Meta Module Generation for Fast Few-Shot Incremental Learning

Shudong Xie Yiqun Li Dongyun Lin Tin Lay Nwe Sheng Dong
Institute for Infocomm Research, A*STAR, Singapore
{xie_shudong,yqli,lin_dongyun,tlnma,dongs}@i2r.a-star.edu.sg

Abstract

There are two challenging problems in applying standard Deep Neural Networks (DNNs) for incremental learning with a few examples: (i) DNNs do not perform well when little training data is available; (ii) DNNs suffer from catastrophic forgetting when used for incremental class learning. To simultaneously address both problems, we propose Meta Module Generation (MetaMG), a meta-learning method that enables a module generator to rapidly generate a category module from a few examples for a scalable classification network to recognize a new category. The old categories are not forgotten after new categories are added in. Comprehensive experiments conducted on 4 datasets show that our method is promising for fast incremental learning in few-shot setting. Further experiments on the miniImageNet dataset show that even it is not specially designed for the N-way K-shot learning problem, MetaMG can still perform relatively well especially for 20-way K-shot setting.

1. Introduction

Deep learning has achieved great success in supervised image classification [18, 16, 12, 29]. A general pipeline to train high capacity deep neural networks is to iteratively tune the network parameters on a large amount of labelled data using gradient-based approaches. However, deep neural networks trained through this pipeline can easily break down due to overfitting when encountering the situation where objects of new categories are required to be classified with very few training samples. Intuitively, such a limitation of deep neural networks contradicts the fact that human learning is efficient and incremental. Human beings can apply the experience learned from the past to achieve fast generalization on new categories from very limited examples. Human can also accumulate new experience through learning without much forgetting. These abilities are imitated in machine learning and named as few-shot learning and incremental learning. There are a growing number of recent research interests in few-shot learning [14, 32, 30, 9, 20, 26, 31] and incremental learning [28, 21, 27, 19, 37, 35].

Few-shot learning [8, 17, 32] aims at learning to recognize visual categories using only a few labelled exemplars from each category. Specifically, an N-way K-shot learning task is framed as learning to discriminate N categories providing K training examples for each category [32]. Such a task could be treated as an extreme case of training data shortage where transfer learning [7, 2] and regularization could face big challenges due to overfitting. Currently, the existing approaches to solving few-shot image classification exploit the idea of meta-learning or “learning to learn”. Unlike the traditional supervised classification paradigm where training is conducted from a set of labelled exemplars, meta-learning is conducted based on a set of tasks, each containing a training set and a testing set. In the
context of supervised image classification, meta-learning
frames a learning process at two phases: meta-training and
meta-testing. In the meta-training phase, a meta-learner is
trained by learning from a number of tasks from an auxiliary
dataset to capture transferable knowledge across the tasks.
Such knowledge could be image representations where the
similarity between images can be measured through defined
metrics [32, 14, 31, 30] or optimizers which can provide
optimization strategies tailored to address the classification
problem under the few-shot setting [9, 26, 20]. After meta-
training, the meta-learner can be applied to address the tar-
getting few shot classification problem by treating it as a new
task and solving it using the generalized knowledge learned
from auxiliary tasks in the meta-training phase.

Motivated by the observations that human beings can
efficiently learn to identify a new category by subcon-
sciously comparing the new examples with the visual con-
cepts kept in the memory, we propose Meta Module Gen-
eration (MetaMG), a method that leverages meta-learning to
enable a module generator with the ability to rapidly gen-
erate a category module from a few examples for a scal-
able classification network to recognize a new category. The
recognition is achieved by jointly adapting all the category
modules together to partition the feature space into differ-
ent regions for different categories. Figure 1 illustrates the
intuition behind our incremental learning process.

Overall, the proposed method provides a clean meta-
learning solution to generate new modules by feedforward-
ing the training images through a module generator network
without further weight updates. Thereby a fast and effective
few-shot incremental learning is realized. It is also noted
that our MetaMG remains dynamically expanded as the dis-
criminative knowledge of the new category is incorporated
into the generated module. Therefore, the proposed method
can implement fast incremental learning without forgetting
the learned knowledge. Also, no retraining or data stor-
ing for the learned categories is required, which keeps our
method under low computational and storage complexities.

Our contributions are twofold:

1. We propose a novel meta-learning framework for fast
 incremental learning using a few examples from each
category starting from the first category. The frame-
work includes a module generator which is able to gen-
erate category modules to form a scalable classification
network. We have explored an LSTM-based module
generator that is better in few-shot feature correlation
than DeepSets, and a spherical category module that
performs relatively well.

2. We proposed MetaMG, a meta-learning method that
 enables a module generator to rapidly generate a cate-
gory module from only a few examples. The category
module is then plugged into the scalable classification
network to recognize a new category.

2. Related Work

Few-shot image classification has been studied using
generative models and statistical inferences in some early
works [8, 17]. Along with discriminative neural networks
such as CNNs that produce superior performance for im-
age classification, there has been growing interests in ap-
plying deep neural network models to address the few-shot
image classification problem [32, 9]. Regarding discrimina-
tive approaches, meta-learning is commonly conducted to
learn transferable knowledge from similar tasks and apply
the knowledge to address the targeting few-shot classifica-
tion problem. Since our method is proposed to solve few-
shot incremental learning using discriminative neural net-
work structures and meta-learning, here we briefly review
several state-of-the-art deep neural network based few-shot
learning methods and incremental learning methods.

2.1. Meta-Learning on Embedding and Metrics

The first group of methods that solve the few-shot im-
age classification problem cast the problem under an im-
age verification framework [14, 32]. These methods learn
project functions for image embedding in the meta-learning
phase. In the meta-testing phase, the training images and
testing images are projected to the learned embedding space
and classification is implemented either by image verifica-
tion, i.e., comparing training and testing images in pairs
[14], or by nearest neighbor classification [32]. Snell et al.
[30] further extended the idea of image verification to
a prototype matching by using the class centroids in the
embedding space as the templates. Sung et al. [31] de-
signed a relation network as a non-linear comparator instead
of fixed linear comparators [14, 32] to classify images in
the embedding space. The embedding and metric learning
approaches do not require further fine-tuning in the meta-
testing phase and hence the performance of these methods
relies on the assumption that the embedding learned across
the meta-training tasks is sufficiently discriminative for the
new tasks.

Compared with the embedding and metric learning
methods, our method also has the similar advantage of fast
training in the meta-testing phase. For module generation,
the parameters of the module are generated by simply feed-
forwarding the training examples through the module gen-
erator network without fine-tuning. Through meta-training,
we assume that the proposed module generator is capable
of generating discriminative category modules using very
few in-category examples. Hence, instead of learning dis-
criminative embeddings, our method focuses on generating
discriminative non-linear decision boundaries.

2.2. Meta-Learning on Optimizers and Parameters

Another group of methods apply meta-learning across
the meta-training tasks to learn an optimizer which can pro-
provide optimization strategies for a deep neural network to fine-tune without severe overfitting using very few training examples within a small number of gradient-descent updates. The MAML [9] provides an effective way to learn initial conditions through meta-learning. From the observation that stochastic gradient descent rule resembles the update of the cell state in LSTM, Ravi and Larochelle [26] extended the idea of MAML by proposing a meta-learner LSTM to learn not only initial conditions, but also the learning rates and update directions of SGD. Li et al. [20] proposed meta-SGD which is similar to MAML but can also learn learning rates and update directions. Compared with meta-learner LSTM, meta-SGD can achieve faster learning in the meta-testing phase since only one iteration of fine-tuning is required. For most optimizer learning methods, fine-tuning is required and therefore the computational complexity is generally higher than embedding and metric learning based approaches.

Compared with optimizer learning methods, our method also leverages meta-learning to output module generator parameters which can be used in the meta-testing phase. The existing optimizer learning approaches learn for the optimization conditions which can be used for weights update in the meta-testing phase. However, our module generator directly learns to output the category module weights and therefore no further fine-tuning is required in meta-testing.

MetaMG is similar to the Qiao et al. [25] and Gidaris et al. [10] in the way of generating network parameters by feedforwarding images. The differences are: firstly, MetaMG is able to learn new classes quickly using a few examples while [25] aims at addressing few-shot classification without incremental learning capability; secondly, MetaMG is able to add new class from the start, whereas [10] aims at building an incremental classification system in which a batch of base categories are learned first. Then, each new class is added incrementally.

2.3. Incremental Learning

Many approaches have been proposed for incremental learning. These include the approaches such as End-to-End [4], FearNet [13], A-GEM [6], RWalk [5] and ExStream [11] and more listed in [1]. Most of these approaches address the catastrophic forgetting problem of CNNs [22], i.e., training from class-incremental examples might cause the classification performance to quickly and severely deteriorate for those previously learned classes. To alleviate this problem, a group of approaches selectively store a subset of the previous training data to represent the learned classes. For example, iCaRL [28] stores a subset of previous training samples which can best represent the corresponding category and trains a class-incremental learner based on nearest neighbor classification. To alleviate the catastrophic forgetting problem, iCaRL tunes the network parameters by minimizing the cost function including a distillation term [28] to make the predictions on the learned classes invariant. Lopez-Paz et al. [21] proposed Gradient Episodic Memory (GEM) which can provide positive backward transfer to the learned classes, i.e., learning new tasks could enhance the performance on the previous knowledge. The second group of approaches handle the catastrophic forgetting problem by dynamically expanding the network with regularization and no training data from learned classes are retained [27, 19, 37, 35]. The third group of approaches such as Gidaris et al. [10] etc. studied various frameworks for incremental learning of novel categories after a set of base categories are learned. Compared to the above mentioned approaches, the uniqueness of our method is that we perform incremental learning using a few labeled examples for every category and start incremental learning from the first category without the learning of a set of base categories using a lot of examples. Retraining and reuse of sample data for previous categories are not required as well. Technically, our method can generate a discriminative module for each new category without retraining or storing previously learned categorical examples, which in theory, could achieve unlimited category learning, i.e., lifelong learning.

3. Framework

An overview of our framework is illustrated in Figure 2. It has two components, namely a classification network and a module generator. The design of the framework components is based on the following principles:

- When a pretrained feature extractor is applied on a very different dataset, the classes of embed features may not be linearly separable. Therefore, category modules should be non-linear in order to separate them. Moreover, the size of classification network should be endurable after a large amount of category modules are added in. Thus we also require a category module to be lightweight.

- The module generator is a function $G : R^{K \times d} \rightarrow R^{p}$ that maps features $\{f_1, \cdots, f_K\}$ of category examples to the weights w of a category module. Therefore, its architecture should be strong in feature correlation in order to produce a highly relevant category module.

The detailed design of framework components are discussed in the following sections.

3.1. Classification Network

The classification network is a cascade of a feature extractor and a set of lightweight category modules as shown in Figure 2. The feature extractor is a convolutional neural network which aims at producing discriminative features for image samples, whereas a category module aims at supporting samples in its corresponding category by outputting
scores higher than those produced by the other modules. Given a test image being feedforwarded through the classification network, the category module that outputs the highest score indicates the predicted category.

A category module should be capable to non-linearly enclose a region in the feature space. In this paper, 3 different category modules are explored.

Spherical Category Module. A naïve choice is to use a hypersphere as the category module to approximately enclose the category region. In this way, a category module holds a centroid vector \(\mathbf{m} \) and a radius \(r \). Given a feature point \(\mathbf{p} \), a spherical category module computes

$$ r - \sqrt{ (\mathbf{p} - \mathbf{m})^\top (\mathbf{p} - \mathbf{m}) }. \quad (1) $$

Multi-Gaussian Category Module. We could design a category module under a natural assumption that feature points of a category follow a multivariate Gaussian distribution. In this way, a category module holds a mean vector \(\mathbf{\mu} \) and a covariance matrix \(\Sigma \). We adopt the Mahalanobis distance to restrict the corresponding feature points to be within 3 standard deviations from the mean. Given a feature point \(\mathbf{p} \), a Multi-Gaussian category module computes

$$ 3 - \sqrt{ (\mathbf{p} - \mathbf{\mu})^\top \Sigma^{-1} (\mathbf{p} - \mathbf{\mu}) }. \quad (2) $$

A problem to this design is that the covariance matrix has too many parameters which not only make the module heavy but also introduce difficulty to the optimization process. To alleviate this problem, we use \(\Sigma = \text{diag}(\sigma_1^2, \cdots, \sigma_d^2) \) to approximate the distribution.

MLP Category Module. We could also define a category module as a multi-layer perceptron (MLP) without imposing any assumption on the distribution of feature points. In this paper, the module contains a linear layer with 16 units, followed by a ReLU activation and a linear layer with 1 unit.

3.2. Module Generator

The **module generator** is designed to generate category modules which can be plugged into the classification network to recognize their corresponding categories. As illustrated in Figure 2 where two category modules for category cat and dog have been generated. Given a few training examples from a new category raccoon, a category module corresponding to raccoon is generated by feedforwarding the examples through the module generator network. The new raccoon category module can be plugged into the classification network and thereby the updated network can recognize the raccoon category.

The module generator should be capable to correlate the features of category examples. In this paper, 2 different architectures which could achieve this goal are explored.

LSTM-Based Module Generator. Walch et al. [34] has reported that the LSTM network is a powerful tool for feature correlation. For this reason, we specify the architecture of our module generator with an LSTM using an encoder-decoder structure as illustrated in Figure 3. The encoder part is responsible for feature correlation. It consists of a linear layer with 256 units for dimensionality reduction, followed by an LSTM network with 512 hidden units. The decoder is a single linear layer which is responsible for mapping the correlated features to the module parameters.

DeepSets-Based Module Generator. The module generator can be viewed as a function that maps a set of example features to a vector about the parameters. Thus, it is natural to adopt architectures that deal with set operations. DeepSets [38] has been proved to be capable to represent any permutation-invariant function that deals with set operations. Therefore, we also explore a DeepSets-based module generator.

The ability of the module generator to generate discriminative category modules by feeding a few training examples is learned through meta-learning on auxiliary tasks. The details of the meta-learning process is described in §4.

4. Few-Shot Incremental Learning

4.1. Notations

In this paper, we follow the notations related to meta-learning in [26] as below.

Meta-Sets. For meta-learning datasets, we exploit a meta-training set, a meta-validation set and a meta-testing set denoted as \(D_{\text{meta-train}} \), \(D_{\text{meta-val}} \) and \(D_{\text{meta-test}} \), respec-
Figure 3. The LSTM-based module generator. We adopt an encoder-decoder structure in this module generator. The encoder consists of a linear layer (blue) that embeds the features \(\{f_1, \cdots, f_K\} \) of a category support set to a lower dimensional space, and an LSTM network (gray) that correlates the example features together. The decoder is a single linear layer (blue) that maps the correlated features (i.e., the last hidden state vector) to the parameters space.

4.2. Problem Formulation

Our MetaMG aims at building a module generator with the ability to generate from a few examples a category module that could enclose the region belonging to the category in the feature space. To achieve the goal, we define the meta-training task in details as follows. A task \(\tau \) corresponds to \(C \) randomly chosen categories. Its training set \(D_{\text{train}}(\tau) \) is a set of support sets for each category

\[
D_{\text{train}}(\tau) = \{S_1, \cdots, S_C\}
\]

where each support set \(S_c \) consists of \(K \) category examples. The testing set \(D_{\text{test}}(\tau) \), on the other hand, is a set of \((\text{sample, label})\)-pairs

\[
D_{\text{test}}(\tau) = \{(x_1, y_1), \cdots, (x_N, y_N)\}
\]

with each category exactly \(T = N/C \) samples.

A category module is a function \(M(\cdot; \theta) \) parameterized by the weights \(\theta \) which is generated by feeding the features of a support set through the module generator \(G_{\theta} \). For simplicity, we denote the generated category module of the \(c \)-th category as \(M_{\theta}^{(c)}(\cdot) = M(\cdot; G_{\theta} \circ F(S_c)) \).

We then define the loss function on the testing set \(D_{\text{test}}(\tau) \) as follows. Locally, for each category module, we would like it to produce high scores for samples in its category and low scores for those out of its category:

\[
L_l(\tau, \theta) = -\frac{1}{NC} \sum_{c=1}^{C} \left[\sum_{(x_i, y_i)} \log \sigma(M_{\theta}^{(c)} \circ F(x_i)) \right. \\
\left. + \sum_{(x_i, y_i)} \log \left(1 - \sigma(M_{\theta}^{(c)} \circ F(x_i)) \right) \right],
\]

which could be further simplified as

\[
L_l(\tau, \theta) = -\frac{1}{NC} \sum_{(x_i, y_i)} \log \sigma(M_{\theta}^{y_i} \circ F(x_i)) \\
+ \sum_{c \neq y} \log \left(1 - \sigma(M_{\theta}^{(c)} \circ F(x_i)) \right),
\]

where \(\sigma(\cdot) \) is the sigmoid function.

Globally, among all the generated category modules, we would like the score of a sample produced by its corresponding category module to be higher than the scores produced by other category modules, which would provide an overview of the joint classification:

\[
L_g(\tau, \theta) = -\frac{1}{N} \sum_{(x_i, y_i)} \log \frac{\exp(M_{\theta}^{y_i} \circ F(x_i))}{\sum_c \exp(M_{\theta}^{(c)} \circ F(x_i))}
\]

Finally, our objective is to find \(\theta \) that minimizes the expectation of the combined loss over the task space:

\[
\mathbb{E}_{\tau \sim p(\tau)} \left[L(\tau, \theta) \right] = \mathbb{E}_{\tau \sim p(\tau)} \left[L_l(\tau, \theta) + \lambda L_g(\tau, \theta) \right]
\]

Algorithm 1 summarizes the meta-training procedure of our MetaMG. Inside the algorithm, Line 3 samples a batch of tasks as defined in this section. Lines 5-6 generate \(C \) category modules from the support sets in \(D_{\text{train}}(\tau_i) \). Lines 7-12 compute the combined loss on samples in the testing set \(D_{\text{test}}(\tau_i) \). Finally, Line 13 updates the parameters \(\theta \) via gradient descent through the total loss of all the tasks.

5. Experiments

We first conducted an ablation study to find out the best settings for our MetaMG. We then evaluated the proposed model on few-shot incremental class learning on 4
image datasets in §5.2. Moreover, we compared the proposed method with several state-of-the-art methods on the miniImageNet dataset for the popular N-way K-shot classification problem in §5.3. Finally, we studied the efficiency of our MetaMG using either a CPU or a GPU device.

5.1. Ablation Study

An ablation study was conducted to explore the best settings for our MetaMG. The settings include category modules, module generators, and the number C of support sets in a meta-training task.

5.1.1 Experimental Settings

Dataset. The study was evaluated on the CUB200-2011 [33] dataset which consists of 200 bird categories with each category around 60 images. We randomly split it into 80, 20, and 100 categories as the meta-training set, meta-validation set, and meta-testing set, respectively.

Feature Extractor. We used the ResNet101 model pre-trained on ImageNet as the feature extractor throughout the ablation study, and fixed its weights during the meta-training process.

Meta-Training Hyperparameters. We set the number K of examples in a support set to be 1 and 5 for the 1-shot and 5-shot experiments, respectively. For the number N of samples in the testing set of a task, we fixed it to be $15C$ (i.e., $T = 15$). Also, we set the number of tasks in a batch to be 32. Moreover, we set $\lambda = 1.0$ empirically in Eq. 8.

We trained each model 1,000 iterations, and chose the one with the best validation accuracy.

Evaluation Protocol. During the meta-testing phase, we followed the experimental protocol in [28] for incremental class learning. We generate a category module for a novel category using on its support set with K random training examples. Then, we incrementally add the generated category module to the system. For testing, we randomly selected 15 testing samples per category and measure the accuracy. After all the categories were added, we had calculated the accuracy per number of categories. To obtain stable accuracy, we conducted 20,000 iterations of incremental evaluation and calculated the average accuracy. Moreover, since the meta-training tasks are sampled randomly, even for a fixed set of parameters, different best trained models result in different accuracy during evaluation. To obtain more statistically meaningful results, for each set of parameters, we trained 10 models and averaged their evaluation accuracy to obtain our stabilized accuracy.

5.1.2 Results

Category Module. Figure 4 illustrates the accuracy with respect to the number of categories given different category modules. In the 1-shot setting, the spherical module performs slightly better than the other modules at the beginning, and yields similar accuracy as that of Multi-Gaussian module at the end. In the 5-shot setting, the spherical module performs generally better than the other two modules. We hypothesize that this is because the spherical category

![Figure 4. Comparison among 3 category modules on CUB200-2011. In both cases, the spherical category module performs slightly better than the other 2 modules.](image4.png)

![Figure 5. Comparison among 2 module generators on CUB200-2011. In both cases, the LSTM-based module generator performs better than the DeepSets-based one.](image5.png)
Module Generator. Figure 5 illustrates the accuracy with different module generators. In both cases, the LSTM-based module generator performs better than the DeepSets-based one. This suggests that the LSTM-based can better correlate the features of examples in a support set. On one hand, human learns a new concept by seeing examples one after another, and the LSTM-based module generator imitates this behavior. On the other hand, for the LSTM-based generator, a task would become a new task by simply changing the sequence order of the feature examples in a support set, which to some degree provides more training data than the DeepSets-based one. Therefore, we choose the LSTM-based module generator in the following experiments.

Number C of Support Sets in a Task. Figure 6 illustrates the accuracy with different number C of support sets in a task. In both 1-shot and 5-shot settings, curves of different C overlap with each other. When looking closely to the curves, a larger C yields better but negligible improvement. This indicates that the choice of C has little effect on the performance of MetaMG. Since it takes a longer time for training with a larger C and the improvement is little, we use C = 20 in our following experiments.

5.2. Few-Shot Incremental Class Learning

In this section, we evaluated our MetaMG for few-shot incremental class learning on CUB200-2011 as well as the following 3 image classification datasets:

- **CIFAR-100.** The CIFAR-100 [15] dataset consists of 100 categories each with 600 images. We randomly split it for 40, 10, and 50 categories as the meta-training set, meta-validation set, and meta-testing set, respectively.

- **Flower-102.** The Flower-102 [24] dataset consists of 102 flower categories each containing 40–258 images. We randomly split the dataset into 42, 10, and 50 categories as the meta-training set, meta-validation set, and meta-testing set, respectively.

- **SUN397.** The SUN397 [36] dataset consists of 397 scene categories with 108,754 images. Each category contains at least 100 images. We randomly split it into 150, 47, and 200 categories as the meta-training set, meta-validation set, and meta-testing set, respectively.

We adopted the LSTM-based module generator and the spherical category module for the MetaMG architecture, and followed the experiment settings as in § 5.1. Figure 7 illustrates the 1-shot and 5-shot results on the 4 datasets. It is observed from the figure that 5-shot yields significant improvement over 1-shot. Moreover, the accuracy decreases more and more slowly as the number of category increases. Given 5 examples per category, the accuracy with 100 categories on CUB200-2011 is close to 50%, and the accuracy with 200 categories on SUN397 is above 40%. This suggests that our MetaMG is promising for few-shot incremental learning.

Our work is the first attempt to perform incremental learning using a few examples for each category without base categories. We do not show benchmarking results with other incremental learning works as their settings are different. Those works include [4], [13], [6], [5], [11] which are not in few-shot learning setting, and [10] which the incremental learning starts from a set of base categories. Instead, as our MetaMG can also be used for few-shot learning, we compare our results with existing few-shot learning works in Section 5.3.

5.3. Few-Shot Classification

This section aims to evaluate our method on the few-shot classification given a fixed number of categories (i.e., 5 or 20) which is a popular task among recent few-shot learning works. The experiments were carried out on the miniImageNet dataset. This dataset was collected in [32] and applied as the most popular benchmark dataset for few-shot image classification. It consists of 64, 16, and 20 different categories in the meta-training set D_{train}, meta-validation set D_{val} and meta-testing set D_{test}, respectively.
Each category contains 600 images.

Regarding the feature extractor, instead of using a pre-trained model, we learned its parameters from scratch on the meta-training set. First, a fully connected layer is appended to the feature extractor. Then we randomized the parameters of the whole model and tuned its parameters on the meta-training set $\mathcal{D}_{\text{train}}$ by solving a traditional classification problem using back-propagation. The trained network without the appended fully connected layer is used as the feature extractor. To guarantee a fair comparison with other methods, we only used the 64 training categories of miniImageNet to obtain the feature extractor.

For the experiment setup, we followed the same settings as in §5.1 during the meta-training phase. For the meta-testing phase, we measured the classification accuracy under the N-way K-shot settings [20]. Specifically, we randomly selected N categories among all categories in $\mathcal{D}_{\text{test}}$ with each category K random training examples and 15 random testing samples. Subsequently, N category modules were generated by feedforwarding the training examples to G and were plugged into the classification network. Finally, the N-class accuracy was evaluated on the testing samples. Such an evaluation was repeated 600 times, and the mean accuracy with 95% confidence interval was recorded.

Table 1 shows the average classification accuracy among all the compared methods on the miniImageNet dataset. For the 5-way classification, the proposed MetaMG achieves near state-of-the-art accuracy, and for the 20-way classification, it achieves the highest reported accuracy among the compared methods. This suggests that even though our MetaMG is not specially designed to solve the few-shot classification problem under a fixed number of categories, it is still promising for the problem.

5.4. Efficiency of Module Generation

To show the efficiency of module generation, we measured the time spent to generate 1 category module with 5 examples on two types of devices including an NVIDIA TITAN Xp GPU and an Intel i7-6800K CPU. The measurement was conducted for 1,000 rounds, and the mean together with the standard deviation were calculated as shown in Table 2. Not surprisingly, module generation on GPU is much faster ($\sim 100x$) than on CPU. Most importantly, it takes only about 1.5s to generate a category module on CPU, which means that a category module can be generated in almost real-time for practical applications using a common CPU computer. Compared to other incremental learning methods such as iCaRL [28] that require to retrain the model with plenty of samples from new and old categories, the time for adding new categories into the system using MetaMG is significantly reduced. The ability of using CPU for real-time incremental learning with only a few samples will help to solve many real-world problems. For example, when a robot is going to a new place, it may have to learn to recognize the new place quickly without collecting a lot of samples from the new place and redo the training process. For visual recognition of products in an unmanned supermarket for a grab and go kind of application, MetaMG could be a potential solution to register new products incrementally and remove obsolete products quickly and easily.

6. Conclusion

We have presented a meta-learning method called Meta Module Generation (MetaMG) to address the few-shot incremental learning problem. Through optimization, the module generator is capable to generate a category module from a few examples for a scalable classification network to recognize a new category. The module generation process is fast as the training examples only need to feedforward through the module generator network once. Comprehensive experiments on 4 datasets have shown that the proposed method achieves promising accuracy for incremental class learning using only a few examples from each category. Further experiments conducted on the miniImageNet dataset have suggested that even though our MetaMG is not specially designed for the N-way K-shot learning problem, it could still achieve the cutting edge performance.

<table>
<thead>
<tr>
<th>Device</th>
<th>GPU</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (ms)</td>
<td>13.64 ± 0.76</td>
<td>1546.30 ± 23.97</td>
</tr>
</tbody>
</table>

Table 2. Time for generating 1 category module using GPU and CPU, respectively. The table entry indicates the average time with the standard deviation in milliseconds.
References

