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Abstract

We have witnessed the explosive success of deep neural

networks (DNNs). However, DNNs typically assume a large

amount of training data, and this is not always available in

practical scenarios. In this paper, we present zero-shot se-

mantic segmentation, where a model that has never seen

the target class during training. For this purpose, we pro-

pose variational mapping, which facilitates effective learn-

ing by mapping the class label embedding vectors from the

semantic space to the visual space. Experimental results us-

ing Pascal VOC 2012 show that our proposed method can

achieve a mean intersection over union (mIoU) of 42.2, and

we believe that this can serve as a baseline for similar re-

search in the future.

1. Introduction

Deep neural networks (DNNs) have demonstrated con-

siderable success in the field of image recognition [15, 11,

28], and since then they have been used for various tasks.

Although most tasks require a large amount of data, there

are some cases where typical DNNs cannot be used ow-

ing to a lack of data in the real world. Few-shot learning

and zero-shot learning are useful for tasks that do not have

enough data. The goal of few-shot learning is to solve a

task with few samples of the target class. The major ap-

proach to few-shot learning is an efficient method called

meta-learning, which avoids overfitting. The goal of zero-

shot learning is to solve a task with no samples of the target

(unseen) class, but with semantic information regarding the

seen and unseen classes. The type of semantic informa-

tion depends on the dataset, but in most cases we use class

label embeddings—for example, word embeddings of the

classes, or attributes such as color and shape. For zero-shot

learning, many researchers focus on how to use class label

embeddings in the semantic space effectively.

Several studies have considered few- and zero-shot

learning for solving image classification tasks. Recently,

however, focus has shifted to more difficult tasks, such as

zero-shot detection [5, 3] and few-shot semantic segmenta-

Figure 1: Overview of zero-shot semantic segmentation.

There is no overlap between the seen classes in the train-

ing set and the unseen classes in the test set.

tion [26, 23, 7, 13]. In this paper, we undertake zero-shot

semantic segmentation. This task involves performing se-

mantic segmentation for unseen classes that do not exist at

the time of training. Instead of image-mask pairs, we can

use class label embeddings of the seen and unseen classes.

An overview of the task is shown in Fig. 1. In this paper,

we propose a method for solving this task, and we compare

our method with some baseline methods. Taking into con-

sideration previous research on zero-shot classification and

few-shot semantic segmentation, our proposed method con-

tains a two-branched approach: a segmentation branch, and

a conditioning branch. We also compare the results of the

experiments to few-shot semantic segmentation using the

existing method.

The main contributions of this work are threefold.

1) We set a new benchmark for zero-shot semantic seg-

mentation, inspired by previous work on few-shot semantic

segmentation.

2) We show that a meta-learning approach using a two-

branched architecture can be effectively applied to zero-shot

semantic segmentation.

3) We propose a novel method that uses variational map-

ping and compare it to baseline methods.



The rest of the paper is organized as follows. In Section

2, we discuss related work on zero-shot learning and im-

age segmentation. In Section 3, we define the problem set-

tings and notations. In Section 4, we describe our proposed

method in detail. In Section 5, we present the datasets, eval-

uation metric, baseline methods, and experimental results.

In Section 6, we present our conclusions.

2. Related Work

2.1. Zero-Shot Learning

Several methods of zero-shot learning have been pro-

posed in computer vision. According to [33], they are

classified into 4 types: learning linear compatibility, learn-

ing nonlinear compatibility, learning intermediate attribute

classifiers, and hybrid models. Models for learning linear

compatibility [9, 1, 2, 24] use distance learning between

visual features extracted from images by the encoders and

class label embeddings for each class. Learning nonlinear

compatibility includes nonlinearity in distance learning—

for example, a method using the max function [31], and a

method using the tanh function [29]. [16] proposes training

intermediate attribute classifiers for each attribute such as a

color or shape, and performing predictions with the combi-

nation of the classifiers. Hybrid model methods normally

train the model using the seen classes, and then obtain pre-

diction results for the unseen classes. This prediction result

presents the ratio of what class of the seen classes is close to

the unseen class, and regards it as class embedding for the

query image of the unseen class. There are three patterns

of feature alignment: in the latent space [35], in the seman-

tic space [21], and in the visual space [4]. These methods

achieve good results with zero-shot classification.

According to our review, there are two tasks similar to

zero-shot semantic segmentation. Naha et al. [20] proposed

zero-shot figure-ground segmentation, which is pixel-wise

binary classification of either the foreground or background.

They propose a three-step method: transferring from the

seen class to the unseen class using the approach of a hy-

brid model method, as described above; refinement with

logistic regression for each pixel, as with self-supervised

learning; and a graph cut. However, it is necessary to per-

form logistic regression at the time of testing, and this is

very time-consuming. The method is also limited to bi-

nary pixel-wise classification; multi-way segmentation is

not possible with this method. Zhao et al. [36] propose open

vocabulary scene parsing. They use the graph structure of

WordNet [19] for jointly embedding vocabulary concepts

and image pixel features, and perform multi-label seman-

tic segmentation in consideration of the relation between

hypernyms and hyponyms. For example, they can predict

“furniture” from the unseen classes, using “table” or “sofa”

from the seen classes. The main purpose of this method is

not zero-shot learning, however. Rather, it is designed to ex-

tend the label to the hypernym or hyponym of the concept

for the label, and it is premised on creating a word concept

hierarchy from WordNet, etc. Therefore, the graph creation

cost is considerable, and the created graph is sparse when

there are few seen classes.

2.2. Image Segmentation

Semantic segmentation is a task of pixel-level object cat-

egorization of an input image. Many researchers use a

convolutional neural network (CNN)-based method for this

task, and our architecture is based on classification with

a fully convolutional network (FCN) [17]. All classes of

a so-called query image at testing time are the same as

at training time. In addition, there are some studies on

segmentation referring expressions like a keyword or sen-

tence [27, 14, 12, 18]. However, they need various expres-

sion at training time.

Few-shot semantic segmentation is a relatively new task.

In this task, only a few samples (image-mask pairs) of the

same class as a query image can be used at testing time.

Shaban et al. [26] first researched this task with an ar-

chitecture called one-shot learning for semantic segmen-

tation (OSLSM). [26] and all of the other previous stud-

ies [23, 7, 13] use metric-based meta-learning with a two-

branched approach on K-shot one-way semantic segmenta-

tion. Note that one-way semantic segmentation tasks are

binary classifications (Class 1 and the “background”), and

they are so-called because the “background” label is not

counted for K-way. In addition, [7] proposed two-way

(Class 1, Class 2, and the “background”) semantic segmen-

tation.

2.3. Zero-Shot Semantic Segmentation

One work on zero-shot semantic segmentation have very

recently appeared [32]. They propose a model which con-

sists of visual-semantic embedding module that encodes

images in the word embedding space and a semantic pro-

jection layer that produces class probabilities. We plan to

investigate similarities and differences between our method

and [32] in future work.

3. Problem Formulation

In this study, we tackle zero-shot one-way semantic seg-

mentation. As such, we handle binary semantic masks.

At the time of training, we use the training set S =
{xi, yi(li), w(li)}

NS

i=1
, where for NS samples xi is the input

image, yi(li) is the binary semantic segmentation mask, and

wi(li) is the class label embedding, which represents the

word vector of the seen class label li ∈ Ls by GloVe [22].

We train the model to make the prediction mask ŷi(li) closer

to the ground-truth mask Yi(li) given the image xi and the

word vector wi. At the time of testing, we use the test set



U = {xj , yj(lj), w(lj)}
NU

j=1
, which contains NU samples

related to the unseen class label lj ∈ Lu. The goal of this

task is to obtain a model that accurately predicts the seman-

tic mask ŷj(lj) when given the image xj and the word vec-

tor wj .

Note that there is no overlap between seen classes and

unseen classes, i.e., Ls ∩ Lu = ∅. This is the most im-

portant difference from typical semantic image segmenta-

tion, where the classes in the training set and the classes

in the test set are identical. Therefore, existing segmenta-

tion methods for typical semantic segmentation, such as an

FCN [17], are not effective for zero-shot semantic segmen-

tation.

4. Proposed Method

4.1. Variational Mapping

With few-shot semantic segmentation [26, 23, 7, 13], an

input image is called a query image, and a few images with

annotations of the same class as the query image are called

support images. The goal of this task is to predict the seg-

mentation mask of the query image using the feature vector

extracted from the support images. When training and test-

ing, both the query images and support images are randomly

sampled from the training set or the test set, respectively.

Therefore, the model can learn the diverse conditions based

on the support images, which are sampled many times dur-

ing training.

With zero-shot semantic segmentation, by contrast, there

are only class label embeddings, rather than a few images

with annotations. Nevertheless, it is important to extract se-

mantic feature maps from them, even though the extracted

feature maps are not diverse. This is because the number of

conditions is equal to the number of the types of these em-

beddings, which is also the same as the number of classes

in the dataset. Therefore, the model cannot learn the di-

verse conditions as well as with few-shot semantic segmen-

tation. To train the model with the diverse conditions, we

propose variational mapping from the semantic space to the

visual space. Variational mapping is composed of two par-

allel fully connected layers. When inputting a class label

embedding, one of these layers is used to obtain a mean

vector µ, which is the same as typical mapping from the

semantic space to the visual space. The other layer is used

to calculate the variance vector σ, which is initialized with

zero values. Then, sampling from the normal distribution

N (µ, σ), we obtain the semantic feature map z in the visual

space. This feature is exactly the condition with diversity.

4.2. Distance Metric

Some previous studies on few/zero-shot learning focus

on calculating the distance between an image feature map

and a semantic feature map. According to Sung et al. [30],

fixed pre-specified distance metrics, such as the Euclidean

or cosine distance, assume that features are solely com-

pared element-wise. Hence, they are limited by the extent

to which the feature embedding networks generate inade-

quately discriminate representations. Rather than fixed met-

rics, they propose a network with deep learning for a non-

linear similarity metric jointly with embedding. In refer-

ence to their network, we adopt feature concatenation with

the following embedding module for the distance metric.

Specifically, a semantic feature map from variational map-

ping is spatially tiled and concatenated in depth with a deep

image feature map extracted from the encoder. Then, we

apply two 1 × 1 convolutions with a rectified linear unit

(ReLU) function between the two convolutions to the con-

catenated feature in the decoder. Tiling a semantic feature

map and 1 × 1 convolutions differs from the classification

network by [30], because the output of the encoder is not a

vector (tensor of rank 1), but rather a feature map (tensor of

rank 3) in semantic segmentation.

4.3. Overall Architecture

We propose a meta-learning approach, where inputs are

an image and a word vector (class label embedding), and

the output is a predicted segmentation mask. An overview

is shown in Fig. 2. The architecture has two branches: a

conditioning branch, and a segmentation branch. In the con-

ditioning branch, a 300-dimensional word embedding w(l)
of the class label l is input to two parallel fully connected

layers (denoted φ and ψ). A 128-dimensional mean vec-

tor µ and a 128-dimensional variance vector σ are obtained.

Then, a 128-dimensional semantic feature map z is sampled

from the normal distribution as Eq. (1). Finally, variational

mapping is performed from the semantic space to the visual

space.

z ∼ N (µ, σ) = N (φ(w(l)), ψ(w(l))) (1)

In the segmentation branch, by contrast, the encoder E is

based on the VGG-16 [28] architecture, and we remove all

three fully connected layers from the original one. Follow-

ing [26, 23, 7, 13], the weight of the encoder is initialized

and pre-trained on ImageNet [6]. The encoder E outputs a

deep image feature map m with 256 channels. As explained

above, the image feature map m and the semantic feature

map z with spatial tiling are concatenated in the middle of

the segmentation branch. The decoder D is composed two

1 × 1 convolutions and a transposed convolution upsam-

pled to the original size. Note that there is a ReLU function

between two convolutions, and it learns the non-linear dis-

tance in a data-driven way. Finally, the decoder D receives

the concatenated feature map, and outputs a predicted seg-

mentation mask ŷ(l) of the same size as the input image x.

The whole architecture is expressed as Eq. (2):



Figure 2: Overview of our two-branched architecture. The conditioning branch receives a word embedding of the class label

as input, and outputs the semantic feature map. The segmentation branch receives an image as input, and outputs a predicted

segmentation mask that is the same size as the input image.

ŷ(l) = D(m⊕ tile(z)) = D(E(x)⊕ tile(z)) (2)

We use the pixel-wise cross entropy loss at the time of

training. The entire architecture is an end-to-end trainable

network for fast training.

5. Experiments

5.1. Datasets and Metric

We used PASCAL-5i (i = 0, 1, 2, 3) developed by Shaban

et al. [26]. These datasets are based on the combination of

images and annotations from PASCAL VOC 2012 [8]1 and

its extra annotations from SDS [10]2. The PASCAL VOC

validation set was regarded as the test set, and the others as

the training set. This dataset is standard for semantic seg-

mentation. In addition, for few/zero-shot tasks, 5 classes

were sampled from the 20 classes in this combined dataset

and considered as the test label set LU = {l4i+1, ..., l4i+5}.

The remaining 15 classes were considered as the training la-

bel set LS in PASCAL-5i. The names of the unseen labels

(test labels) are shown in Table 1. Each PASCAL-5i con-

tained image-annotation pairs corresponding to the split of

the labels. We conducted four-fold cross-validation testing

on PASCAL-5i.
The class label embeddings we used were 300-

dimensional word embedding vectors by GloVe [22]3 pre-

1http://host.robots.ox.ac.uk/pascal/VOC/

voc2012/
2https://www2.eecs.berkeley.edu/Research/

Projects/CS/vision/shape/sds/
3https://nlp.stanford.edu/projects/glove/

Table 1: Unseen classes for a four-fold cross-validation test.

Dataset Unseen classes

PASCAL-50 aeroplane, bicycle, bird, boat, bottle

PASCAL-51 bus, car, cat, chair, cow

PASCAL-52 diningtable, dog, horse, motorbike, person

PASCAL-53 potted plant, sheep, sofa, train, tv/monitor

trained on Common Crawl with 840B tokens. The word

embeddings of the two labels whose names contain multiple

words, viz., “potted plant” and “tv/monitor”, are regarded as

the mean vector of each word in the label name, e.g. aver-

aging the word vector of “tv” and that of “monitor”.

As a metric for the experiments, we adopted a conven-

tional method that calculates the mean intersection over

union (mIoU) of the test sets in PASCAL-5i. In addition,

we calculated the mean value of all the mIoU scores for

each of the four tests.

5.2. Baselines

We compared our proposed method to the following five

baseline methods in the PASCAL-5i dataset. All the base-

line methods use VGG-16 [28] as backbones for their net-

work architectures, as does our method.

Foreground-Background (FG-BG)

We remove the conditioning branch from our method.

We do not perform feature concatenation, nor do we

use the class label embeddings. This is the most naive

baseline method.



Table 2: Results (mIoU) of zero-shot one-way semantic segmentation on PASCAL-5i. Note that testing with the few-shot

setting differs from the zero-shot setting.

Methods PASCAL-50 PASCAL-51 PASCAL-52 PASCAL-53 Mean

FG-BG 29.6 38.7 38.1 32.8 34.8

CosSim 31.7 48.8 41.1 28.2 37.4

CosSim + Mapping 34.5 52.0 44.1 33.3 41.0

Concat 36.9 50.0 40.7 34.8 40.6

Concat + Mapping 38.7 50.3 40.0 31.8 40.2

Proposed Method 39.6 52.6 41.0 35.6 42.2

FG-BG (few-shot) 27.4 51.7 34.0 26.4 34.9

OSLSM [26] (one-shot) 33.6 55.3 40.9 33.5 40.8

co-FCN [23, 34] (one-shot) 36.7 50.6 44.9 32.4 41.1

Cosine Similarity (CosSim)

Rather than performing feature concatenation, we cal-

culate the cosine similarity between the image feature

map with 300 channels and the word embedding vector

with 300 dimensions. To adjust the number of chan-

nels for the image feature map, the two 1× 1 convolu-

tions are not in the decoder, but rather in the encoder—

and, in particular, not before the transposed convolu-

tion for upsampling, but before the cosine similarity

operation.

Cosine Similarity + Mapping (CosSim + Mapping)

Instead of performing feature concatenation, we cal-

culate the cosine similarity between the image feature

map with 128 channels and the semantic feature map

with 128 dimensions extracted from the word embed-

ding vector by a fully connected layer. The 1× 1 con-

volutions of the two layers are in the same position as

the above CosSim, unlike with our proposed method.

Concatenation (Concat)

We do not perform any mapping of the word em-

bedding vector from the semantic space to the visual

space. We only concatenate the image feature map

with 256 channels and the word embedding vector

with 300 dimensions.

Concatenation + Mapping (Concat + Mapping)

We concatenate the image feature map with 256 chan-

nels and the semantic feature map with 128 dimensions

extracted from the word embedding vector by using a

fully connected layer.

5.3. Results

We implemented all the experiments on PASCAL-5i us-

ing PyTorch4. All models, including our proposed method

and the baseline methods, were trained and optimized with

4https://pytorch.org/

SGD [25] with a learning rate of 10−5, momentum of 0.9,

and a weight decay of 0.0005.

The experimental results are shown in Table 2. Our pro-

posed method achieved the best mIoU scores on three of the

four datasets. Moreover, from the mean of the four mIoU

scores, our method overwhelmed the naive baseline (FG-

BG), and it had better predictions than by not using varia-

tional mapping (Concat, Concat + Mapping). Although the

combination of the cosine similarity and normal mapping

also achieved a relatively good mean score, there was a dif-

ference of more than one point between CosSim + Mapping

and our method. Notably, the approach using both the co-

sine similarity and variational mapping failed to train, and

therefore the result is not included in Table 2. We believe

that the reason for this is that variational mapping and fixed

distance metrics such as the cosine similarity are incompat-

ible with each other.

Some previous studies on few-shot semantic segmen-

tation [26, 23, 7, 13] used the same backbones (VGG-

16 [28]), the same datasets (PASCAL-5i), and the same

metric (mIoU). They sampled not only a query image but

also a few annotated images at the time of testing. They

used 1000 examples as samples for testing, which is not the

same as with zero-shot or typical semantic segmentation.

However, we found that there was little difference between

the mean of the mIoU scores on the four datasets by FG-

BG with zero-shot semantic segmentation compared to the

few-shot setting (34.9 vs. 34.8). Hence, we assume that

we can adequately compare our method with zero-shot se-

mantic segmentation to existing methods using the few-shot

setting. In one-shot semantic segmentation, the reported

mean of the mIoU scores by OSLSM [26] was 40.8, and by

co-FCN [23, 34], it was 41.1. Our methods achieved 42.2,

and therefore zero-shot semantic segmentation can be accu-

rately predicted to the same extent with one-shot semantic

segmentation.

Fig. 3 shows some examples of the predicted qualitative

results on PASCAL-5i without using the class label embed-



Table 3: Detailed results of the pixel rate for all samples of

“aeroplane” in the test set of PASCAL-50 (average IoU of

“aeroplane”: 58.0).

Actual class

background aeroplane

Predicted

class

background 84.3 2.7

aeroplane 3.9 9.1

Table 4: Detailed results of the pixel rate for all samples

of “bottle” in the test set of PASCAL-50 (average IoU of

“bottle”: 33.1).

Actual class

background bottle

Predicted

class

background 73.2 14.9

bottle 3.1 8.9

dings (FG-BG), by directly using word embeddings of the

class labels (Concat), and by using the semantic feature map

with variational mapping (Ours). When utilizing class la-

bel embeddings, we can predict a better segmentation mask

covering the object region to the edge, although in the train-

ing set there is no image of the same class as the input im-

age.

However, there were some failure cases. We show two

examples in Fig. 4. It was difficult to predict the segmen-

tation mask of a small object in the input image, even with

conventional semantic segmentation, because the texture of

the object was difficult to recognize. This was especially

challenging with zero-shot semantic segmentation, where

there was no prior visual hint for recognizing the object.

Hence, there is still room for improvement.

The tendency of the prediction differs depending on the

class. We calculated the confusion matrices of the each ra-

tio of TP, FP, FN, and TN to the sum of them for each class.

The results for “aeroplane” are shown in Table 3, and those

for “bottle” are shown in Table 4. Regarding the rate of FN,

which refers to the number of pixels predicted as “back-

ground” that are actually in the object region, the value for

“bottle” was much higher than that for “aeroplane.” While

both of these two classes are in the test set in PASCAL-50,

it might be more difficult to predict the segmentation mask

for “bottle” than for “aeroplane.” This is because attributes

of the object and background surrounding it in the images

of “aeroplane” are similar to those of “car” and “train” in

the training set, whereas there are few similar situations in

the images of “bottle” to those of the other classes in the

training set.

6. Conclusions

In this paper, we introduced a new method for zero-shot

semantic segmentation, one that is more difficult than ex-

isting zero-shot classification/detection. With reference to

previous research on zero-shot learning and semantic im-

age segmentation, we proposed a novel framework to solve

this new task by effectively using class label embeddings.

Our two-branched architecture includes variational map-

ping, which helps train the model with diversity in the con-

ditioning branch, and feature concatenation with embed-

ding, a data-driven way to obtain a deep non-linear distance

metric. We demonstrated that the proposed method outper-

forms all of the baseline methods.

References

[1] Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and

Cordelia Schmid. Label-embedding for image classification.

IEEE Trans. Pattern Anal. Mach. Intell., 38(7):1425–1438,

2016.

[2] Zeynep Akata, Scott E. Reed, Daniel Walter, Honglak Lee,

and Bernt Schiele. Evaluation of output embeddings for fine-

grained image classification. In CVPR, pages 2927–2936.

IEEE Computer Society, 2015.

[3] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chel-

lappa, and Ajay Divakaran. Zero-shot object detection. In

Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and

Yair Weiss, editors, ECCV, volume 11205 of Lecture Notes

in Computer Science, pages 397–414. Springer, 2018.

[4] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei

Sha. Synthesized classifiers for zero-shot learning. In CVPR,

pages 5327–5336. IEEE Computer Society, 2016.

[5] Berkan Demirel, Ramazan Gokberk Cinbis, and Nazli

Ikizler-Cinbis. Zero-shot object detection by hybrid region

embedding. In BMVC, page 56. BMVA Press, 2018.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Fei-Fei Li. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255. IEEE Computer Society,

2009.

[7] Nanqing Dong and Eric Xing. Few-shot semantic segmen-

tation with prototype learning. In BMVC, page 79. BMVA

Press, 2018.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html,

2012.

[9] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy

Bengio, Jeffrey Dean, Marc’Aurelio Ranzato, and Tomas

Mikolov. Devise: A deep visual-semantic embedding model.

In Christopher J. C. Burges, Leon Bottou, Zoubin Ghahra-

mani, and Kilian Q. Weinberger, editors, NIPS, pages 2121–

2129, 2013.

[10] Bharath Hariharan, Pablo Andres Arbelaez, Ross B. Gir-

shick, and Jitendra Malik. Simultaneous detection and seg-

mentation. In David J. Fleet, Tomas Pajdla, Bernt Schiele,



Input image GT (IoU of plane) FG-BG (12.14) Concat (55.42) Ours (71.44)

Input image GT (IoU of boat) FG-BG (45.20) Concat (78.54) Ours (84.29)

Input image GT (IoU of bird) FG-BG (57.21) Concat (69.90) Ours (78.71)

Figure 3: Qualitative results of zero-shot semantic segmentation.

Input image GT (IoU of bottle) FG-BG (0.00) Concat (6.13) Ours (0.22)

Input image GT (IoU of bird) FG-BG (0.00) Concat (0.00) Ours (0.00)

Figure 4: Failure case.

and Tinne Tuytelaars, editors, ECCV, volume 8695 of Lec-

ture Notes in Computer Science, pages 297–312. Springer,

2014.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778. IEEE Computer Society, 2016.

[12] Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. Seg-

mentation from natural language expressions. In Bastian

Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,

ECCV, volume 9905 of Lecture Notes in Computer Science,

pages 108–124. Springer, 2016.

[13] Tao Hu, Pengwan, Chiliang Zhang, Gang Yu, Yadong Mu,

and Cees G. M. Snoek. Attention-based multi-context guid-

ing for few-shot semantic segmentation. In AAAI, 2019.

[14] Anna Khoreva, Anna Rohrbach, and Bernt Schiele. Video

object segmentation with language referring expressions.

In C. V. Jawahar, Hongdong Li, Greg Mori, and Konrad

Schindler, editors, ACCV, volume 11364 of Lecture Notes

in Computer Science, pages 123–141. Springer, 2018.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, pages 1097–1105, 2012.



[16] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmel-

ing. Attribute-based classification for zero-shot visual ob-

ject categorization. IEEE Trans. Pattern Anal. Mach. Intell.,

36(3):453–465, 2014.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, June 2015.

[18] Edgar Margffoy-Tuay, Juan C. Perez, Emilio Botero, and

Pablo Arbelaez. Dynamic multimodal instance segmenta-

tion guided by natural language queries. In Vittorio Ferrari,

Martial Hebert, Cristian Sminchisescu, and Yair Weiss, ed-

itors, ECCV, volume 11215 of Lecture Notes in Computer

Science, pages 656–672. Springer, 2018.

[19] George A. Miller. Wordnet: A lexical database for english.

Commun. ACM, 38(11):39–41, 1995.

[20] Shujon Naha and Yang Wang. Object figure-ground segmen-

tation using zero-shot learning. In ICPR, pages 2842–2847.

IEEE, 2016.

[21] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram

Singer, Jonathon Shlens, Andrea Frome, Greg Corrado, and

Jeffrey Dean. Zero-shot learning by convex combination of

semantic embeddings. In Yoshua Bengio and Yann LeCun,

editors, ICLR, 2014.

[22] Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. Glove: Global vectors for word representation.

In Alessandro Moschitti, Bo Pang, and Walter Daelemans,

editors, EMNLP, pages 1532–1543. ACL, 2014.

[23] Kate Rakelly, Evan Shelhamer, Trevor Darrell, Alyosha A.

Efros, and Sergey Levine. Conditional networks for few-

shot semantic segmentation. In ICLR (Workshop). OpenRe-

view.net, 2018.

[24] Bernardino Romera-Paredes and Philip H. S. Torr. An em-

barrassingly simple approach to zero-shot learning. In Fran-

cis R. Bach and David M. Blei, editors, ICML, volume 37 of

JMLR Workshop and Conference Proceedings, pages 2152–

2161. JMLR.org, 2015.

[25] David E. Rumelhart, Geoff E. Hinton, and R. J. Wilson.

Learning representations by back-propagating errors. Na-

ture, 323:533–536, 1986.

[26] Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and

Byron Boots. One-shot learning for semantic segmentation.

In BMVC. BMVA Press, 2017.

[27] Hengcan Shi, Hongliang Li, Fanman Meng, and Qingbo Wu.

Key-word-aware network for referring expression image seg-

mentation. In Vittorio Ferrari, Martial Hebert, Cristian Smin-

chisescu, and Yair Weiss, editors, ECCV, volume 11210 of

Lecture Notes in Computer Science, pages 38–54. Springer,

2018.

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[29] Richard Socher, Milind Ganjoo, Christopher D. Manning,

and Andrew Y. Ng. Zero-shot learning through cross-modal

transfer. In Christopher J. C. Burges, Leon Bottou, Zoubin

Ghahramani, and Kilian Q. Weinberger, editors, NIPS, pages

935–943, 2013.

[30] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS

Torr, and Timothy M Hospedales. Learning to compare: Re-

lation network for few-shot learning. In CVPR, 2018.

[31] Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh

Nguyen, Matthias Hein, and Bernt Schiele. Latent embed-

dings for zero-shot classification. In CVPR, pages 69–77.

IEEE Computer Society, 2016.

[32] Yongqin Xian, Subhabrata Choudhury, Yang He, Bernt

Schiele, and Zeynep Akata. Semantic projection network for

zero-and few-label semantic segmentation. In CVPR, pages

8256–8265, 2019.

[33] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot

learning - the good, the bad and the ugly. In CVPR, pages

3077–3086. IEEE Computer Society, 2017.

[34] Xiaolin Zhang, Yunchao Wei, Yi Yang, and Thomas Huang.

Sg-one: Similarity guidance network for one-shot semantic

segmentation. CoRR, abs/1810.09091, 2018.

[35] Ziming Zhang and Venkatesh Saligrama. Zero-shot learning

via semantic similarity embedding. In ICCV, pages 4166–

4174. IEEE Computer Society, 2015.

[36] Hang Zhao, Xavier Puig, Bolei Zhou, Sanja Fidler, and An-

tonio Torralba. Open vocabulary scene parsing. In ICCV,

pages 2021–2029. IEEE Computer Society, 2017.


