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Abstract

A core challenge in action recognition from videos is ob-

taining sufficient training examples to train deep networks.

This holds especially for action tasks from non-standard

sensors such as infra-red cameras. In this work, we inves-

tigate Bayesian 3D ConvNets for action recognition when

training examples are scarce. This work connects 3D Con-

vNets, a state-of-the-art approach for action recognition,

with Bayesian networks, which have shown to be effec-

tive regularizers for deep networks. We do so by extending

Bayes by Backprop to 3D ConvNets. Experimental evalua-

tion on three small-scale action datasets from both RGB and

infra-red sensors shows that Bayesian 3D ConvNets have

a better test generalizing than standard 3D ConvNets. We

find that, the more scarce the number of training examples

per action, the better our Bayesian 3D ConvNets performs,

highlighting the potential of Bayesian learning in the video

domain.

1. Introduction

This work strives for action recognition in videos given

limited training data. In action recognition, 3D ConvNets

have shown to be a state-of-the-art approach [12, 13, 30].

While effective, 3D ConvNets require a wealth of exam-

ples for training. This demand is practically often infeasi-

ble because certain actions occur rarely, or because actions

are captured by non-standard sensors such as infra-red cam-

eras [5], see Figure 1.

We investigate the potential of Bayesian learning for

3D ConvNets in few-example action recognition. For a

Bayesian integration, we focus on Bayes by Backprop [6], a

method to perform variational inference in neural networks

by introducing uncertainty into the weights of the network.

Bayes by Backprop has shown to enable regularization in

plain deep networks [1], recurrent neural networks [2], and

2D ConvNets [26]. Surprisingly, Bayes by Backprop has

not been investigated in action recognition, while the lim-

ited availability of data is apparent in the video domain.

This work aims to fill that void.

Figure 1: Video examples captured with non-standard sen-

sors such as infrared are quite scarce. We propose Bayesian

3D ConvNets to get the most out of the few examples from

such video examples through strong regularization. Image

courtesy of [5].

Experiments on three action datasets from both RGB

and infra-red inputs shows that replacing standard (frequen-

tist) 3D ConvNets with Bayesian 3D ConvNets results in

competitive recognition performance. We also find that

Bayesian 3D ConvNets are preferred when reducing the

amount of training examples results. Overall, Bayesian 3D

ConvNets provide strongly regularized networks for action

recognition from videos, with immediate benefits for train-

ing from limited examples.

2. Related Work

2.1. Bayesian networks

In deep learning literature, Bayesian inference has been

actively researched to deal with the big data demand and

overfitting in neural networks [1, 6]. In this work, we ex-

pand upon the Bayesian deep learning approach using varia-

tional inference. This line of work is characterised by defin-



ing the network as a probabilistic model P (y|x,w), where

x ∈ inputs, y ∈ targets, w ∈ weights. Since neural net-

works are large in size, this distribution is computationally

intractable and it therefore has to be approximated [6].

Bayes by Backprop [1] is a method that builds upon the

variational inference scheme for neural networks introduced

by Graves [6], who built upon Hilton and Van Camp [9]. In

this method, all the weights are represented as probability

distributions instead of single values , adding uncertainty

into the weights.

Gal and Ghahramani [4] and Shridhar et al. [25, 26] have

investigated the extension of Bayes by Backprop to convo-

lutional networks. Where the former adds Dropout layers

during training and testing, equivalent to having a Bernoulli

posterior with a Gaussian Prior, the latter generates Gaus-

sian distributions directly in its weights. This line of work

have been evaluated in the image domain, with results com-

petitive to non-Bayesian approaches. An extension to the

spatio-temporal domain is however lacking, while the prob-

lems of data demand and overfitting are ever present. In

this work, we focus on filling the Bayesian void in action

recognition.

2.2. Few-example Action Recognition

In early studies of few shot action recognition, work fo-

cused on scripted action datasets such as KTH or Wiezmann

[17, 22, 33], for example using Hidden Markov Models [23]

or dense trajectories [31]. More recent works employ larger

datasets such as UCF101 [28] for few shot action recogni-

tion, either taking a portion of the training set (from 10% to

50%) [32] or a subset of the classes [19]. Xu et al. [32] pro-

pose networks with dense connections [10], which have a

regularization effect to prevent overfitting; and dilated tem-

poral convolutions [35] to help explore temporal relations

between different snippets. In this work, we start from

Bayesian networks, which have readily shown their effec-

tiveness in other visual tasks, and bring them to the video

domain, for action recognition with strong regularization.

3. Method

3.1. Bayes By Backprop

Let’s start by defining the neural network as a probabilis-

tic model P (y|x,w). Given a set of inputs x ∈ X and the

set of weights w of the neural network, it returns a probabil-

ity for each output y ∈ Y . We are interested in learning the

weights that optimize this probabilistic distribution. These

weights w can be learnt using Maximum Likelihood Esti-

mation (MLE). With D = (x, y) a set of training examples:

wMLE = argmax
w

logP (D|w)

= argmax
w

∑

i

logP (yi|xi,w).
(1)

Regularization can be added into the weights by introducing

a prior on them and using Maximum A Posteriori (MAP).

Using a Laplace prior would yield L1 regularization while

a Gaussian prior would yield L2 regularization (weight de-

cay) [6]:

wMAP = argmax
w

logP (w|D)

= argmax
w

logP (D|w) + logP (w).
(2)

Bayes by Backprop is interested in learning the posterior

distribution on the weights given the training examples

P (w|D). In general, computing the true posterior through

Bayes’ rule P (w|D) = P (D|w)P (w)
P (D) involves computation-

ally intractable integrals for neural networks [1, 6, 9]. This

is due to the large number of parameters and the fact that

the functional form of a neural network does not lend itself

to exact integration.

Hinton and Van Camp [9] and Graves [6] propose to use

an approximation qθ(w|θ) to the true posterior P (w|D),
qθ(w|θ) ≈ P (w|D). This is generally a more tractable

distribution, such as a Gaussian distribution, that we could

sample from. This approximation to the true posterior is

called the variational posterior. This posterior is composed

of a set of parameters θ. These parameters are to be op-

timized using the Kullback-Leibler (KL) divergence [16].

KL divergence is used to measure how well a probability

distribution Q approximates the probability distribution P .

We seek to minimize the KL divergence (i.e. maximize

the similarity) between the variational posterior and the

true posterior. Inference is performed by optimizing the

approximate parameters θ:

θopt =argmin
θ

KL
[

qθ(w|θ) || P (w|D)
]

=argmin
θ

KL
[

qθ(w|θ) || P (w)
]

− E
qθ(w|θ)

[

logP (D|w)
]

.

(3)

This can be modelled as a cost function, consisting of a like-

lihood cost (data-dependent) and a complexity cost (prior-

dependent). It therefore trades off between satisfying the

data D and the prior P (w). This cost function is known

as the variational free energy [3, 34, 20] or evidence lower

bound [11, 20, 24].

Exactly minimising the cost function in Equation 3 is

computationally prohibitive. Therefore, gradient descent

and various approximations are used. In this work, we use a

stochastic variational method [1, 6], a generalization of the

Local Reparameterization Trick [15]. Then, by using Monte

Carlo methods to sample w instances from the approximate

q and then applying a backpropagation algorithm, Blundell

et al. achieve variational inference in neural networks.

This last step is the crux of Bayes by Backprop: first,

we approximate the true distribution P with an approximate



Figure 2: Bayesian 3D Convolution. In a Bayes by Back-

prop 3D ConvNet the weights of the convolution (orange

block) are formed by probability distributions. The weights

are sampled from these distributions, and then applied to the

input (blue block) to produce an output (green block).

distribution q formed by the parameters θ that are learnt; and

second we sample w from that q while seeing data. After

sampling w instances the cost function is approximated as

followed:

F(D, θ) ≈
n
∑

i=1

log qθ(w
(i)|D)− logP (w(i))

− logP (D|w(i)),

(4)

sampling w(i) from qθ(w|D) using Monte Carlo.

3.2. Bayesian 3D ConvNets

In convolutional layers, we do not deal with weights

alone but also filters, which can be seen as collection of

weights. Here we again replace the single values of the fil-

ters weights with probability distributions, and apply varia-

tional inference through Bayes by Backprop to approximate

the intractable true posterior probability distribution. To ap-

proximate the true posterior in 3D Convolutional layers, we

employ Gaussian distributions. However this distribution

will differ to the one defined in Section 3.1. The hyperpa-

rameters of the variational posterior qθ(w|θ) will now be

θ = (µ, α). The Gaussian distribution is formed by a mean

µ and a standard deviation σ =
√

α · µ2. This results in the

following variational posterior:

θ =(µ, α),

σ2 =α · µ2,

qθ(wijhwt|D) =N (µijhwt, αijhwtµ
2
ijhwt),

(5)

where i is input, j output, h filter height, w filter width,

and t represents the time dimension. In regular Bayesian

feed-forward network weights, we build a variational

approximation q to the true posterior p, sample from it and

apply the local reparameterization trick. For 3D ConvNets,

this is done in a slightly truncated way. We do not sample

the weights from q anymore, instead we sample layer acti-

vations b [21, 25] which helps to accelerate computation:

bj = Ai ∗ µi + ǫj ·
√

A2
i ∗ (αi · µ2

i ), (6)

where ǫ are noise samples from the standard normal distri-

bution, Ai is the input, ∗ symbolices the 3D convolutional

operation, and · the element-wise multiplication. A visual-

ization of a Bayesian 3D convolution is sohnw in Figure 2.

This means that we perform two convolutional opera-

tions to obtain the output. First, we use the output b as a fre-

quentist ConvNets output optimising it using a backpropa-

gation algorithm. Second, we learn the variance σ2 = α∗µ2

in the second convolutional operation. The intuition is that,

on the first convolution we learn the Maximum A Posteriori

(MAP) of the approximate distribution q. In the second con-

volution we observe how much do the values of the weights

deviate from the MAP.

4. Experimental Setup

4.1. Datasets

All three datasets used in this experiments are small-

sized datasets, to investigate how the model react to overfit-

ting. All datasets represent either human actions or sports.

The KTH [17] dataset consists of 6 classes, with a total

of 600 videos. Most of them are filmed in homogeneous and

static backgrounds, in four different scenarios. The Actions

are: walking, jogging, running, boxing, hand waving, and

hand clapping.

The UCF11 [18] dataset consists of 11 sports classes

with more than 100 videos per class. Action categories

include: basketball shooting, biking/cycling, diving, golf

swinging, horse back riding, soccer juggling, swinging, ten-

nis swinging,trampoline jumping, volleyball spiking, and

walking with a dog.

The InfAR [5] dataset consists of action recognition

videos filmed with infra-red cameras. It is formed by 600

videos of 12 classes (50 videos per class) of a few sec-

onds each. All videos are filmed in 3 different static back-

grounds. The actions are one hand wave (wave1), multiple

hands wave (wave2), handclap, walk, jog, jump, skip, hand-

shake, hug, push, punch, and fight.

4.2. Implementation Details

We use the 3D version of the ResNet-18 network archi-

tecture [8] due to its facility to learn and the good results



KTH UCF11 InfAR

Valid Train Valid Train Valid Train

Frequentist 75.0 80.8 60.4 82.2 34.2 100.0

Bayesian 78.1 77.9 61.3 82.0 45.0 100.0

Table 2: Comparison between standard (frequentist) 3D ConvNets and Bayesian 3D ConvNets on three small-scale action

datasets. Across all datasets, incorporating Bayesian inference is preferred. We attribute this to a stronger regularization,

exemplified by the lower training accuracies.

KTH UCF11 InfAR

Total 73.8 57.6 45.0

Average 78.1 61.3 45.0

Voting 77.8 60.8 44.2

Table 1: Comparison of different aggregation methods for

the multiple samples obtained per test videos in Bayesian

3D ConvNets. Averaging is preferred and we will use this

approach throughout further experiments.

delivered using 3D models in video datasets [7]. We use

the Adam optimizer [14] as our backpropagation algorithm.

Learning rate is chosen by the method introduced by Smith

[27]. This method consists of training a network starting

from a low learning rate and increase the learning rate ex-

ponentially for every batch, until divergence. Then, analyz-

ing how the loss advanced through these first batches, we

choose the learning rate where it decreased the fastest. We

found 10−6 to be a good starting learning rate.

5. Experimental Results

5.1. Inference in Bayesian 3D ConvNets

In Bayesian networks, we introduce uncertainty in the

form of variance to every weight in the network. This means

that, every time that you introduce a data point to the net-

work, the value in the weights will be different and there-

fore the final output will change. As a result, we have a

non-deterministic network, that can assign different classes

to the same input.

To asses the accuracy of our Bayesian network we run

several samples of the input and obtain several different out-

puts. As we are dealing with a classification problem, this

means we obtain different probability distributions over ac-

tions. In the first experiment, we investigate three ways to

obtain a final prediction from multiple samples. The first,

total accuracy, computes the total accuracy over all samples.

The second, averaged accuracy, first averages the softmax

scores over all samples and then selects the highest score

action as the prediction. This can be seen as an early fusion

of the samples. For the third, voting accuracy, each sample

result returns a class. We consider this class as a vote and

declare the more voted class as the final result. This can be

seen as a late fusion of the samples.

The results for the different sample aggregation methods

is shown in Table 1. Across all three datasets, the averag-

ing method obtains the highest scores. The total method

performs the same on InfAR, while performing 4.3 percent

point (p.p.) and 3.7 p.p. lower on KTH and UCF11 respec-

tively. The voting method performs between 0.8 p.p. and

0.3 p.p. lower across the three datasets. Based on this anal-

ysis, we recommend the use of averaging in Bayesian 3D

ConvNets and we will use this approach throughout further

experiments.

5.2. Comparison to standard 3D ConvNets

The second experiment performs a direct comparison be-

tween standard 3D ConvNets and Bayesian 3D ConvNets.

For this experiment, we use the same architecture and set-

tings for both and report on the three datasets. The results

are shown in Table 2. The table shows that on all three

datasets, Bayesian 3D ConvNets perform better. On InfAR,

Bayesian 3D ConvNets obtain an accuracy of 45.0%, com-

pared to 34.2% for the baseline, an improvement of 11.2

p.p. On KTH, Bayesian 3D ConvNets outperform the base-

line by 3.1 p.p. (from 75.0% to 78.1%), while on UCF11,

the improvement is 0.9 p.p. (from 60.4% to 61.3%). We

also provide the per epoch accuracies in Figure 3, which

show that Bayesian 3D ConvNets continue improving over

training epochs, while the baseline validation performance

flattens quicker.

To gain insight as to why the Bayesian 3D ConvNet are

interesting for action recognition when training examples

are scarce, we also show the training accuracies in Table 2

and Figure 3. The Bayesian 3D ConvNet obtains consis-

tently lower training accuracies, which is attributed to the

stronger regularization that is imposed. We conclude from

this experiment that Bayesian 3D ConvNets are effective for



(a) KTH. (b) UCF11. (c) InfAR.

Figure 3: Per epoch training and validation comparison between standard and Bayesian 3D ConvNets. On all datasets, we

find that the Bayesian variant perform a stronger regularization than the standard 3D ConvNet, which results in validation

improvements.

KTH UCF11 InfAR

Valid Train Valid Train Valid Train

Dropout 78.5 83.8 60.4 88.8 41.7 100.0

Bayesian 78.1 77.9 61.3 82.0 45.0 100.0

Table 3: Comparison between DropOut regularization in 3D ConvNets and Bayesian 3D ConvNets. Bayesian 3D ConvNets

provide competitive or better results to DropOut regularization.

action recognition on smaller datasets. This holds for both

actions captured with RGB and infar-red sensors.

5.3. Comparison to DropOut

For the third experiment, we compare Bayesian 3D Con-

vNets to a DropOut variant of 3D ConvNets. To do so

we follow Zagoruyko et al. [36], that efficiently imple-

mented DropOut into ResNets. DropOut [29] is a widely

known regularization method to prevent overfitting, and is

also used as baseline in other Bayesian networks [4]. The

comparison on both datasets is shown in Table 3. Akin to

the first experiment, we observe improvements on the In-

fAR dataset. DropOut improves over standard 3D Con-

vNets (41.7% accuracy), but is 3.2 p.p. lower than Bayesian

3D ConvNets. On KTH, DropOut obtains competitive val-

idation scores compared to Bayesian 3D ConvNets (78.5%

versus 78.1%). On UCF11, Bayesian 3D ConvNets (61.3%)

outperform the DropOut baseline (60.4%), which does not

improve over standard 3D ConvNets. We conclude that

Bayesian 3D ConvNets provide competitive regularizers for

action recognition on small datasets.

5.4. Few example evaluation

For the fourth experiment, we dive deeper into the po-

tential of Bayesian deep learning for videos in the few ex-

ample setting. We again take the KTH and InfAR datasets

and reduce the training set to a quarter of the original size

through random selection of training examples. We main-

tain the same size for the test set. The comparison to both

standard 3D ConvNets and the DropOut baseline are shown

in Table 4. On both datasets, the Bayesian 3D ConvNet out-

performs the two baselines. The improvement is 4.3 p.p. on

KTH and 11.6 p.p. on InfAR. In this setting, DropOut failed

to converge on KTH, indicating that this regularizer is not as

stable as Bayesian 3D ConvNets. We conclude here that es-

pecially when examples are scarce, Bayesian deep learning

is effective on 3D ConvNets for action recognition.

6. Conclusions

We have extended Bayes By Backprop to 3D convolu-

tional neural networks and investigated how it behaves on

various action datasets with limited examples. We have

found Bayesian 3D ConvNets to outperform both standard

3D ConvNets and its variant with Dropout as regularizer.

The main factor in this improvement was because over-

fitting was combatted through strong regularization. This

improvement holds especially when when training exam-

ples become more scarce. For future work, an important

step is to reduce the computational complexity in Bayesian

deep learning, which is a strain when dealing with large net-

works, as is the case in the spatio-temporal video domain.



KTH InfAR

Valid Train Valid Train

Frequentist 54.2 75.0 20.8 83.3

Dropout d.n.c d.n.c 23.3 62.5

Bayesian 64.8 68.3 30.8 99.2

Table 4: Bayesian 3D ConvNets compared to standard and

DropOut 3D ConvNets on KTH and InfAR using a quarter

of the training data. d.n.c. denotes did not converge. On

both datasets, the Bayesian 3D ConvNet provides clear im-

provements over the baselines, highlighting its effectiveness

for few-example action recognition.
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