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Abstract

In the information retrieval task, sketch-based image re-

trieval (SBIR) has drawn significant attention owing to the

ease with which sketches can be drawn. The existing deep

learning methods for the SBIR are very unrealistic in the

real scenario, and its performance reduces drastically for

unseen class test examples. Recently, Zero-Shot Sketch-

Based Image Retrieval (ZS-SBIR) [37, 47] has drawn a lot

of attention due to its ability to retrieve the novel/unseen

class images at test time. These methods try to project

sketch features into the image domain by learning a distri-

bution conditioned on the sketch. We propose a new frame-

work for ZS-SBIR that models joint distribution between the

sketch and image domain using a generative adversarial

network [29]. The joint distribution modeling ability of our

generative model helps to reduce the domain gap between

the sketches and images. Our framework helps to synthesize

the novel class image features using sketch features. The

generative ability of our model for the unseen/novel classes,

conditioned on sketch feature, allows it to perform well on

the seen as well as unseen class sketches. We conduct ex-

tensive experiments on two widely used SBIR benchmark

datasets- Sketchy and Tu-Berlin and obtain significant im-

provement over the existing state-of-the-art. We will release

the code publicly for reproducibility of results.

1. Introduction

Content-based image retrieval techniques[24] retrieve

images from a huge database by analyzing the contents

of an image like color, texture, shape, etc. Image-based

queries give better results as it captures the contents i.e.,

color, texture, shape, etc. better. However, it is not prac-

tically possible to always find an appropriate image query

similar to the image to be retrieved. Hence, sketches

are gaining more popularity in content-based image re-

Figure 1. An Overview of Conventional and Zero-Shot SBIR ap-

proaches: (a)In Conventional SBIR input query during testing

comes from seen classes (b)In Zero-shot SBIR input query dur-

ing testing comes from unseen classes

trieval(CBIR) over images. Free-hand drawn sketches are

convenient to draw as shapes of the image can be remem-

bered easily. The Sketch-based Image Retrieval(SBIR) task

refers to the retrieval of images from a huge database based

on sketch queries [3, 4, 48, 30]. Sketch-based recogni-

tion tasks such as forensic face photo-sketch recognition

[9] and fine grain sketch-based image retrieval (FG-SBIR)

[2, 39, 49] are becoming widespread. The development

of digital touch-screen (Smart-phones, Ipads, and Wacom,

etc.) devices owes to the popularity of hand-drawn sketches.

SBIR remains a challenging and difficult problem due to a



significant inconsistency between the sketch domain and the

image domain. Free-hand drawn sketches are ambiguous

and vary significantly from person to person based on the

attributes they want to emphasize. To reduce the domain-

gap between the sketch and image domain, recent methods

[7, 13, 14] use cross-domain transfer learning and knowl-

edge transfer learning. They project them into a common

subspace and further use the projected features for the task

of image retrieval. This kind of approach learns to embed

within each domain, and therefore can not generalize well

for test data that have a significant variance with that of the

training examples.

However, existing methods in SBIR assume that at all the

sketch query at test time come from seen classes i.e., from

the classes on which network is trained. Hence these meth-

ods give poor performance when the query sketch comes

from an unseen class. The main reasons as to why tradi-

tional SBIR methods perform poorly on an unseen class

are as follows: 1) Most of the approaches are naturally bi-

ased towards predicting the seen classes, and 2) They do

not leverage any transfer of information from seen classes

to unseen classes. This necessitates posing the problem in

the zero-shot learning setting. Figure 1 shows the outline

of the proposed approach for ZS-SBIR, which also differ-

entiates between conventional SBIR and ZS-SBIR model.

In this paper, we propose a method for the task of Sketch-

based Image Retrieval in zero-shot set-up(ZS-SBIR) to han-

dle an unseen/novel sketch class at the test time. Recently,

researchers have explored techniques of Zero-shot Learning

in image classification problems [42, 31, 25, 44, 52, 17].

There are a few recent works [47, 37, 5] proposed on

ZS-SBIR. ZSIH [37] and Doodle to search [5] use sketch

class description as side information along with sketches to

train the model, whereas [47] proposed two models with-

out using side information conditional variational autoen-

coder(CVAE) based and conditional adversarial autoen-

coder(CAAE) based model. Due to the explosive growth

of new categories, it is not practically possible to get class

descriptions for every new class.

We use a generative model based on the joint-adversarial

learning [29] for the ZS-SBIR problem. We learn joint dis-

tribution between sketch and image domains using a gener-

ative model and synthesize novel domain examples condi-

tioned on the other. The joint distribution modeling ability

of our generative model helps to reduce the domain gap be-

tween the sketches and images. Our model synthesizes the

image features condition on sketch features without using

any side information. Below are the contributions of this

paper:

• We propose to use a new framework for ZS-SBIR

problem that learns a joint distribution between image

features and sketch features using jointGAN [29].

• We propose to use a Maximum Mean Discrepancy

(MMD)loss [11] in jointGAN [29] to quantify the dis-

tance between the means of the two different class

distributions. It can be used to distinguish between

pairs of real and generated features of both images and

sketches which belong to different classes.

• Our method yields significantly better results in

the zero-shot setting without using any side infor-

mation (e.g., word2vec representation of the class

attributes[21, 28]) on both Sketchy and Berlin datasets.

2. Related work

Traditional methods in SBIR represent sketches and

edge-maps of images using hand-crafted features like

Gradient Flow HOG descriptor [14], The Learned Key

Shape(LKS) [33], Histogram Edge Orientation(HELO) [34]

etc. and match these features for the task of image retrieval.

Sarthak et al.[27] proposed a similarity invariant chain de-

scriptors to represent sketches and edge-map of images and

used a dynamic programming-based algorithm for further

retrieval. With the advancement in deep learning tech-

niques, researchers started using features from deep net-

works [50, 35, 47, 37] for a better representation of sketches

and images for retrieval. These deep features are invari-

ant to deformation, color, and texture. However, the cross-

domain discrepancy between sketches and images can’t be

well remedied by the traditional SBIR methods. It is dif-

ficult to match edge-maps to corresponding sketches with

larger variations and ambiguity. Recent techniques in SBIR

project sketches and images into a common space to re-

duce the domain gap. [30, 50] used Siamese architecture,

[35] used triplet ranking loss for coarse-grained SBIR and

[19] proposed a deep architecture for extracting the binary

codes from the sketches and the images. Other approaches

project sketch to image domain or vice-versa [8, 15] such

that sketches and images of the same class become close to

each other and of different classes are separated by a mar-

gin.

Conventional SBIR methods assume the availability of

training samples from all the classes. Hence give poor per-

formance when data comes from unseen classes during test

time. Zero-Shot Learning (ZSL) techniques are capable

of handling unseen/novel class at test time and has drawn

significant attention. ZSL use class attributes/descriptions

to learn the interaction between visual space and seman-

tic space. There exist two standard approaches for the

ZSL: (1) Embedding-based ZSL (2) Synthesis-bases ZSL.

Embedding-based ZSL is further categorized based on the

direction of the embedding function. One approach learns

the mapping from visual to semantic space and vice-versa

[46, 1, 26, 43, 41, 23, 22]. The other approach learns the

bilinear embedding between both the visual and semantic



space [42]. It maps the visual features, and semantic at-

tributes to a common subspace such that those belong to

the same class are closer and of different classes are sep-

arated from each other. Synthesis-based ZSL [18, 45, 46]

uses generative models to synthesize unseen class features

based on the semantic attributes hence reduce the ZSL prob-

lem to supervised image classification problem. Generative

models are used to learn the underlying image distribution

conditioned on some semantic attributes.

Recently, Shen et al.[37], Dey et al.[5] and Yelamarthi

et al.[47] proposed SBIR in Zero-Shot framework. Shen et

al.[37] in their proposed ZSIH approach, combined zero-

shot learning and sketch-based image retrieval using a

cross-modal hashing scheme. Dey et al.[5] proposed a ZS-

SBIR framework that learns a common embedding space

for both the sketch and image domains. Both these meth-

ods [37, 5] used sketch class descriptions[28] as side infor-

mation along with sketch features for establishing the se-

mantic relationship between the image feature space and

sketch feature space. In contrast, Yelamarthi et al.[47]

proposed two similar autoencoder-based generative mod-

els, CAAE(Conditional Adversarial Autoencoder) [20] and

CVAE(Conditional Variational Autoencoder)[38] for zero-

shot SBIR without using any side information.

3. Proposed Approach

3.1. Zero-Shot SBIR (ZS-SBIR)

In the zero-shot setting, we divide the dataset into two

disjoint sets of seen(S) and unseen(U) classes of sketches.

During training pairs of sketch and images from seen

classes are available whereas, during testing, only sketches

from unseen classes are present.

Let A = {(xi
skt,xi

img, li)|li ∈ L} be the triplet of

sketch, image, and the class label where L is the set of

all class labels. We partition the class labels in the dataset

into Ltrain and Ltest for the train and test respectively.

Let Atr = {xi
skt,xi

img, li|li ∈ Ltrain} and Ate =
{xi

skt,xi
img, li|li ∈ Ltest} be the partition of A into train

and test sets. For simplicity, Let’s represent xskt as ”y” and

ximg as ”x” throughout this paper.

3.2. Adversarial Joint Distribution Learning

In this section, we describe the approach to learn the

joint distribution of two random variables, in our case im-

age features and sketch(attribute) features. Suppose q(x)
and q(y) are the marginal distributions of two random vari-

ables x ∈ X and y ∈ Y respectively. In our proposed ap-

proach X and Y represent image features and sketch fea-

tures(attributes) respectively. Attribute for each image is

its corresponding sketch feature. Usually, the true distribu-

tion q(x) and q(y) are not known, whereas samples {xi}
N
i=1

and {yi}
N
i=1 from the both distributions are available. The

joint distribution of image x and attribute y can be repre-

sented as a product of the marginal and a conditional in two

ways: q(x,y) = q(x)q(y|x) = q(y)q(x|y).One feature

can be synthesized given the other feature using the condi-

tional distributions q(x|y) and q(y|x).
Using CGAN, we can learn the joint distribution be-

tween two random variables by either assuming we have

the marginal distribution or learn the marginal distribution

of one random variable using conventional GANs and then

learn conditional distribution on top of it. Since there is

no flow of information between marginals and conditionals

during training, this is not a proper method to determine the

joint distribution.

To address this issue, we learn the joint distribution of

images and sketches using a method mentioned in Joint-

GAN [29]. We use a combination of two generators to de-

termine the marginal and conditional distribution simultane-

ously along with a single discriminator (or critic) for train-

ing, as shown in Figure 2. The formulation of jointGAN is

given as:

x̂ = Gα(z1), ŷ = Gφ(x̂, z2) (1)

ŷ = Gβ(z3), x̂ = Gθ(ŷ, z4) (2)

Where Gα(.), Gβ(.) are marginal generators of images and

sketches(attributes) respectively and Gθ(.) and Gφ(.) are

conditional generators of images and sketches(attributes)

respectively. z1, z2, z3,and z4 are independent noise sam-

pled from unit Gaussian. Both the generators Gα(.) and

Gθ(.) synthesize image features, the only difference is that

Gθ(.) takes sketch(attribute) y as a conditional input. If we

replace y with 0 vector of same dimension in Gθ then it is

the same as Gα(.). Therefore, we can couple the parame-

ters α and θ together. Similarly β and φ can also be coupled

together. Gα(.) and Gβ(.) can be represented as :

Gα(.) = Gθ(0, .), Gβ(.) = Gφ(0, .) (3)

Now, let pθ(x) and pθ(x|y) be the marginal and conditional

distribution learned for images using generator Gθ. Simi-

larly, let pφ(y) and pφ(y|x) be the marginal and conditional

distribution learned for sketches(attributes) using genera-

tor Gφ. The possible combinations of all the marginal and

conditional distributions (learned using both the generators

Gφ and Gθ) to determine joint distribution of images and

sketches(attributes) are shown below:

p1(x,y) = q(x)pφ(y|x), p2(x,y) = q(y)pθ(x|y) (4)

p3(x,y) = pα(x)pφ(y|x), p4(x,y) = pβ(y)pθ(x|y) (5)

where q(x) and q(y) are true distributions of images and

sketches(attributes) respectively.

For adversarial learning, we use four Discrimina-

tors(binary critics) corresponding to each joint distributions



Figure 2. An illustration of determining the joint distribution of images and sketches(attributes) from the possible combinations of all the

marginal and conditional distributions(learned using both the generators Gφ and Gθ). We simultaneously learn marginal and conditional

distributions of Images and Attributes.

Figure 3. An illustration of image retrieval process of our proposed model.

p1(x,y), p2(x,y), p3(x,y) and p4(x,y), to mimic a four-

class classifier. Each Discriminator distinguishes between

paired samples of images and sketches(attributes) taken

from the corresponding learned joint distributions and the

true joint distribution q(x,y). Here we have paired samples

of images and sketches(attributes) in our training dataset.

Let the discriminator Dωi
corresponds to the pi(x,y) joint

distribution, where Dωi
∈ (0, 1). The minimax objective

for jointGAN is:

min
θ,φ

max
ω

LjGAN (θ, φ, ω) =

i=4∑

i=1

Epi(x,y)[logDωi(x,y)] (6)

Where ω = {ω1, ω2, ω3, ω4} is list of all parameter of the

discriminators. The equilibrium of this objective is achieved

if and only if p1(x,y) = p2(x,y) = p3(x,y) = p4(x,y).
In Equation 6 expectations Ep3(x,y)(.) and Ep4(x,y)(.)

are approximated with purely synthesized joint samples,

whereas Ep1(x,y)(.) and Ep2(x,y)(.) are approximated with

conditionally synthesized sample given samples from the

true marginals. To train our model to generate more dis-

criminative features we further use Cycle Consistency loss

[40, 53] and MMD loss [11] as a regularizer. Both the losses

are explained below:

Cycle Consistency loss

To regularize the model, we use the constraint of cycle-

consistency. Cycle consistency loss ensures we generate

image samples similar to the original samples using a se-

ries of learned distributions, as shown below:

q(x) −→ x −→ pφ(y|x) −→ y −→ pθ(x|y) −→ x̂.

x̂ should be very similar to real x, this implies that

||x− x̂|| approximate to zero.

Similarly, attributes samples similar to that of the origi-



nal attributes are generated as shown below:

q(y) −→ y −→ pθ(x|y) −→ x −→ pφ(y|x) −→ ŷ.

ŷ also should be very similar to real y. The cycle-

consistency loss is defined as :

Cθ,φ(x,y) =Ex∼q(x),y∼pφ(y|x),x̂∼pθ(x|y)||x− x̂||+

Ey∼q(y),x∼pθ(x|y),ŷ∼pφ(y|x)||y − ŷ||
(7)

The objective function becomes:

min
θ,φ

max
ω

LjGAN (θ, φ, ω) =

i=4
∑

i=1

Epi(x,y)[logDωi(x,y)]

+ λ1 ∗ Cθ,φ(x,y)

(8)

where Cθ,φ(x,y) is a cycle consistency regularization term,

ω = {ω1, ω2, ω3, ω4} and λ1 is a hyperparameter.

Maximum Mean Discrepancy loss

We propose to use a Maximum Mean Discrepancy

(MMD)loss [11] in jointGAN [29] to quantify the distance

between the mean of the two different class distributions. It

can be used to distinguish between pairs of real and gen-

erated features of both images and sketches which belong

to different classes. The MMD loss is a kernel-based dis-

tance function between pairs of synthesized and real sam-

ples. Here we compute MMD loss between generated im-

age features x̂ and real image features x. Similarly, for gen-

erated sketches features ŷ and real sketch features y. The

loss function is given by:

Lmmd
Img (x, x̂) =

j=N
∑

j=1

j′=N
∑

j′=1

k(xj,xj′)− 2

j=N
∑

j=1

i=N
∑

i=1

k(xj, x̂i)

+

i=N
∑

i=1

i′=N
∑

i′=1

k(x̂i, x̂i′)

(9)

We leverage the linear combination of multiple RBF kernels

(k(x, x̂)) that is defined as :

k(x, x̂) =
∑

n

ηn exp

(

−||x− x̂||2

2σn

)

(10)

where σn is the standard deviation and ηn is the weight

factor for nth RBF kernel. Similarly, we can define for

sketch(attribute) y :

Lmmd
Att (y, ŷ) =

j=N
∑

j=1

j′=N
∑

j′=1

k(yj,yj′)− 2

j=N
∑

j=1

i=N
∑

i=1

k(yj, ŷi)

+
i=N
∑

i=1

i′=N
∑

i′=1

k(ŷi, ŷi′)

(11)

The overall MMD loss is defined as the sum of Eq. 9 and

Eq. 11:

Lmmd = Lmmd
Img + Lmmd

Att (12)

Now, the overall objective function for our proposed ap-

proach is defined as :

min
θ,φ

max
ω

LjGAN (θ, φ, ω) =
i=4
∑

i=1

Epi(x,y)[logDωi
(x,y)]

+ λ1 ∗ Cθ,φ(x,y) + λ2 ∗ Lmmd

(13)

Where hyper-parameters λ1 and λ2 corresponds to cycle

consistency loss and MMD loss respectively.

3.3. Image retrieval for unseen class sketch query

The image retrieval process from real image database for

unseen class sketches is illustrated in Figure 3.

1. Obtain sketch class attributes y by extracting features

for sketch query using pre-trained ResNet-152.

2. Pass random noise z and attribute y to the trained

generator Gθ which generates image feature x̂ corre-

sponding to the class attribute y as x̂ = Gθ(z,y).

3. Find the similarity between generated image feature x̂

and the image feature x from the real image database

and retrieve top-K similar images from the real image

database.

4. Implementation and Results

4.1. Dataset and Visual Feature

For the evaluation of our proposed model, we perform

experiments on two challenging datasets- Sketchy [35] and

TU-Berlin [6]. There are 125 sketch classes in the Sketchy

[35] dataset with 75471 hand-drawn sketches. Initially,

Sketchy dataset contains 12500 real images corresponding

to the sketches. [19] extend the original Sketchy dataset by

introducing 60502 more real images from 125 different cat-

egories. TU-Berlin([6]) extended introduced by [19, 51] has

20000 sketches and 204489 images from 250 classes and is

a large scale dataset.

We use visual features of sketches as conditioning at-

tributes in our proposed generative model. We extract

the visual features of images and sketches from the last

fully connected layer of ResNet-152 [12] pre-trained on

ImageNet-1000 dataset without any fine-tuning. We extract

2048-dimensional feature vectors. We believe that fine-

tuning on this dataset will result in better performance of

our model. For a fair comparison with our proposed model,

we reproduce the result in ResNet-152 features for all base-

line models.



Type
Method

Sketchy Dataset TU Berlin Dataset

Precision@200 mAP@200 Precision@200 mAP@200

Baseline 0.176 0.099 0.139 0.083

Siamese-1 [30] 0.243 0.134 0.127 0.061

Siamese-2 [50] 0.251 0.149 0.133 0.067

SBIR Fine-Grained Triplet [35] 0.155 0.081 0.086 0.050

Coarse-Grained Triplet [36] 0.169 0.083 0.128 0.057

Direct Regression 0.066 0.022 0.117 0.062

ESZSL[32] 0.187 0.117 0.131 0.072

DAP [18] 0.078 0.071 0.075 0.067

Zero-Shot SAE [16] 0.238 0.136 0.152 0.084

CAAE [47] 0.240 0.146 0.159 0.094

CVAE [47] 0.269 0.159 0.182 0.109

Ours 0.319 0.221 0.204 0.129

Table 1. Precision@200 and mAP@200 results on the traditional SBIR methods and ZSL methods in the ZS-SBIR setup. Note that we

re-implement all state-of-the-art methods for fair comparison. [47] proposed two models CAAE and CVAE.

Sketchy Dataset (Extended): For Sketchy dataset, we

use train/test splits proposed by [47] following the Zero-

Shot setup. [47] split the dataset into 104 train classes and

test 21 classes. Here, the split is done to ensure that there

are no common classes in the test set and the ImageNet-

1000 dataset. To train our model, we need image and sketch

pairs. We randomly select image and sketch from the same

training class and pair them. We have 1000 pairs per class

in the training set.

TU Berlin Dataset (Extended): TU Berlin is a highly

biased dataset. It has some classes with a large number of

examples while some with only a few. It is a tough task to

learn with the biased data in Zero-shot setting. Therefore,

to remove the biases, we equally sample image and sketch

pairs from each of the class. While testing, we select the

class that has more than 400 samples. As mentioned in the

above section, we follow the same pattern to form the image

and sketch pairs. Here we have 1500 pairs of image and

sketch in each of the class. To have a fair comparison, we

randomly select 30 classes for the Ate and remaining 220

classes for the Atr as proposed in [37].

4.2. Implementation Details

Our network consists of two Generator and four Discrim-

inator modules. We train the generator Gφ to generate at-

tribute(sketch) features and Gθ to generate image features.

Whereas, each of the Discriminator distinguishes between

samples of images or attributes taken from its correspond-

ing learned joint distributions p1(x,y), p2(x,y), p3(x,y)
and p4(x,y) and the true joint distribution q(x,y). We use

a series of fully connected layers in all these modules and

apply ReLU after each layer except the last layer.

A 300-dimensional noise vector concatenated with 2048

dimensional conditional attribute features Y, is fed into

the generator Gθ to learn conditional distribution pθ(x|y).
To learn marginal distribution pθ(x), we concat 300-

dimensional noise vector with 2048-dimensional zero vec-

tor and pass it into the generator Gθ. The attribute features

Y is 2048-dimension features of sketches, obtained from

ResNet-152 [12]. Gθ passes the input features through a se-

ries of 4 FC layers with 1024, 512, 1024, 2048 neurons re-

spectively and outputs 2048-dimensional feature vector X̂1

corresponding to the real image X.

Similarly, we concat 300-dimensional noise vector with

2048-dimensional conditional image features, and feed into

the generator Gφ to learn conditional distribution pφ(y|x).
To learn marginal distribution pφ(y), we concat 300-

dimensional noise vector with 2048-dimensional zero vec-

tor and pass it into the generator Gφ. Gφ passes the in-

put features through a series of 4 FC layers with 1024,

512, 1024, 2048 neurons respectively and outputs 2048-

dimensional feature vector Ŷ1 corresponding to the at-

tribute feature Y.

Discriminator modules Dω2
and Dω3

tries to distin-

guish between the features of real images X, and features

X̂1 generated from Gθ while determining joint distribution

p2(x,y) = q(y)pθ(x|y) and p3(x,y) = pβ(y)pθ(x|y) re-

spectively. Discriminator modules Dω1
and Dω4

tries to

distinguish between the attribute features Y, and features

Ŷ1 generated from Gφ while determining joint distribution

p1(x,y) = q(x)pφ(y|x) and p4(x,y) = pα(x)pφ(y|x)
respectively. All the Discriminator modules takes 2048 di-

mension feature vectors and passes through a series of 3 FC

layers having 1024, 512, and 128 neurons respectively. It

outputs the probability of the features being real.

We train our network using Adam Optimizer on

LjointGAN loss shown in Equation 13 with learning rate

= 0.0001, batch size = 50 and hyper-parameters λ1=1, λ2=1

and z=300. We choose the hyper-parameters by cross-

validation. While training, we first train the generator sepa-

rately for four epochs and then train the entire network end-

to-end for LjointGAN loss. We observe that the validation



performance saturates after 30 epochs. We are not using

any improved model of the GAN simple GAN [10] model

is used without using any gradient penalty.

4.3. Result analysis and Comparison with existing
baseline approaches

We compare our proposed model with the existing state-

of-the-art of SBIR, ZSL baselines, and recently proposed

ZS-SBIR approaches. For a fair comparison, we reproduce

the results using the same ResNet-152 features for all the

baselines. Table 1 shows the comparison without using any

side information.

For a comparison with the existing SBIR techniques

we choose Siamese-1 [30], Siamese-2[50], Fine-Grained

Triplet [35], Coarse-Grained Triplet[36] as baseline mod-

els. We build all the models as per the description in the

original paper and train them under our zero-shot setting.

For comparison with ZSL baselines, we choose Direct

Regression, ESZSL[32], DAP[18], and SAE[16] as bench-

marks and implement these models for sketch-based im-

age retrieval task. We observe that all existing baseline ap-

proaches for SBIR and ZSL are not able to perform signif-

icantly for unseen class sketches. The main reason of their

failure for the unseen classes is that originally these mod-

els are trained in a supervised setting and have not used any

knowledge transfer learning, so these approaches cannot be

leverage for unseen classes.

Recently, CVAE[47], ZSIH[37] and Doodle to search[5]

are proposed models for ZS-SBIR. Among these CVAE

uses only sketch features as condition attribute to synthe-

sis the image features, whereas remaining others use class

description along with sketch features. Class description

represents the semantic information about sketches and act

as side information to train the model. For fair compari-

son, we compare our model with CVAE[47]. Since CVAE

has conducted the experiments only on Sketchy datasets for

VGG-16 features. For CVAE, we reproduce the results for

Resnet-152 features on Sketchy and Berlin datasets. In Ta-

ble 1, we observe that our model outperforms CVAE by

5.0%, 6.2% absolute improvement in precision@200 and

mAP@200 respectively in Sketchy dataset and 2.2%, 2.0%
absolute improvement in precision@200 and mAP@200 re-

spectively in Berlin dataset.

Figure 4 shows the top 10 retrieval results for unseen

class sketches of our proposed model, Y indicates the cor-

rect retrieval, and N indicates the false-positive image re-

trieval. We can observe that our model can generalize for

unseen sketch classes. Our proposed model tries to learn

the association between sketches and images based on the

shape and outline of the sketches instead of the class labels.

Our model retrieves some false-positive images for input

sketches. We observe that all the false-positive images are

very close to the true class images in shape and outline.

5. Ablation Study

We perform ablation over different modules of the pro-

posed model. The proposed model shows a significant im-

provement in overall baselines. Experimentally we found

that our model is robust for the novel classes without us-

ing any side information. The detailed ablation is shown

in Table 2. The MMD [11] and the CC [40, 53] are the

new components added to the jointGAN model. Our abla-

tion shows that the cycle-consistency and MMD is the key

component over the jointGAN that boost the performance

of the model. We also train our model using class word rep-

resentation as side information along with sketch features

for ablation purpose. We observe a significant performance

boost as compared to without using any side information

to train the model. Word vector representation of class de-

scribes the semantic structure, which helps to transfer the

knowledge from seen classes to unseen classes. If we add

class representation with a sketch feature, then it guides the

generator Gθ to synthesizing semantic preserving and well

class discriminative image features.

We perform an extensive analysis of the MMD and CC

module. The cycle-consistency preserves the structure of

the generated samples in the original space. Therefore

from the generated samples, we can reconstruct the at-

tribute/sketch features. This discourages the model from

remembering the generated samples hence give the better

generalization. The MMD component in-force the model

such that the generated samples between the two class have

maximum margin, therefore increase the robustness to the

retrieval performance.

The joint model with MMD and CC gives a significant

boost to image retrieval. Table 2 shows the performance

of each of the modules. JointGAN with CC loss shows

the 8.7% and 7.7% absolute improvement on the preci-

sion@200 and mAP@200 metric and 3.9% and 2.1% ab-

solute improvement on the precision@200 and mAP@200

metric over the Sketchy and Tu-Berlin datasets respectively.

If we incrementally add the MMD loss with JointGAN and

CC, we observe 1.4% and 0.8% absolute improvement on

the precision@200 and mAP@200 metric and 1.6% and

1.3% absolute improvement on the precision. Using side

information boost the model performance with a significant

margin. Table 2 shows that if we add SI with JointGAN,

CC, and MMD, our model gains an absolute improve-

ment of 9.6%, 11.3% in precision@200 and mAP@200 in

Sketchy dataset.

6. Conclusion

This paper proposes to use a new generative framework

for solving the challenging ZS-SBIR problem which fo-

cuses on modeling joint distribution between the image and

sketch domains, thus generating high-quality images for



Figure 4. Top 10 Retrieval results of our proposed model. Here we can see that a retrieved object fails when the sketch outline is very close

to the image outline. Y indicates true positive retrieval results and N indicates false positive retrieval results.

Modules
Sketchy Dataset TU Berlin Dataset

Precision@200 mAP@200 Precision@200 mAP@200

JointGAN 0.218 0.136 0.149 0.095

JointGAN+CC 0.305 0.213 0.188 0.116

JointGAN+CC+MMD 0.319 0.221 0.204 0.129

JointGAN+CC+MMD+SI 0.415 0.334 0.345 0.264

Table 2. Ablation study for proposed model. Different modules are incrementally added. CC,MMD,SI corresponds to cycle consistency

loss, maximum mean discrepancy loss and Side Information respectively.

an unseen class. The proposed generative model reduces

the traditional zero-shot learning problem to the supervised

learning problem. We further improve the base model joint-

GAN with the help of the Maximum Mean Discrepancy

loss(MMD). The combined model of the jointGAN with the

MMD and CC ensures maximum separability of the gen-

erated samples between two classes while preserving the

structure. This model surpasses the state-of-the-art system.
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