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Abstract

Supervised learning with a convolutional neural network

is recognized as a powerful means of image restoration.

However, most such methods have been designed for ap-

plication to grayscale and/or color images; therefore, they

have limited success when applied to hyperspectral image

restoration. This is partially owing to large datasets being

difficult to collect, and also the heavy computational load

associated with the restoration of an image with many spec-

tral bands. To address this difficulty, we propose a novel

self-supervised learning strategy for application to hyper-

spectral image restoration. Our method automatically cre-

ates a training dataset from a single degraded image and

trains a denoising network without any clear images. An-

other notable feature of our method is the use of a separable

convolutional layer. We undertake experiments to prove that

a separable network allows us to acquire the prior of a hy-

perspectral image and to realize efficient restoration. We

demonstrate the validity of our method through extensive

experiments and show that our method has better charac-

teristics than those that are currently regarded as state-of-

the-art.

1. Introduction

Hyperspectral image (HSI) restoration, whereby a de-

graded image is processed to produce a clear image, is an

essential technique in HSI applications [3, 13, 14, 16] given

that hyperspectral images are prone to being adversely af-

fected by noise, which prevents the precise extraction of

useful information in applications such as classification,

unmixing, and target detection [4, 18, 23]. Various HSI

restoration methods have been proposed. Optimization-

based methods with image priors have constituted one of

the mainstreams in the HSI reconstruction, and have been

the subject of considerable research. Some methods have

exploited the sparsity, low-rank properties, and non-local

correlation of HSIs to restore images by solving optimiza-

tion problems based on the priors [1, 8, 20, 21, 22]. Most of

Figure 1. Self-supervised restoration: (top) We add noise to an

noisy input. (bottom) We train CNN by setting the input as a target

and the image with the added noise as an input for CNN.

these methods can be regarded as convex optimization prob-

lems and can produce clear images as global optimums.

Aside from the methods that rely on designed priors,

deep learning has been successfully applied to various

computer vision and image processing tasks, while image

restoration based on deep neural networks (DNNs) has re-

cently been the subject of research. It has been shown

that restoration with a high degree of precision can be at-

tained [5, 6, 15, 24] through the use of large supervised

datasets. Although deep learning becomes integrated into

image-restoration tasks, the high performance is limited to

the applications of grayscale/color images. This is a result

of it being extremely difficult to collect large datasets re-

quired for HSIs for supervised training, because special HSI

sensors are required, and it often takes much time and effort

to capture an HSI.

Another problem is that, to fully exploit the features of

an HSI through the application of deep learning, a large-

scale DNN is required. An HSI typically has more than a

hundred spectral bands and, thus, to exploit the correlation

between an HSI in the spectral domain, we need intermedi-

ate feature maps with many more channels in the DNN. For

example, DnCNN [24] uses 17–20 layers with 64 filter ker-

nels in each layer to train the denoising network to handle



color images. Therefore, based on the DnCNN settings, it

would be preferable to use 64×N/3 filters in each layer to

capture the spectral information of an HSI with N spectral

bands. Therefore, any increase in the number of parameters

makes it difficult to train a network.

To circumvent these difficulties, we propose a novel

DNN-based learning scheme for HSI restoration by intro-

ducing a new self-supervising strategy. Our method creates

input/target patches from a single deteriorated image and

trains denoising networks without any clear images (Fig-

ure 1). Another feature of our method is that, consider-

ing the anisotropic property of HSIs, we can utilize a sep-

arable convolutional network. We show that the proposed

network with the separable convolution efficiently captures

an HSI prior, through experiments involving some image-

restoration tasks. To the best of our knowledge, this is

the first attempt to apply self-supervised learning to HSI

restoration with DNNs. The results of our experiments

showed that our method is comparable to or outperforms

conventional methods based on model-based methods.

2. Separable CNN Capturing Structural Prior

2.1. Architecture

A non-separable CNN with dense coefficients is inher-

ently better able to capture the features of images than a

separable CNN with the same number of layers, but it is

often hard to train it for an image cube with many chan-

nels like a HSI, because we may need more kernels for each

layer to capture the features in the spectral direction. This

would make its optimization very difficult.

On the other hand, it is well known that a measured

spectrum in a hyperspectral pixel can be approximated by

a small fraction of spectral signatures, called endmem-

bers. In an aerial scene, endmembers correspond to fa-

miliar macroscopic materials. In general, endmembers in

a neighbor tends to be highly correlated, which leads to the

low-rankness of the HSI, especially in the spectral direc-

tion. Considering the property of HSIs, we can safely ig-

nore diagonal correlations in the spatial-spectral plains be-

cause less information is carried by the neighboring pixels

in the diagonal direction, pointing to the advantage of using

a separable network.

In this section, we introduce the architecture with the

separable CNN and examine, through self-supervised im-

age restoration, that the separable architecture not only re-

duces the training complexity but also encloses the struc-

tural advantage to represent an HSI.

Figure 2 illustrates our network that includes separable

convolutional layers, batch normalization units, and ReLU.

Separable convolution [7] was originally introduced to re-

duce the computational complexity of CNN by approximat-

ing 3D convolution to separate convolutions in the spatial

and channel dimensions. Convolution in the spatial dimen-

sion is performed independently in each channel (depth-

wise convolution), while convolution in the channel direc-

tion is performed using a 1D kernel (point-wise convolu-

tion).

2.2. Performance of Separable CNN

We now demonstrate that a network with a separable

convolution can efficiently capture the structural prior of

the HSIs by considering a simple example of image hole-

filling. Let the linear operator A ∈ {0, 1}N×N denote a

known random-sampling matrix, where N is the total num-

ber of pixels in an HSI. Given only the pixels corresponding

to the sampling points of A, we consider the problem of re-

covering an entire image x.

Here, we train a network by minimizing the mean

squared error only for those pixels masked by A, that is,

min
Φ

‖Ax−AΦ(Ax)‖2
2
, (1)

where Ax is a set of measured pixels, and we denote a neu-

ral network by Φ. The aim of the task is to estimate an

original image x.

We trained two networks by minimizing (1). One of

these was a non-separable CNN with tightly coupled co-

efficients. It had eight layers, with each layer having

3 × 3 × M × L parameters, where M , L are the channel

lengths of the input and output of a convolution, respec-

tively. The other was a separable CNN like that shown in

Figure 2. This also has eight layers, with each layer hav-

ing 3 × 3 × 1 × M parameters for the depth-wise convo-

lution and 1 × 1 × M × L parameters for the point-wise

convolution. In the experiment, we divided an HSI into

20×20×{number of spectral bands} blocks and used them

as inputs. The training was carried out by carefully tuning

the hyper-parameters to attain the best performance. Note

that this training with (1) differs from DIP in that we used

the image as is, while DIP starts with random samples to

generate a clear image.

Figure 3 illustrates an example of the hole-filling task.

Figure 3 (a) and (b) show the original image and an ob-

servation, respectively. The results obtained with the non-

separable and separable CNN are shown in Figure 3 (c)

and (d), respectively. Both of the networks interpolates the

holes even though the cost is evaluated only on the sampling

points indicated by A by virtue of smoothing capability of

the CNNs. It should be noted that even though the separa-

ble CNN has the same number of layers and fewer parame-

ters, the performance is superior to that of the non-separable

CNN.



Figure 2. Architecture: We use a simple separable CNN composed of depth-wise and point-wise convolutional layers. We use M kernels

for a single depth-wise layer, and its M outputs are concatenated with respect to the channel direction.

(a) Original (b) Observation

(c) PSNR: 37.88 (d) PSNR: 39.13
Figure 3. Self-supervised hole-filling: (a) original image, (b) ob-

servation, (c) result obtained with dense network, (d) results ob-

tained with separable network (PSNR values indicate the mean of

PSNR for all bands)

3. Self-supervised Training for Gaussian De-

noising

A CNN, composed of linear filters, is inherently able to

represent a signal with a high correlation. Ulyanov et al.

[19] exploited this property using Deep Image prior (DIP),

proposing a generative network that maps a random noise

vector to a natural image. They demonstrated that the struc-

ture of the CNN itself encloses the statistical prior of the im-

ages and exhibits excellent performance with some restora-

tion tasks, such as denoising, super-resolution, and inpaint-

ing. Lehtinen et al. [11] used a noisy image pair to learn

the ”noise to noise” relationship between the two measure-

ments, showing that it is possible to produce a clear image

using the smoothing property of the CNNs. They exper-

imentally demonstrated that a clear image, which is often

hard to obtain, is not needed to train a denoising network.

Krull et al. [10] built on this idea to develop self-supervised

learning and proposed a method called Noise2Void (N2V),

in which an input image is predicted using a convolutional

kernel without a center coefficient. DIP and N2V do not

require us to make any assumptions for the degradation

process of an input image. However, the use of DIP of-

ten gives rise to over-smoothing, especially when applied

to the restoration of severely degraded images, while the

performance of N2V becomes worsen when an image does

not have a high correlation in a local region, such as im-

ages with many holes. Shocher et al. [17] proposed an-

other approach to self-supervised learning for image super-

resolution. They assumed that the statistical properties of

an image do not change with the scale, and that the relation-

ship between an original image and its downsized version is

learned using a smaller image pair that is made based on the

measurements.

Our work was inspired by these methods. In the next sec-

tion, we propose a novel self-supervised strategy and intro-

duce a separable convolutional network for HSI restoration.

We show that the separable structure is highly suited to the

HSI restoration tasks, achieving high-fidelity restoration by

our self-supervised learning.

We consider a degradation model with additive noise:

y = x+ n, (2)

where n denotes the Gaussian noise with a standard devia-

tion σ. Our goal is to estimate a latent clear image x, given

a degraded observation y.

Our denoising method builds upon the fact that an HSI

has rich information even when it is degraded by noise, and

that the separable convolution captures the latent low-rank

structure of an HSI. Our method involves finding a sepa-

rable CNN that can remove noise by learning only with a

degraded input. In the training step, we automatically cre-

ate a target image and minimize the error between the input

and the target (Figure 1).

We assume that a network that can recover a clear image

x from an observation y also has the ability to recover y

from y+n. Based on this assumption, we first estimate the



Table 1. Results for Gaussian noise removal

Methods σ PaviaC PaviaU Frisco Stanford IndianPine Washington Cupurite

BM4D [12] 0.05 38.54 38.53 40.41 40.74 38.01 39.59 38.14

0.1 34.94 34.94 36.74 37.04 35.26 35.58 34.77

0.15 32.83 32.71 34.75 35.04 33.69 33.41 32.99

0.2 31.4 31.15 33.39 33.67 32.55 31.98 31.83

0.25 30.35 30.00 32.33 32.65 31.65 30.89 31.00

FastHyDe [25] 0.05 40.68 40.23 45.78 46.08 38.96 44.86 39.57

0.1 37.56 37.27 41.78 42.19 37.29 40.71 37.33

0.15 35.76 35.35 39.57 40.20 36.04 38.38 36.18

0.2 34.39 34.11 38.20 38.76 35.17 36.80 35.39

0.25 33.46 33.05 37.13 37.39 34.48 35.71 34.81

DIP [19] 0.05 34.87 34.45 37.72 37.18 36.12 33.84 37.23

0.1 32.74 32.85 33.82 32.43 31.65 30.56 36.90

0.15 30.13 30.52 31.08 28.70 28.42 27.23 35.60

0.2 27.02 27.91 27.61 25.65 25.99 24.71 33.79

0.25 25.40 25.62 25.45 24.08 24.12 22.63 32.12

N2V [10] 0.05 32.32 31.32 35.57 37.20 33.42 35.30 33.68

0.1 31.77 30.64 35.35 36.14 34.00 34.57 33.03

0.15 31.38 30.36 35.26 35.57 33.81 33.78 32.72

0.2 31.04 30.10 34.56 34.64 33.34 33.04 32.32

0.25 30.73 29.71 34.06 34.11 32.90 32.73 32.06

Ours 0.05 38.84 38.66 42.62 45.78 39.74 44.09 40.32

0.1 37.60 37.65 41.81 42.29 37.66 41.43 38.94

0.15 35.73 35.87 39.76 40.35 36.48 39.52 37.51

0.2 34.87 34.81 38.72 39.02 35.55 37.85 36.72

0.25 33.96 33.73 37.58 37.90 34.75 36.63 35.86

standard deviation σ′ of the noise from the noisy image y

and further add noise with σ̃ = (1 + α)σ′, (α << 1) to y,

as follows:

ỹ = y + ñ, (3)

where ñ ∼ N (0, σ̃2). We adopted the method proposed in

[2] to estimate the standard deviation. Considering the es-

timation error, we randomly sample the value of α within a

range of [−0.1, 0.1] and created training sets {y′,y} during

the training steps. We optimize the network with the train-

ing sets {y′,y} by minimizing a simple loss function with

a ℓ2 norm:

min
Φ

‖Φ(ỹ)− y‖2
2
, (4)

where Φ is the separable CNN shown in Figure 2. This

strategy efficiently trains the network and yields sufficient

performance, but we further enhance the performance by

replacing the input image y with a restored image every a

few hundred epochs.

4. Experiments

We collect a dataset of HSIs from web sites, which are

commonly used for research purposes. The images have

100 to 225 spectral channels. We used four separable layers

in the network. Each layer had 100 depth-wise kernels with

a size of (3 × 3 × 1), 400 point-wise kernels with a size of

(1×1×100), batch normalization, and ReLU. For training,

data were augmented by rotating and flipping the input data

and were then divided into 20 × 20 × {number of bands}
blocks. We used a minibatch size of 32, and the network

was trained using the Adam optimizer [9]. We started with

a learning rate of 0.01, which was halved every dozens of

epochs1.

In our experiments, we added Gaussian noise with a stan-

dard deviation of σ = [0.05, 0.1, 0.15, 0.2, 0.25] and eval-

uated the performance by averaging the PSNR for all the

bands. We compared our method with the conventional

model-based methods, namely, BM4D [12] and FastHyDe

[25], and self-supervised DNN methods, that is, DIP [19]

and N2V [10]. We used dense networks for DIP and N2V

with the same number of layers shown in their papers, and in

each layer we appropriately extended the number of chan-

nels. With our method, we take a noisy image and estimate

the standard deviation of the noise from the input using the

technique described in [2]. Using the estimated standard

1The code is available on https://github.com/separable-image-

prior/self-supervised-hyperspectral-image-restoration



deviation, we further added Gaussian noise and used it as a

target image, as described in Section 3.

Table 1 lists the average PSNR values for some images.

From the table, we can confirm the superiority of the pro-

posed method at high noise levels over FastHyDe, which is

known as state-of-the-art in HSI denoising. When the noise

level is low, FastHyDe significantly performs well. Focus-

ing on the DNN-based method, the performance of DIP is

inferior to the optimization-based method, but N2V shows

the same performance as the optimization-based method at

high noise levels.
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