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Abstract

There are two challenging problems in applying stan-

dard Deep Neural Networks (DNNs) for incremental learn-

ing with a few examples: (i) DNNs do not perform well

when little training data is available; (ii) DNNs suffer from

catastrophic forgetting when used for incremental class

learning. To simultaneously address both problems, we pro-

pose Meta Module Generation (MetaMG), a meta-learning

method that enables a module generator to rapidly gen-

erate a category module from a few examples for a scal-

able classification network to recognize a new category.

The old categories are not forgotten after new categories

are added in. Comprehensive experiments conducted on 4

datasets show that our method is promising for fast incre-

mental learning in few-shot setting. Further experiments on

the miniImageNet dataset show that even it is not specially

designed for the N -way K-shot learning problem, MetaMG

can sitll perform relatively well especially for 20-way K-

shot setting.

1. Introduction

Deep learning has achieved great success in supervised

image classification [18, 16, 12, 29]. A general pipeline

to train high capacity deep neural networks is to itera-

tively tune the network parameters on a large amount of

labelled data using gradient-based approaches. However,

deep neural networks trained through this pipeline can eas-

ily break down due to overfitting when encountering the

situation where objects of new categories are required to

be classified with very few training samples. Intuitively,

such a limitation of deep neural networks contradicts the

fact that human learning is efficient and incremental. Hu-

man beings can apply the experience learned from the past

to achieve fast generalization on new categories from very

limited examples. Human can also accumulate new experi-

ence through learning without much forgetting. These abil-

ities are imitated in machine learning and named as few-

shot learning and incremental learning. There are a grow-

ing number of recent research interests in few-shot learn-
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Figure 1. An illustration of few-shot incremental learning using

MetaMG for three categories: cat, dog and raccoon. Given 3 ex-

amples of a new category, e.g., cat, our MetaMG generates a mod-

ule which encloses the region belonging to cat in the feature space.

By repeating the similar steps, three modules corresponding to the

three categories can be generated. They are jointly adapted for

the three-categorical classification problem based on the rule of

selecting the module with the highest score.

ing [14, 32, 30, 9, 20, 26, 31] and incremental learning

[28, 21, 27, 19, 37, 35].

Few-shot learning [8, 17, 32] aims at learning to rec-

ognize visual categories using only a few labelled exem-

plars from each category. Specifically, an N -way K-shot

learning task is framed as learning to discriminate N cat-

egories providing K training examples for each category

[32]. Such a task could be treated as an extreme case of

training data shortage where transfer learning [7, 2] and reg-

ularization could face big challenges due to overfitting. Cur-

rently, the existing approaches to solving few-shot image

classification exploit the idea of meta-learning or “learning

to learn”. Unlike the traditional supervised classification

paradigm where training is conducted from a set of labelled

exemplars, meta-learning is conducted based on a set of

tasks, each containing a training set and a testing set. In the



context of supervised image classification, meta-learning

frames a learning process at two phases: meta-training and

meta-testing. In the meta-training phase, a meta-learner is

trained by learning from a number of tasks from an auxiliary

dataset to capture transferable knowledge across the tasks.

Such knowledge could be image representations where the

similarity between images can be measured through defined

metrics [32, 14, 31, 30] or optimizers which can provide

optimization strategies tailored to address the classification

problem under the few-shot setting [9, 26, 20]. After meta-

training, the meta-learner can be applied to address the tar-

geting few shot classification problem by treating it as a new

task and solving it using the generalized knowledge learned

from auxiliary tasks in the meta-training phase.

Motivated by the observations that human beings can

efficiently learn to identify a new category by subcon-

sciously comparing the new examples with the visual con-

cepts kept in the memory, we propose Meta Module Gener-

ation (MetaMG), a method that leverages meta-learning to

enable a module generator with the ability to rapidly gen-

erate a category module from a few examples for a scal-

able classification network to recognize a new category. The

recognition is achieved by jointly adapting all the category

modules together to partition the feature space into differ-

ent regions for different categories. Figure 1 illustrates the

intuition behind our incremental learning process.

Overall, the proposed method provides a clean meta-

learning solution to generate new modules by feedforward-

ing the training images through a module generator network

without further weight updates. Thereby a fast and effective

few-shot incremental learning is realized. It is also noted

that our MetaMG remains dynamically expanded as the dis-

criminative knowledge of the new category is incorporated

into the generated module. Therefore, the proposed method

can implement fast incremental learning without forgetting

the learned knowledge. Also, no retraining or data stor-

ing for the learned categories is required, which keeps our

method under low computational and storage complexities.

Our contributions are twofold:

1. We propose a novel meta-learning framework for fast

incremental learning using a few examples from each

category starting from the first category. The frame-

work includes a module generator which is able to gen-

erate category modules to form a scalable classification

network. We have explored an LSTM-based module

generator that is better in few-shot feature correlation

than DeepSets, and a spherical category module that

performs relatively well.

2. We proposed MetaMG, a meta-learning method that

enables a module generator to rapidly generate a cate-

gory module from only a few examples. The category

module is then plugged into the scalable classification

network to recognize a new category.

2. Related Work

Few-shot image classification has been studied using

generative models and statistical inferences in some early

works [8, 17]. Along with discriminative neural networks

such as CNNs that produce superior performance for im-

age classification, there has been growing interests in ap-

plying deep neural network models to address the few-shot

image classification problem [32, 9]. Regarding discrimina-

tive approaches, meta-learning is commonly conducted to

learn transferable knowledge from similar tasks and apply

the knowledge to address the targeting few-shot classifica-

tion problem. Since our method is proposed to solve few-

shot incremental learning using discriminative neural net-

work structures and meta-learning, here we briefly review

several state-of-the-art deep neural network based few-shot

learning methods and incremental learning methods.

2.1. Meta-Learning on Embedding and Metrics

The first group of methods that solve the few-shot im-

age classification problem cast the problem under an im-

age verification framework [14, 32]. These methods learn

project functions for image embedding in the meta-learning

phase. In the meta-testing phase, the training images and

testing images are projected to the learned embedding space

and classification is implemented either by image verifica-

tion, i.e., comparing training and testing images in pairs

[14], or by nearest neighbor classification [32]. Snell et

al. [30] further extended the idea of image verification to

a prototype matching by using the class centroids in the

embedding space as the templates. Sung et al. [31] de-

signed a relation network as a non-linear comparator instead

of fixed linear comparators [14, 32] to classify images in

the embedding space. The embedding and metric learning

approaches do not require further fine-tuning in the meta-

testing phase and hence the performance of these methods

relies on the assumption that the embedding learned across

the meta-training tasks is sufficiently discriminative for the

new tasks.

Compared with the embedding and metric learning

methods, our method also has the similar advantage of fast

training in the meta-testing phase. For module generation,

the parameters of the module are generated by simply feed-

forwarding the training examples through the module gen-

erator network without fine-tuning. Through meta-training,

we assume that the proposed module generator is capable

of generating discriminative category modules using very

few in-category examples. Hence, instead of learning dis-

criminative embeddings, our method focuses on generating

discriminative non-linear decision boundaries.

2.2. Meta-Learning on Optimizers and Parameters

Another group of methods apply meta-learning across

the meta-training tasks to learn an optimizer which can pro-



vide optimization strategies for a deep neural network to

fine-tune without severe overfitting using very few training

examples within a small number of gradient-descent up-

dates. The MAML [9] provides an effective way to learn

initial conditions through meta-learning. From the obser-

vation that stochastic gradient descent rule resembles the

update of the cell state in LSTM, Ravi and Larochelle [26]

extended the idea of MAML by proposing a meta-learner

LSTM to learn not only initial conditions, but also the learn-

ing rates and update directions of SGD. Li et al. [20] pro-

posed meta-SGD which is similar to MAML but can also

learn learning rates and update directions. Compared with

meta-learner LSTM, meta-SGD can achieve faster learn-

ing in the meta-testing phase since only one iteration of

fine-tuning is applied. For most optimizer learning meth-

ods, fine-tuning is required and therefore the computational

complexity is generally higher than embedding and metric

learning based approaches.

Compared with optimizer learning methods, our method

also leverages meta-learning to output module generator pa-

rameters which can be used in the meta-testing phase. The

existing optimizer learning approaches learn for the opti-

mization conditions which can be used for weights update

in the meta-testing phrase. However, our module generator

directly learns to output the category module weights and

therefore no further fine-tuning is required in meta-testing.

MetaMG is similar to the Qiao et al. [25] and Gidaris

et al. [10] in the way of generating network parameters

by feedforwarding images. The differences are: firstly,

MetaMG is able to learn new classes quickly using a few ex-

amples while [25] aims at addressing few-shot classification

without incremental learning capability; secondly, MetaMG

is able to add new class from the start, whereas [10] aims

at building an incremental classification system in which a

batch of base categories are learned first. Then, each new

class is added incrementally.

2.3. Incremental Learning

Many approaches have been proposed for inclemental

learning. These include the approaches such as End-to-End

[4], FearNet [13], A-GEM [6], RWalk [5] and ExStream

[11] and more listed in [1]. Most of these approaches ad-

dress the catastrophic forgetting problem of CNNs [22], i.e.,

training from class-incremental examples might cause the

classification performance to quickly and severely deterio-

rate for those previously learned classes. To alleviate this

problem, a group of approaches selectively store a subset of

the previous training data to represent the learned classes.

For example, iCaRL [28] stores a subset of previous train-

ing samples which can best represent the corresponding cat-

egory and trains a class-incremental learner based on near-

est neighbor classification. To alleviate the catastrophic for-

getting problem, iCaRL tunes the network parameters by

minimizing the cost function including a distillation term

[28] to make the predictions on the learned classes invariant.

Lopez-Paz et al. [21] proposed Gradient Episodic Mem-

ory (GEM) which can provide positive backward transfer

to the learned classes, i.e., learning new tasks could en-

hance the performance on the previous knowledge. The

second group of approaches handle the catastrophic forget-

ting problem by dynamically expanding the network with

regularization and no training data from learned classes are

retained [27, 19, 37, 35]. The third group of approaches

such as Gidaris et al. [10] etc. studied various frameworks

for incremental learning of novel categories after a set of

base categories are learned. Compared to the above men-

tioned approaches, the uniqueness of our method is that we

perform incremental learning using a few labeled examples

for every category and start incremental learning from the

first category without the learning of a set of base categories

using a lot of examples. Retraining and reuse of sample

data for previous categories are not required as well. Tech-

nically, our method can generate a discriminative module

for each new category without retraining or storing previ-

ously learned categorical examples, which in theory, could

achieve unlimited category learning, i.e., lifelong learning.

3. Framework

An overview of our framework is illustrated in Figure 2.

It has two components, namely a classification network and

a module generator. The design of the framework compo-

nents is based on the following principles:

• When a pretrained feature extractor is applied on a

very different dataset, the classes of embed features

may not be linearly separable. Therefore, category

modules should be non-linear in order to separate

them. Moreover, the size of classification network

should be endurable after a large amount of category

modules are added in. Thus we also require a category

module to be lightweight.

• The module generator is a function G : RK×d → R
p

that maps features {f1, · · · , fK} of category examples

to the weights w of a category module. Therefore, its

architecture should be strong in feature correlation

in order to produce a highly relevant category module.

The detailed design of framework components are dis-

cussed in the following sections.

3.1. Classification Network

The classification network is a cascade of a feature ex-

tractor and a set of lightweight category modules as shown

in Figure 2. The feature extractor is a convolutional neu-

ral network which aims at producing discriminative features

for image samples, whereas a category module aims at sup-

porting samples in its corresponding category by outputting



Figure 2. An illustration of the proposed method. Given a few

training examples of a new category, e.g., raccoon, the module

generator generates a category module which can support the cat-

egory raccoon by outputting higher scores for raccoon samples

than other modules. The generated category module is plugged

into the classification network and thereby the updated network

can recognize the new category.

scores higher than those produced by the other modules.

Given a test image being feedforwarded through the classi-

fication network, the category module that outputs the high-

est score indicates the predicted category.

A category module should be capable to non-linearly en-

close a region in the feature space. In this paper, 3 different

category modules are explored.

Spherical Category Module. A naïve choice is to use a hy-

persphere as the category module to approximately enclose

the category region. In this way, a category module holds a

centroid vector m and a radius r. Given a feature point p, a

spherical category module computes

r −
√

(p−m)⊤(p−m). (1)

Multi-Gaussian Category Module. We could design a cat-

egory module under a natural assumption that feature points

of a category follow a multivariate Gaussian distribution. In

this way, a category module holds a mean vector µ and a

covarance matrix Σ. We adopt the Mahalanobis distance to

restrict the corresponding feature points to be within 3 stan-

dard deviations from the mean. Given a feature point p, a

Multi-Gaussian category module computes

3−

√

(p− µ)⊤Σ
−1
(p− µ). (2)

A problem to this design is that the covariance matrix

has too many parameters which not only make the mod-

ule heavy but also introduce difficulty to the optimiza-

tion process. To alleviate this problem, we use Σ =
diag(σ2

1 , · · · , σ
2
d) to approximate the distribution.

MLP Category Module. We could also define a category

module as a multi-layer perceptron (MLP) without impos-

ing any assumption on the distribution of feature points. In

this paper, the module contains a linear layer with 16 units,

followed by a ReLU activation and a linear layer with 1 unit.

3.2. Module Generator

The module generator is designed to generate category

modules which can be plugged into the classification net-

work to recognize their corresponding categories. As illus-

trated in Figure 2 where two category modules for category

cat and dog have been generated. Given a few training ex-

amples from a new category raccoon, a category module

corresponding to raccoon is generated by feedforwarding

the examples through the module generator network. The

new raccoon category module can be plugged into the clas-

sification network and thereby the updated network can rec-

ognize the raccoon category.

The module generator should be capable to correlate the

features of category examples. In this paper, 2 different ar-

chitectures which could achieve this goal are explored.

LSTM-Based Module Generator. Walch et al. [34] has

reported that the LSTM network is a powerful tool for fea-

ture correlation. For this reason, we specify the architecture

of our module generator with an LSTM using an encoder-

decoder structure as illustrated in Figure 3. The encoder

part is responsible for feature correlation. It consists of a

linear layer with 256 units for dimensionality reduction, fol-

lowed by an LSTM network with 512 hidden units. The de-

coder is a single linear layer which is responsible for map-

ping the correlated features to the module parameters.

DeepSets-Based Module Generator. The module gener-

ator can be viewed as a function that maps a set of exam-

ple features to a vector about the parameters. Thus, it is

natural to adopt architectures that deal with set operations.

DeepSets [38] has been proved to be capable to represent

any permutation-invariant function that deals with set oper-

ations. Therefore, we also explore a DeepSets-based mod-

ule generator.

The ability of the module generator to generate discrimi-

native category modules by feeding a few training examples

is learned through meta-learning on auxiliary tasks. The de-

tails of the meta-learning process is described in §4.

4. Few-Shot Incremental Learning

4.1. Notations

In this paper, we follow the notations related to meta-

learning in [26] as below.

Meta-Sets. For meta-learning datasets, we exploit a

meta-training set, a meta-validation set and a meta-testing

set denoted as Dmeta-train, Dmeta-val and Dmeta-test, respec-



Figure 3. The LSTM-based module generator. We adopt an

encoder-decoder structure in this module generator. The en-

coder consists of a linear layer (blue) that embeds the features

{f1, · · · , fK} of a category support set to a lower dimensional

space, and an LSTM network (gray) that correlates the example

features together. The decoder is a single linear layer (blue) that

maps the correlated features (i.e., the last hidden state vector) to

the parameters space.

tively. The meta-training set Dmeta-train is used to build meta-

training tasks to train the module generator G. The meta-

validation set Dmeta-val is used to monitor the training per-

formance and select the best parameters of G. The meta-

testing set is to evaluate the classification performance.

Task. A task τ defined over a meta-set D consists of a

training set Dtrain(τ) and a testing set Dtest(τ). The training

set Dtrain(τ) contains support sets of random chosen cat-

egories which serve as inputs for G to generate category

modules. The testing set Dtest(τ) contains multiple ran-

domly chosen (sample, label)-pairs which are used to eval-

uate the discriminative performance of generated modules.

For a task in the meta-training phase, the loss is calculated

on Dtest(τ) and is backpropagated to update the parameters

of G. Different tasks can be built by randomly drawing sam-

ples for Dtrain(τ) and Dtest(τ). All the possible tasks form

the task space which distribution is defined as p(τ).

4.2. Problem Formulation

Our MetaMG aims at building a module generator with

the ability to generate from a few examples a category mod-

ule that could enclose the region belonging to the category

in the feature space. To achieve the goal, we define the

meta-training task in details as follows. A task τ corre-

sponds to C randomly chosen categories. Its training set

Dtrain(τ) is a set of support sets for each category

Dtrain(τ) = {S1, · · · , SC} (3)

where each support set Sc consists of K category exam-

ples. The testing set Dtest(τ), on the other hand, is a set of

(sample, label)-pairs

Dtest(τ) = {(x1, y1), · · · , (xN , yN )} (4)

with each category exactly T = N/C samples.

A category module is a function M(· ;w) parameterized

by the weights w which is generated by feeding the features

of a support set through the module generator Gθ . For sim-

plicity, we denote the generated category module of the c-th

category as M
(c)
θ

(·) = M(· ;Gθ ◦ F (Sc)).
We then define the loss function on the testing set

Dtest(τ) as follows. Locally, for each category module, we

would like it to produce high scores for samples in its cate-

gory and low scores for those out of its category:

Ll(τ,θ) =−
1

NC

C
∑

c=1

[

∑

(xi,yi)
yi=c

log σ
(

M
(c)
θ

◦ F (xi)
)

+
∑

(xi,yi)
yi �=c

log
(

1− σ
(

M
(c)
θ

◦ F (xi)
)

)

]

,

(5)

which could be further simplified as

Ll(τ,θ) =−
1

NC

∑

(xi,yi)

[

log σ
(

M
(yi)
θ

◦ F (xi)
)

+
∑

c �=yi

log
(

1− σ
(

M
(c)
θ

◦ F (xi)
)

)

]

,

(6)

where σ(·) is the sigmoid function.

Globally, among all the generated category modules, we

would like the score of a sample produced by its corre-

sponding category module to be higher than the scores pro-

duced by other category modules, which would provide an

overview of the joint classification:

Lg(τ,θ) = −
1

N

∑

(xi,yi)

log
exp

(

M
(yi)
θ

◦ F (xi)
)

∑

c exp
(

M
(c)
θ

◦ F (xi)
)

(7)

Finally, our objective is to find θ that minimizes the ex-

pectation of the combined loss over the task space:

Eτ∼p(τ)

[

L(τ,θ)
]

= Eτ∼p(τ)

[

Ll(τ,θ) + λLg(τ,θ)
]

(8)

Algorithm 1 summarizes the meta-training procedure of

our MetaMG. Inside the algorithm, Line 3 samples a batch

of tasks as defined in this section. Lines 5-6 generate C
category modules from the support sets in Dtrain(τi). Lines

7-12 compute the combined loss on samples in the testing

set Dtest(τi). Finally, Line 13 updates the parameters θ via

gradient descent through the total loss of all the tasks.

5. Experiments

We first conducted an ablation study to find out the

best settings for our MetaMG. We then evaluated the pro-

posed model on few-shot incremental class learning on 4



Algorithm 1: Meta-Training of Module Generator

Input: task distribution p(τ) over a meta-set Dtrain

Output: parameters θ of G

1 θ ← Initialize(θ)
2 while not done do

3 τ ← sample a batch of tasks from p(τ)
4 foreach τi ∈ τ do

5 foreach Sc ∈ Dtrain(τi) do

6 M
(c)
θ

(·) ← M
(

· ;Gθ ◦ F (Sc)
)

7 Ll(τi) ← 0
8 Lg(τi) ← 0
9 foreach (xi, yi) ∈ Dtest(τi) do

10 Ll(τi) ← Ll(τi)− log σ
(

M
(yi)
θ

◦ F (xi)
)

−
∑

c�=yi
log

(

1− σ
(

M
(c)
θ

◦ F (xi)
)

)

11 Lg(τi) ← Lg(τi)− log
exp

(

M
(yi)
θ

◦F (xi)
)

∑
c exp

(

M
(c)
θ

◦F (si)
)

12 L(τi) ←
1

NC
Ll(τi) +

λ
N
Lg(τi)

13 θ ← θ − α∇θ

(
∑

τi∈τ
L(τi)

)

14 return θ

image datasets in §5.2. Moreover, we compared the pro-

posed method with several state-of-the-art methods on the

miniImageNet dataset for the popular N -way K-shot clas-

sification problem in §5.3. Finally, we studied the efficiency

of our MetaMG using either a CPU or a GPU device.

5.1. Ablation Study

An ablation study was conducted to explore the best set-

tings for our MetaMG. The settings include category mod-

ules, module generators, and the number C of support sets

in a meta-training task.

5.1.1 Experiment Settings

Dataset. The study was evaluated on the CUB200-2011 [33]

dataset which consists of 200 bird categories with each cat-

egory around 60 images. We randomly split it into 80, 20,

and 100 categories as the meta-training set, meta-validation

set, and meta-testing set, respectively.

Feature Extractor. We used the ResNet101 model pre-

trained on ImageNet as the feature extractor throughout

the ablation study, and fixed its weights during the meta-

training process.

Meta-Training Hyperparameters. We set the number K
of examples in a support set to be 1 and 5 for the 1-shot

and 5-shot experiments, respectively. For the number N of

samples in the testing set of a task, we fixed it to be 15C
(i.e., T = 15). Also, we set the number of tasks in a batch

to be 32. Moreover, we set λ = 1.0 empirically in Eq. 8.
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Figure 4. Comparison among 3 category modules on

CUB200-2011. In both cases, the spherical category module

performs slightly better than the other 2 modules.
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Figure 5. Comparison among 2 module generators on

CUB200-2011. In both cases, the LSTM-based module gen-

erator performs better than the DeepSets-based one.

We trained each model 1,000 iterations, and chose the one

with the best validation accuracy.

Evaluation Protocol. During the meta-testing phase, we

followed the experimental protocol in [28] for incremental

class learning. We generate a category module for a novel

category using on its support set with K random training ex-

amples. Then, we incrementally add the generated category

module to the system. For testing, we randomly selected

15 testing samples per category and measure the accuracy.

After all the categories were added, we had calculated the

accuracy per number of categories. To obtain stable accu-

racy, we conducted 20,000 iterations of incremental evalu-

ation and calculated the average accuracy. Moreover, since

the meta-training tasks are sampled randomly, even for a

fixed set of parameters, different best trained models result

in different accuracy during evaluation. To obtain more sta-

tistically meaningful results, for each set of parameters, we

trained 10 models and averaged their evaluation accuracy to

obtain our stabilized accuracy.

5.1.2 Results

Category Module. Figure 4 illustrates the accuracy with

respect to the number of categories given different category

modules. In the 1-shot setting, the spherical module per-

forms slightly better than the other modules at the begin-

ning, and yields similar accuracy as that of Multi-Gaussian

module at the end. In the 5-shot setting, the spherical mod-

ule performs generally better than the other two modules.

We hypothesize that this is because the spherical category
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Figure 6. Comparison among different number C of support sets

in a task on CUB200-2011. The 4 curves overlap with each other.

The improvement introduced by a larger C is almost negligible.

module has fewer parameters which are easier to gener-

ate. As the spherical module performs slightly better and

is lighter, we use it in the following experiments.

Module Generator. Figure 5 illustrates the accuracy with

different module generators. In both cases, the LSTM-

based module generator performs better than the DeepSets-

based one. This suggests that the LSTM-based can better

correlate the features of examples in a support set. On one

hand, human learns a new concept by seeing examples one

after another, and the LSTM-based module generator imi-

tates this behaviour. On the other hand, for the LSTM-based

generator, a task would become a new task by simply chang-

ing the sequence order of the feature examples in a support

set, which to some degree provides more training data than

the DeepSets-based one. Therefore, we choose the LSTM-

based module generator in the following experiments.

Number C of Support Sets in a Task. Figure 6 illustrates

the accuracy with different number C of support sets in a

task. In both 1-shot and 5-shot settings, curves of different

C overlap with each other. When looking closely to the

curves, a larger C yields better but negligible improvement.

This indicates that the choice of C has little effect on the

performance of MetaMG. Since it takes a longer time for

training with a larger C and the improvement is little, we

use C = 20 in our following experiments.

5.2. Few-Shot Incremental Class Learning

In this section, we evaluated our MetaMG for few-shot

incremental class learning on CUB200-2011 as well as the

following 3 image classification datasets:

• CIFAR-100. The CIFAR-100 [15] dataset consists of

100 categories each with 600 images. We randomly

split it for 40, 10, and 50 categories as the meta-

training set, meta-validation set, and meta-testing set,

respectively.

• Flower-102. The Flower-102 [24] dataset consists

of 102 flower categories each containing 40~258 im-

ages. We randomly split the dataset into 42, 10, and

50 categories as the meta-training set, meta-validation

set, and meta-testing set, respectively.
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Figure 7. Incremental accuracy on several datasets.

• SUN397. The SUN397 [36] dataset consists of 397

scene categories with 108,754 images. Each category

contains at least 100 images. We randomly split it into

150, 47, and 200 categories as the meta-training set,

meta-validation set, and meta-testing set, respectively.

We adopted the LSTM-based module generator and the

spherical category module for the MetaMG architecture,

and followed the experiment settings as in §5.1. Figure 7

illustrates the 1-shot and 5-shot results on the 4 datasets. It

is observed from the figure that 5-shot yields significant im-

provement over 1-shot. Moreover, the accuracy decreases

more and more slowly as the number of category increases.

Given 5 examples per category, the accuracy with 100 cat-

egories on CUB200-2011 is close to 50%, and the accuracy

with 200 categories on SUN397 is above 40%. This sug-

gests that our MetaMG is promising for few-shot incremen-

tal learning.

Our work is the first attempt to perform incremental

learning using a few examples for each category without

base categories. We do not show benchmarking results with

other incremental learning works as their settings are differ-

ent. Those works include [4], [13], [6], [5], [11] which are

not in few-shot learning setting, and [10] which the incre-

mental learning starts from a set of base categories. Instead,

as our MetaMG can also be used for few-shot learning, we

compare our results with existing few-shot learning works

in Section 5.3.

5.3. Few-Shot Classification

This section aims to evaluate our method on the few-

shot classification given a fixed number of categories (i.e.,

5 or 20) which is a popular task among recent few-shot

learning works. The experiments were carried out on the

miniImageNet dataset. This dataset was collected in [32]

and applied as the most popular benchmark dataset for few-

shot image classification. It consists of 64, 16, and 20

different categories in the meta-training set Dtrain, meta-

validation set Dval and meta-testing set Dtest, respectively.



5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

Matching Networks [32] 43.56± 0.84% 55.31± 0.73% 17.31± 0.22% 22.69± 0.20%

Meta-LSTM [26] 43.44± 0.77% 60.60± 0.71% 16.70± 0.23% 26.06± 0.25%

MAML [9] 48.70± 1.84% 63.11± 0.92% 16.49± 0.58% 19.29± 0.29%

Meta-SGD [20] 50.47± 1.87% 64.03± 0.94% 17.56± 0.64% 28.92± 0.35%

Relation Network [31] 50.44± 0.82% 65.32± 0.70% 19.47± 0.25% 33.48± 0.24%

MM-Net [3] 53.37± 0.48% 66.97± 0.35% - -

SNAIL [23] 55.71± 0.99% 68.88± 0.92% - -

MetaMG, Ours 53.78± 0.87% 67.40± 0.68% 23.98± 0.29% 36.57± 0.29%

Table 1. Benchmark of few-shot classification on miniImageNet. Each entry indicates the average accuracy with 95% confidence interval.

Each category contains 600 images.

Regarding the feature extractor, instead of using a pre-

trained model, we learned its parameters from scratch on

the meta-training set. First, a fully connected layer is ap-

pended to the feature extractor. Then we randomized the

parameters of the whole model and tuned its parameters on

the meta-training set Dtrain by solving a traditional classi-

fication problem using back-propagation. The trained net-

work without the appended fully connected layer is used as

the feature extractor. To guarantee a fair comparison with

other methods, we only used the 64 training categories of

miniImageNet to obtain the feature extractor.

For the experiment setup, we followed the same settings

as in §5.1 during the meta-training phase. For the meta-

testing phase, we measured the classification accuracy un-

der the N -way K-shot settings [20]. Specifically, we ran-

domly selected N categories among all categories in Dtest

with each category K random training examples and 15 ran-

dom testing samples. Subsequently, N category modules

were generated by feedforwarding the training examples to

G and were plugged into the classification network. Finally,

the N -class accuracy was evaluated on the testing samples.

Such an evaluation was repeated 600 times, and the mean

accuracy with 95% confidence intervals was recorded.

Table 1 shows the average classification accuracy

among all the compared methods on the miniImageNet

dataset. For the 5-way classification, the proposed MetaMG

achieves near state-of-the-art accuracy, and for the 20-

way classification, it achieves the highest reported accu-

racy among the compared methods. This suggests that even

though our MetaMG is not specially designed to solve the

few-shot classification problem under a fixed number of cat-

egories, it is still promising for the problem.

5.4. Efficiency of Module Generation

To show the efficiency of module generation, we mea-

sured the time spent to generate 1 category module with 5

examples on two types of devices including an NVIDIA TI-

TAN Xp GPU and an Intel i7-6800K CPU. The measure-

ment was conducted for 1,000 rounds, and the mean to-

gether with the standard deviation were calculated as shown

in Table 2. Not surprisingly, module generation on GPU

Device GPU CPU

Time (ms) 13.64± 0.76 1546.30± 23.97

Table 2. Time for generating 1 category module using GPU and

CPU, respectively. The table entry indicates the average time with

the standard deviation in milliseconds.

is much faster (∼100x) than on CPU. Most importantly,

it takes only about 1.5s to generate a category module on

CPU, which means that a category module can be gener-

ated in almost real-time for practical applications using a

common CPU computer. Compared to other incremental

learning methods such as iCaRL [28] that require to retrain

the model with plenty of samples from new and old cate-

gories, the time for adding new categories into the system

using MetaMG is significantly reduced. The ability of us-

ing CPU for real-time incremental learning with only a few

samples will help to solve many real-world problems. For

example, when a robot is going to a new place, it may have

to learn to recognize the new place quickly without collect-

ing a lot of samples from the new place and redo the training

process. For visual recognition of products in an unmanned

supermarket for a grab and go kind of application, MetaMG

could be a potential solution to register new products incre-

mentally and remove obsolete products quickly and easily.

6. Conclusion

We have presented a meta-learning method called Meta

Module Generation (MetaMG) to address the few-shot in-

cremental learning problem. Through optimization, the

module generator is capable to generate a category module

from a few examples for a scalable classification network

to recognize a new category. The module generation pro-

cess is fast as the training examples only need to feedfor-

ward through the module generator network once. Compre-

hensive experiments on 4 datasets have shown that the pro-

posed method achieves promising accuracy for incremental

class learning using only a few examples from each cate-

gory. Further experiments conducted on the miniImageNet

dataset have suggested that even though our MetaMG is not

specially designed for the N -way K-shot learning problem,

it could still achieve the cutting edge performance.
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