (in %) of our proposed ProtoGAN framework with other baselines for all classes

(when present as novel classes in different experimental runs) for olympic sports dataset. Classes are numbered according to

alphabetical order of names. We report mean accuracy from 10 different runs. Best viewed in color.

UCF101 HMDB

Method 1-shot 5-shot 1-shot 5-Shot

Without-Pruning 60.8±1.9 79.5±0.9 23.7±2.6 50.7±0.8
With-Pruning 61.7±1.6 79.7±0.8 34.4±1.3 50.9±0.6

Table 4: Comparison of action recognition accuracy (%) of our proposed framework with and without pruning the synthetic

features under G-FSL setting. We report harmonic mean accuracy from 20 different training runs and standard deviation is

reported by ±.

baselines. Mean accuracy is taken for all classes when

present as novel classes during 10 different experimental

runs. As can be seen from the figure, our proposed frame-

work performs better in 11 out of 16 classes in Olympic

Sports dataset in the range of 1-4%. However, the margin of

inaccuracies is less significant as compared to the accurate

classes. This re-establishes the superiority of the ProtoGAN

framework.

5.2. Ablation Studies

5.2.1 Quality of Synthetic Features

To verify and compare the quality of the synthesized fea-

tures of novel classes using different conditional elements,

we try to quantify their similarity with real video features

available from the test set. Specifically, we take mean of all

the synthesized and real features for a novel class separately

and compute cosine distance between them. The mean co-

sine distance over all the novel classes for 1 and 5-shots

are reported in Table. 2. Results are reported for UCF101,

HMDB and Olympic datasets. One can observe, examples

generated using our Learned-Proto for 1-shot matches the

distribution of real features much more accurately than that

of Sample-Proto.

5.2.2 Dimensionality Reduction

Dimensionality reduction function (T ) plays a crucial role

in getting rid of intricate details and preserving class seman-

tics. To demonstrate the effect of (T ), a model was trained

without applying T and another with Max-Pool instead of

Average-Pool. As can be in seen in Table. 3, the recogni-

tion accuracy drops significantly when no (T ) is used and

thus restating that dropping intricacies helps in creating bet-

ter class-prototype vector. Max-Pool is slightly inferior in

performance compared to Average-Pool. A reason for this

is that features obtained after average-pool has more aggre-

gate information than max-pool, hence provides more stable

features.



k-shots

Methods 1 2 3 4 5

UCF101
[14] - 68.7±3.3 73.5±2.2 76.5±2.1 78.6 ±1.8

Learned-Proto 57.8±3.0 71.1±3.0 75.3±2.7 78.0±1.8 80.2±1.3

HMDB
[14] - 42.1±3.6 47.5±3.3 50.3±3.4 52.5±3.1

Learned-Proto 34.7±9.2 43.8±5.4 49.1±5.1 52.3±4.2 54.0±3.9

Olympic
[14] - 73.2±7.4 75.3±7.3 80.2±7.2 83.8±7.1

Learned-Proto 71.6±9.4 75.0±7.4 78.4±6.2 82.1±5.6 86.3±5.1

Table 5: Comparison of action recognition accuracy (in %) of our proposed ProtoGAN framework against current state-of-

the-art on UF101, HMDB and Olympic dataset under FSL settings. We report mean accuracy from 20 different training runs

and standard deviation is reported by ±. Recognition accuracy for 1-shot is missing for [14].

5.2.3 Pruning

To validate the effect of pruning synthetic features in in-

creasing order of their reconstruction loss, the proposed

ProtoGAN framework was trained without it and the results

are reported in Table. 4. The superior performance of the

classifier trained on data after pruning validates the efficacy

of the reconstruction loss in creation and subsequent selec-

tion of meaningful examples. However, the gain is higher

for HMDB as compared to UCF101. This can be attributed

to less number of seen examples which affects the quality

of class-prototype vectors and hence the generator.

5.3. Few Shot Learning (FSL)

A comparison of our ProtoGAN framework against the

current state-of-the-art approach [14] under FSL setting is

presented in Table. 5. The authors of [14] have also used

C3D [22] video features in their evaluation. Our method

outperforms [14] in all k-shots with similar or lower stan-

dard deviation. Note that the results for 1-shot are not re-

ported in [14]. The improved performance can be attributed

to the usage of a learned prototype vector. The learned vec-

tor computed through a non-linear function via a network

provides a better alternative to a vector formed by a linear

combination of basis vectors as mentioned in [14]. This

establishes the wide applicability of our approach in both

G-FSL and conventional FSL settings.

6. Conclusion

In this paper, we present a novel ProtoGAN framework

which synthesizes video features for novel categories

by conditioning a CGAN with a class-prototype vector

embedding to address the problem of Few-Shot Learning

for action recognition. Class-prototype vector is learnt

through a feature aggregator network called Class Pro-

totype Transfer Network (CPTN). The performance of

the proposed framework was evaluated on three publicly

available datasets for both seen and novel classes under

G-FSL setting for the first time. We obtained encouraging

results showing the efficacy of the proposed framework

under G-FSL settings on action recognition and established

a strong benchmark for future research. Under standard

FSL setting, we outperform state-of-the-art method on all

the datasets across different shots.
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