This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Task-Discriminative Domain Alignment for Unsupervised Domain Adaptation

Behnam Gholami !, Pritish Sahu', Minyoung Kim?, and Vladimir Pavlovic!-?

'Dept. of Computer Science, Rutgers University, NJ, USA
2Samsung Al Center, Cambridge, UK

{bb510,ps851,vladimir}@cs.rutgers.edu, v.pavlovic@samsung.com mikim21@gmail.com

Abstract

Domain Adaptation (DA), the process of effectively adapt-
ing task models learned on one domain, the source, to other
related but distinct domains, the targets, with no or mini-
mal retraining, is typically accomplished using the process
of source-to-target manifold alignment. However, this pro-
cess often leads to unsatisfactory adaptation performance,
in part because it ignores the task-specific structure of the
data. In this paper, we improve the performance of DA
by introducing a discriminative discrepancy measure which
takes advantage of auxiliary information available in the
source and the target domains to better align the source and
target distributions. Specifically, we leverage the cohesive
clustering structure within individual data manifolds, asso-
ciated with different tasks, to improve the alignment. This
structure is explicit in the source, where the task labels are
available, but is implicit in the target, making the problem
challenging. We address the challenge by devising a deep
DA framework, which combines a new task-driven domain
alignment discriminator with domain regularizers that en-
courage the shared features as task-specific and domain
invariant, and prompt the task model to be data structure
preserving, guiding its decision boundaries through the low
density data regions. We validate our framework on stan-
dard benchmarks, including Digits (MNIST, USPS, SVHN,
MNIST-M), PACS, and VisDA. Our results show that our
proposal model consistently outperforms the state-of-the-art
in unsupervised domain adaptation.

1. Introduction

Domain adaptation refers to the problem of leveraging
labeled task data in a source domain to learn an accurate
model of the same tasks in a target domain where the la-
bels are unavailable or very scarce [7]. The problem be-
comes challenging in the presence of strong data distribu-
tion shifts across the two domains [35, 11], which lead to
high generalization error when using models trained on the
source for predicting on target samples. Domain adapta-
tion techniques seek to address the distribution shift prob-

lem. The key idea is to bridge the gap between the source
and target in a joint feature space so that a task classifier
trained on labeled source data can be effectively transferred
to the target [29, 4, 2, 28]. In this regard, an important
challenge is how to measure the discrepancy between the
two domains. Many domain discrepancy measures have
been proposed in previous DA studies, such as the moment
matching-based methods [25, 4, 30, 42, 41], and adversarial
methods [40, 3, 34, 43, 13]. Moment matching-based meth-
ods use Maximum Mean Discrepancy (MMD) [36] to align
the distributions by matching all their statistics. Inspired
by Generative Adversarial Networks (GAN) [14], adversar-
ial divergences train a domain discriminator to discern the
source from the target, while an encoder feature extractor is
simultaneously learned to create features indistinguishable
across the source and the target, confusing the discriminator.

Existing discrepancy approaches, reviewed in the next
section, mainly focus on aligning domain-level feature distri-
butions without considering category-level alignment. Thus,
the alignment enforced by such discrepancy measures does
not guarantee a good target performance as it ignores the
cluster structure of the samples, aligned with their task la-
bels. The assumption that the source features exhibit a well-
defined cluster structure naturally transfers to the target:
target features indicative of the same tasks as the source
should manifest a similar cluster structure. In other words,
when optimally aligned, the target features should amass
around the source clusters such that the decision boundaries
of the learned task classifiers do not induce partitioning of
smooth clusters of target features. However, the aforemen-
tioned domain discrepancy measures only focus on global
feature overlap, ignoring the finer task-aligned structure in
the data. Consequently, they may inaccurately match the
clusters and also cause the source features to form weakly
separable clusters, as illustrated in Fig.1, b, c.

To alleviate the limitations of existing discrepancy mea-
sures for domain adaptation, we introduce a task (e.g.,
classification)-specific adversarial discrepancy measure that
extends the discriminator output over the source classes, in
order to additionally incorporate task knowledge into the ad-
versarial domain alignment. The new discrepancy measure



(d) Task-specific Divergence

(c) Adversarial Divergence [13]

Figure 1: Feature visualization, via t-SNE, of Digit datasets when adapting SVHN (source) to MNIST (target). The target features in
(b) and (c) are in close proximity of the source features but only weakly aligned to them. Source clusters are imperfectly delineated,
demonstrating that the learned source features are insufficiently discriminative. Our new discrepancy measure in (d) leads to improved
separation of source features and better alignment between the source and the target, which adheres to the structure of the data in both

domains.

helps the feature extractor (encoder) make discriminative
source/target features by considering the decision boundary
information. Consequently, source-target alignment not only
takes into account the domain-level feature densities but also
the category-conditioned clusters-of-features information to
produce an improved overlap, evident in Fig. 1, part d.

Motivated by the information-bottleneck principle [39],
whose goal is to improve generalization by ignoring irrele-
vant (domain-variant) distractors present in the original data
features, we also introduce a source regularization loss by
minimizing the information between the source samples and
their features by encouraging the marginal distribution of
the source features to be similar to a prior distribution (the
standard normal distribution) to enforce the model to focus
only on the most discriminative (label-variant) features, less
prone to overfitting. Moreover, an additional target regu-
larization term is imposed on the classifier, trained on the
shared features of the source samples, to encourage it not to
pass through high-density regions of the target data. Previ-
ous DA methods did not explicitly consider these desiderata.
Our ablation study in Sec. 4.4 empirically demonstrates the
importance of the introduced objectives. We also empirically
evaluate the advantages of our proposed method by demon-
strating considerable improvements over the state-of-the-art
methods on several standard domain adaptation benchmarks,
including Digits, PACS and VisDA datasets.

2. Related Work

We summarize DA works most relevant to this paper.
Several types of adversarial learning methods for unsuper-
vised domain adaptation have been shown to match distri-
butions of the features generated from source and target
samples [9, 20, 37, 6, 10, 25].

The domain adversarial neural network (DANN) [13]
first introduced a gradient reversal layer that reversed the
gradients of the domain discriminator in order to encour-
age domain confusion. Other recent proposals [23, 3] have
explored generative models such as GANs [14] to generate
synthetic images for domain adaptation. These approaches
typically train two GANs on the source and target input data
with tied parameters with the goal of translating images be-
tween the domains. Despite being visually compelling, such
image-space models have only been shown to work on small
images and limited domain shifts.

In order to circumvent the need to generate images,
ADDA [40] recently proposed an adversarial framework
for directly minimizing the distance between the source and
target encoded representations (shared features). A discrim-
inator and (target) encoder are iteratively optimized in a
two-player game, where the goal of the discriminator is to
distinguish the target features from the source features, with
the goal of the encoder being to confuse the discriminator.



The DupGAN [17] proposed a GAN-like model with du-
plex discriminators to restrict the latent representation to be
domain invariant, with its category information preserved.
Saito et al. [33] further introduce two classifiers as a discrim-
inator to avoid ambiguous features near the class boundaries.
By deploying two classifiers, the method therein employs the
adversarial learning techniques to detect the disagreement
across classifiers, such that the encoder is able to minimize
this discrepancy on target samples.

In addition to the adversarial distribution matching ori-
ented algorithms, pseudo-labels or conditional entropy regu-
larization are also adopted in literature [32, 35, 43]. Sener
et al. [35] construct a k-NN graph of target points based on
a predefined similarity graph. Pseudo-labels are assigned
to target samples via their nearest source neighbors, which
allows end-to end joint training of the adaptation loss. Saito
et al. [32] employ the asymmetric tri-training, which lever-
ages target samples labeled by the source-trained classifier
to learn target discriminative features. Zhang et al. [43] iter-
atively select pseudo-labeled target samples based on their
proposed criterion and retrain the model with a training set
including pseudo-labeled samples. However, these methods
based on pseudo-labeled target samples have a critical bottle-
neck where false pseudo-labels can mislead learning of target
discriminative features, leading to degraded performance.

3. Method
3.1. Problem Formulation

Without loss of generality, we consider a multi-class (K-
class) classification problem as the running task example.
Consider the joint space of inputs and class labels, X x )
where Y = {1,..., K} for (K-way) classification. Suppose
we have two domains on this joint space, source (S) and
target (T), defined by unknown distributions Ps(x,y) and
Pr(x,y), respectively. We are given source-domain training
examples with labels Dg = {(x,y2) Y5, and target data
Dy = {xI'}N* with no labels. We assume the shared set of
class labels between the two domains. The goal is to assign
the correct class labels {yl'} to target data points Dr-.

To tackle the problem in the shared latent space frame-
work, we introduce a shared encoder () between the source
and the target domains that maps a sample x into a stochas-
tic embedding! z ~ Q(z|x), and then apply a classifier h
to map z into the label space y ~ h(y|z) (h is trained to
classify samples drawn from the encoder distribution). Al-
though one can consider domain-wise different encoders,
more recent DA approaches tend to adopt a shared encoder,
which can prevent domain-specific nuisance features from
being learned, reducing potential overfitting issues. We de-
fine the stochastic encoder E as a conditional Gaussian

IPlease see Remark 1 for the benefits of choosing a stochastic encoder
over a deterministic one.

distribution with diagonal covariance that has the form
Q(z]x) = N(z|f,(x),fx(x)) where f. is a deep network
mapping the data point x to the 2p-dimensional latent code,
with the first p outputs from f, encoding f,, and the remain-
ing p outputs encoding fy, (in this work, we set p = 256
for all the experiments). The classifier i outputs a K-dim
probability vector of class memberships, modeled as a soft-
max form h(z) = softmax(f.(z)), where f.(z) is a deep
network mapping the latents z to the logits of K classes.

Remark 1. The reason to choose a stochastic encoder over
a deterministic one is two fold. First, it allows one to impose
smoothness (local-Lipschtizness) constraint on the classi-
fier h over target samples; see Sec. 3.1.5 for more details.
Second, adding continuous noise to the inputs of the discrim-
inators has been shown to improve instability and vanish-
ing gradients in adversarial optimization problems through
smoothening the distribution of features [1]. Our stochas-
tic encoder equipped with the reparametarization approach
inherently provides such mechanism to feature distribution
smoothness, see Sec. 3.1.4 and 3.1.2 for more details.

The proposed domain adaptation method can be summa-
rized by the objective function consisting of six terms:

[/Class + ‘CDisc + LTeach + £Smooth + £Entropic + /:’Adlh
ey
where L1455 18 the classification loss applied to Dg, Lp;se
is the domain discrepancy loss measuring the discrepancy
between the source and target distribution, Lpeqcp 1S the
source-to-target teaching loss, which couples the source clas-
sifier with the target discriminator. The remaining losses,
Lsmooths LEntropic: L adw Will impose different regulariza-
tion constraints on the model: Lg,00tn Will impose Lips-
chitz classifiers in the target space, £ gniropic Will strive to
drive the classifier towards regions of low density in the same
target space, while £ 44, will impose regularization towards
a reference density in the shared space Z. We next discuss
each of the above losses in more detail and then propose an
algorithm to efficiently optimize the desired objective.

3.1.1 Source Classification Loss L5

Having access to source labels, the stochastic mappings )
and h are trained on source samples to correctly predict the
class label by minimizing the standard cross entropy loss,

»CClass(Q, h) = _]Ex,yNPs(x,y) [EZNQ(Z\X) [yT IOg h(Z)]] y
2)

where y is the K-D one-hot vector representing the label y.
3.1.2 Domain Discrepancy Loss £ ;s

Since the stochastic encoder () is shared between the source
and target samples, to make sure the source and the target



features are well aligned in the shared space and respect
the cluster structure of the original samples, we propose a
novel domain alignment loss, which will be optimized in
adversarial manner.

Rather than using the standard adversarial approach to
minimizing the alignment loss between the source and the
target densities in the shared space Z, i.e., finding the en-
coder () which “fools” the best binary discriminator D try-
ing to discern source from target samples, our approach is
inspired by semi-supervised GANs [8] where it has been
found that incorporating task knowledge into the discrim-
inator can jointly improve classification performance and
quality of images produced by the generator. We incorpo-
rate task knowledge by replacing what would be a binary
discriminator with a (K + 1)-way multi-class discriminator
y' = D(z) = softmax(f;(z)). The first K classes indicate
that a sample z belongs to the source domain and belongs
to a specific classes in ), while the last (K + 1)-th class 7¢”
indicates z belongs to the target domain.

Since we have the class label for the source samples, the
discriminator is trained to classify source features correctly,
hence creating crisp source clusters in the feature space. On
the other hand, the new discriminator seeks to distinguish
the samples from the target domain from those of the source
by assigning them to the (K + 1)-th, "target” class.

ED'LSC(Q) D) = _EwaT(x) [EZNQ(Z\X) Hoa ]-]T log D(Z)H

- IE:x,waS (x,y) [EZNQ(Z\X) Hya O]T log D(Z)” NE))
where [0, 1] is a one-hot vector indicating a point from the
target domain and [y, 0] stands for a point from the source
domain, labeled according to class label y.

3.1.3 Teacher Target-Source Loss Lrcqchn

Here, we seek the encoder () to generate a feature represen-
tative of one of the first K task-specific classes for target
samples preserving their cluster structure and aligning them
to the source clusters in the feature space. However, the
target data points are unlabeled, and the encoder will not
have the chance to enforce the desired clustering structure of
the target points, where points within a cluster would have
the same predicted label. To teach” the encoder, we ask
the classifier h(-) to provide pseudo soft labels for the target
points to our new discriminator using the following loss:

ETeach(Q7 D7 h) =

- EXNPT(X) EZNQ(ZlX) [[h(Z), O]T IOg D(Z)] )

Intuitively, the encoder tries to fool the discriminator by
assigning one of the first K classes to target features, lever-
aging on the output of the classifier 4 (augmented with O for
the K + 1-th dimension) as pseudo-labels for target features.

Remark 2. The proposed task-specific domain discrimina-

tor can be used to improve any domain adaptation method
that has an adversarial domain alignment component. In-
deed, we observe (see Sec. 4.3) that the proposed discrim-
inator significantly improves upon the standard binary dis-
criminator.

3.1.4 Source Domain Regularization Loss

One of the standard goals in representation learning is to find
an encoding of the data point x that is maximally expressive
about its label y while being maximally compressive about
x—finding a representation z which ignores as many details
of x as possible. This is specifically useful for domain adap-
tation where we require a representation to be domain invari-
ant. Essentially, we want z to act like a minimal sufficient
statistic of x for predicting y in order to generalize better
for samples form unseen domains. To do so, we introduce a
regularizer that acts on the aggregated posterior of the shared
features of the source samples Q. (z) = Eyx pg (x) [Q(2]x)].
The regularizer encourages z to be less informative about x
in the form of mutual information by matching the aggre-
gated posterior of the shared features with a factorized prior
distribution P,(z)?, which in turn constrains the implicit
capacity of z and encourages it be factorized:

D[P.(2)||Q:(=)], 5)
where D(+||-) is an arbitrary distribution divergence measure.
As the proxy for this divergence, we define an auxiliary
loss which will be adversarially optimized. We introduce an
a binary discriminator F' in the latent space trying to separate
true points sampled from P, and fake ones sampled from Q.
The encoder @ ensures the aggregated posterior distribution
(. can fool the binary discriminator into thinking that the
source features comes from the distribution P,:

Laaw(Q, F) = ~Eops () [Esnq(al) [ 10g F(2)]]
— B, p(z) [log(1 = F(2))]. (6)

Remark 3. We empirically observed that imposing such
regularization on target samples could be harmful to perfor-
mance. We conjecture this is due to the lack of true class
labels for the target samples, without which the encoder
would not preserve the label information of the features,
leading to unstructured target points in feature space.

3.1.5 Target Domain Regularization Losses

In order to incorporate the target domain information into
the model, we apply the cluster assumption, which states that
the target data points Dr contains clusters and that points
in the same cluster have homogeneous class labels. If the
cluster assumption holds, the optimal decision boundaries

%In this work, we consider P;(z) = N(0, 1)
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Figure 2: Proposed architecture includes a deep feature extractor f(z) and a deep label predictor h(z), which together form a standard
feed-forward architecture. Unsupervised domain adaptation is achieved by adding a task-specific discriminator D(z) connected to the
feature extractor distinguishing the source from target features. The training proceeds standardly and minimizes the label prediction loss (for
source examples) Lciqss, the domain discrepancy losses (for all samples) £pise and Lreaqch, the source domain regularization loss £ 44,
and the target domain regularization losses Lgmooth and LEntropic-

should occur far away from data-dense regions in the feature
space z. We achieve this by defining an entropic loss,

EEntropic(hv Q) =

- EXNPT(X) IEsz(z|x) [h(z)T log h(Z)} . (7)

Intuitively, minimizing the conditional entropy forces the
classifier to be confident on the unlabeled target data, thus
driving the classifiers decision boundaries away from the
target data. In practice, the conditional entropy must be
empirically estimated using the available data.

However, Grandvale [15] suggested this approximation
can be very poor if % is not locally-Lipschitz smooth. With-
out the smoothness constraint, the classifier could abruptly
change its prediction in the neighborhood of training sam-
ples, allowing decision boundaries close to the training sam-
ples even when the empirical conditional entropy is mini-
mized. To prevent this, we take advantage of our stochastic
encoder and propose to explicitly incorporate the locally-
Lipschitz constraint in the objective function,

£Smooth(h‘> Q) =

ExnPr(x) | Bz zonqalx) | [P(21) — R(2Z2)[|1 ], (8)

with || - ||; the L; norm. Intuitively, we enforce classifier
consistency over proximal features of any target point x.

Remark 4. We empirically observed that having such con-
straints for source features would not improve performance.
This is because access to the source labels and forcing the
classifier to assign each source feature to its own class would
already fulfill the smoothness and entropy constraints on the
classifier for the source samples.

3.2. Model Learning and Loss Optimization

Our goal, as outlined in Sec. 3.1, is to train the task-
specific discriminator D, binary discriminator F', classifier
h, and encoder @ to facilitate learning of the cross-domain
classifier h. By approximating the expectations with the sam-
ple averages, using the stochastic gradient Descent (SGD),
and the reparametarization approach [19], we solve the op-
timization task in the following four subtasks. The overall
algorithm is available in the Supplementary Material (SM).

3.2.1 Optimizing the encoder ()

Q* = arg Il’gl’l LClass(Qv h*) + EDisc(Qa D*v h*)

+ 2 [Laa(Q. F7)], )
where A is a weighting factor. Intuitively, The first term
in Eq. 9 encourages () to produce discriminative features
for the labeled source samples to be correctly classified by
the classifier h. The second term simulates the adversarial
training by encouraging () to fool the task-specific discrim-
inator D by pushing the target features toward the source
features, leveraging the soft pseudo-labels provided by the
classifier. Through the last term, the encoder seeks to fool
the binary discriminator /' into treating the source features
as if they come from the fully-factorized P(z) to produce
domain-invariant source features.

3.2.2 Optimizing the classifier i

h* = arg m}jn )\h[EC'lass<Q*a h)]
+ )\;1 [EEntropic(Q*a h) + ESmooth(Q*7 h)] 5 (10)



where )\;, and )\’h are the trade-off factors. Intuitively, we
enforce the classifier h to correctly predict the class labels
of the source samples by the first term in Eq. 10. We use
the second term to minimize the entropy of A for the target
samples, reducing the effects of “confusing” labels of target
samples. The last term guides the classifier to be locally
consistent, shifting the decision boundaries away from target
data-dense regions in the feature space.

3.2.3 Optimizing the task-specific discriminator D

Y

The loss in Eq. 11 prompts D to shape its decision boundary
to separate the source features (according to their class label)
and target features from each other.

D* = argngn ﬁDisc(Q*a D)

3.2.4 Optimizing the binary discriminator I’

F* = argm}n Laa(Q, F). (12)

Intuitively, the loss in Eq. 12 encourages F' to separate the
source features from the features generated from the fully-
factorized distribution P, (z) by assigning label 1 and 0 to
the source feature samples and P, (z) samples, respectively.

3.3. Target Class Label Prediction

After model training, to determine the target class-label
y; of a given target domain instance x;, we first compute
the distribution of y, given x; by integrating out the shared
feature z;. Then, we select the most likely label as

Ur = argmax, cqy . gy P(ys]xt),
where P(y:|x¢) can be computed as
P(y, = kl|z)

13)

.....

= Eonqapx)=n (2 (x0), 12 e [ (2)],

(14)
where hy(.) is the k-th entry of the classifier output. Since
the above expression cannot be computed in a closed form,
we approximate it with its mean value. Using this approxi-
mation, we compute ¥; as:

G = argmaxyeqy gy Pue(ze), ze = fll(xe). (15)

Remark 5. We empirically observed that estimating the
expectation in Eq. 14 with Gibbs sampling from the posterior
Q(z|x¢) instead of its mean would not boost the performance.
We conjecture this is due to the smoothness constraint we
impose on the classifier through Eq. 8, enforcing consistency
over proximal target samples drawn from Q(z|x).

4. Experimental Results

We compare our proposed method with state-of-the-art
on three benchmark tasks. The Digit datasets embody the
digit cross-domain classification task across four datasets:
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Figure 3: Example images from benchmark datasets.

(a) Digits. (b) PACS

MNIST, MNIST-M, SVHN, USPS, which consist of K =
10 digit classes (0-9). We also evaluated our method on
VisDA object classification dataset [31] with more than
280K images across twelve categories. Finally, we report
performance on PACS [21], a recently proposed benchmark
which is especially interesting due to the significant domain
shift between different domains. It contains images of seven
categories extracted from four different domains: Photo (P),
Art paintings (A), Cartoon (C), and Sketch (S). The details
of the datasets are available in SM. Fig. 3 illustrates image
samples from different datasets and domains. We evalu-
ate the performance of all methods with the classification
accuracy metric. We used ADAM [18] for training; the
learning rate was set to 0.0002 and momentums to 0.5 and
0.999. Batch size was set to 16 for each domain, and the
input images were mean-centered/rescaled to [—1, 1]. All
the used architectures replicate those of state-of-the-art meth-
ods, detailed in SM. We followed the protocol of unsuper-
vised domain adaptation and did not use validation set to
tune the hyper-parameters Ao, Ay, A,. Full hyper-parameter
details for each experiment can be found in SM. We com-
pare the proposed method with several related methods, in-
cluding CORAL [38], DANN [12], ADDA [40], DTN [44],
UNIT [22], PixelDA [3], DIAL [5], DLD [27], DSN [4],
and MCDA [33] on digit classification task (Digit datasets),
and the object recognition task (VisDA and PACS datasets).

4.1. Results On Digits Recognition

In this evaluation, we follow the same protocol across all
methods. Specifically, we use the network structure similar
to UNIT [22]. See SM for more details.

We show the accuracy of different methods (averaged
over five different runs) in Tab. 1. The proposed method out-
performed the competing methods in five out of six settings,
confirming consistently and significantly better generaliza-
tion of our model over target data.

The higher performance of the proposed model com-
pared to other methods is mainly attributed to the proposed
task-specific alignment method, which not only encourages
the source features to be well-separated, according to their
class label, but also aligns the target to source features in
a cluster-wise manner, “matching” the source and target
clusters. This is in contrast to the standard domain-wise
alignment, which ignores the source/target inherent cluster



Table 1: Mean classification accuracy on digit classification. M:
MNIST; MM: MNIST-M, S: SVHN, U: USPS. The best is shown
in red. The superscript shows the standard deviation. *UNIT trains
with the extended SVHN (> 500K images vs ours 72K). *Pixel DA
uses (= 1, 000) of labeled target domain data as a validation set for
tuning the hyper-parameters.

method S“M [M>MM | M—U |[MM—M | MM—-U | UM
Source Only || 62.10 55.98 78.30 84.46 80.43 50.64
1-NN 35.86 12.58 41.22 82.13 36.90 38.45
CORAL [38] || 63.10%% | 57.7007 81.05%6 | 84.90 87.54 85.0105
DANN[13] 73.80°6 | 77.40 81.60% | 61.05 85.34 77.4004
ADDA[40] 77.6875 | 91.479F 90.5173 | 92.8206 80.70°5 | 90.10%
DTN[44] 81.407F | 85.70°7 85.807-1 | 88.80% 90.68%7 | 89.04%
PixelDA[3] - 98.10" 9410° | — - -
UNIT[22] 90.6* - 92.90 - 90.60
DSN[4] 82.70%7 | 83.200% | 91.65%7 | 90.200% | 89.95%2 | 91.40°7
MCDA[4] 96.20"7 | — 96.5007 | — - 94.1003
Ours 94.6795 | 98.01°% | 99.05"7 | 99.11°" 99.16" 97.85"
Eours' ial Discrimil ) I Ours (Task-specific Discrimil ,}

99
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Figure 4: Comparison of proposed task-specific discriminator with

the standard adversarial discriminator on Digit dataset.

MM-->M MM-->U U-->M

structure. This superiority also benefits from the proposed
source and target domain regularizers, which improve the
source feature domain-invariance and the classifier’s robust-
ness respectively. See Sec. 4.4 for more details.

4.2. Results on Object Recognition

We also evaluate our method on two object recognition
benchmark datasets VisDA [31] and PACS [21]. We follow
MCDA [33], and use ResNet101 [16] as the backbone net-
work which was pretrained on ImageNet dataset, and then
finetune the parameters of ResNet101 with the source only
VisDA dataset according to the procedure described in [33].
For the PACS dataset, we also follow the experimental pro-
tocol in [27], using ResNet18 [16] pretrained on ImageNet
dataset, and training our model considering 3 domains as
sources and the remaining as target, using all the images of
each domain. For these experiments, we set the learning rate
of resnets to 10~?. We choose this small learning rate for
ResNet parameters since the domain shift for both VisDA
and PACS are significant, the training procedure benefits
from a mild parameter updates back-propagated from the
loss. Results for this experiment are summarized in Tab. 2
& Tab. 3. We observe that our model achieved, on average,
the best performance compared to other competing methods
for both datasets. The higher performance of our method
is mainly attributed to incorporating the category-level in-
formation into the domain alignment through the proposed
task-specific discriminator, which is beneficial to boost the

discriminability of the source/target features.

4.3. Analysis of the task-specific discriminator

To measure how effective the new task-specific discrimi-
nator is, we conducted an experiment to compare the task-
specific discriminator with the standard adversarial discrim-
inator (training a logistic function on the discriminator by
assigning labels 0 and 1 to the source and target domains
respectively and training the encoder with inverted labels).
The results are shown in Fig. 4. As is evident from the figure,
there is a substantial increase in accuracy over all adaptation
scenarios on switching from the standard adversarial dis-
criminator to our task-specific discriminator. The superiority
of the performance is mainly due to explicitly accounting
for task knowledge in the proposed discriminator during ad-
versarial training that encourages the discriminativity of the
source/target samples in the feature space.

We further visualize the distribution of the learnt shared
features to investigate the effect of task-specific discrimina-
tor (Task-d) and its comparison to adversarial discriminator
(Adv-d). We use t-SNE [26] on SVHN to MNIST adap-
tation to visualize shared feature representations from two
domains. Fig. 5 shows shared features from source (SVHN)
and target (MNIST) before adaptation (a,d), after adaptation
with Adv-d (b,e), and after adaptation with Task-d (c,f).

While a significant distribution gap is present between
non-adapted features across domains (a), the domain discrep-
ancy is significantly reduced in the feature space for both
Adv-d (b) and Task-d (c). On the other hand, adaptation
with Task-d led to pure and well-separated clusters in fea-
ture space compared to the adaptation with Adv-d, and leads
to superior class separability. As supported by the quantita-
tive results in Fig. 4, this implies that enforcing clustering in
addition to domain-invariant embedding was essential for re-
ducing the classification error. This is depicted in (f), where
the points in the shared space are grouped into class-specific
subgroups; color indicates the class label. This is in contrast
to Fig. Se, where the features show less class-specificity.

4.4. Ablation Studies

We performed an ablation study for our unsupervised do-
main adaptation approach on Digit dataset. Specifically, we
considered training without source regularization, denoted
as Ours (w/0-s), training without target regularization, Qurs
(w/0-t), and training by excluding both the source and the
target regularization, Ours (w/o-st).

The results are shown in Fig. 6. As can be seen, removing
one or more of the objectives results in noticeable perfor-
mance degradation. The more parts are removed, the worse
the performance is. More precisely, disabling the source reg-
ularizer results in an average =~ 3.5% drop in performance.
That demonstrates that the source regularizer can improve the
generalization over target samples by encouraging the source



Table 2: Accuracy of ResNet101 model fine-tuned on the VisDA dataset. Last column shows the average rank of each method over all

classes. The best in bold red, second best in red.

Method

plane bcycl bus car horse knife mcycl person plant sktbrd train truck | mean | Ave. ranking
Source Only || 55.1 533 619 59.1 806 179 79.7 312  81.0 265 735 85 524 491
MMD [24] 87.1 63.0 765 420 903 429 859 53.1 497 363 858 20.7 | 61.13 3.08
DANN [12] 819 777 828 443 812 295 651 286 519 546 828 7.8 | 5742 3.00
MCDA [33] || 87.0 609 83.7 640 889 796 847 769 88.6 403 83.0 258 | 71.90 2.41
Ours H 882 785 79.7 711 900 81.6 849 723 920 526 829 184 [ 74.03 [ 1.83

(d) Original (by classes)

(e) Adversarial discriminator

(f) Task-specific discriminator

Figure 5: Feature visualization for embedding of digit datasets for adapting SVHN to MNIST using t-SNE algorithm. The first and the
second rows show the domains and classes, respectively, with color indicating domain and class membership. (a,d) Original features. (b,e)
learned features for Ours with (binary) adversarial discriminator. (c,f) learned features for Ours with task-specific discriminator.

features to be domain-invariant, less informative about the

Table 3: Mean classification accuracy on PACS dataset. The first
row indicates the target domain, while all the others are considered
as sources. The best (in bold red), the second best (in red).

method Sketch | Photo Art Cartoon | Mean
Resnet18 (Source Only) 60.10 | 92.90 | 74.70 72.40 75.00
DIAL [5] 66.80 | 97.00 | 87.30 85.50 84.20
DLD [27] 69.60 | 97.00 | 87.70 86.90 85.30
Ours 71.69 | 96.81 | 89.48 | 88.91 86.72
W ours(tut [l ours(wo-y [l ours(w/o-s) [l Ours(wio-st)
99
96
) I I II
90 .
S-->M M-->MM MM-->U U-->M

Figure 6: Ablation of the proposed method on Digit dataset. The
regularization terms contribute to the overall performance.

identity of either of the domains. Immobilizing the target
regularizer leads to ~ 2.0% average drop in performance.
These results strongly indicate that it is beneficial to make
use of the information from unlabeled target data the dur-
ing classifier learning process, which further strengthens the
feature discriminability in the target domain. Finally, the
average performance drop that stems from disabling both the
source and the target regularizer is ~ 5.5%. This suggests
that the two components operate in harmony with each other,
forming an effective solution for domain adaptation.

5. Conclusion

We proposed a method to boosts the unsupervised do-
main adaptation by explicitly accounting for task knowledge
in the cross-domain alignment discriminator, while simul-
taneously exploiting the agglomerate structure of the unla-
beled target data using important regularization constraints.
Our experiments demonstrate the proposed model achieves
state-of-the-art performance across several domain adapta-
tion benchmarks.
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