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Abstract

The shift operation was recently introduced as an alter-

native to spatial convolutions. The operation moves subsets

of activations horizontally and/or vertically. Spatial con-

volutions are then replaced with shift operations followed

by point-wise convolutions, significantly reducing computa-

tional costs. In this work, we investigate how shifts should

best be applied to high accuracy CNNs. We apply shifts

of two different neighbourhood groups to ResNet on Ima-

geNet: the originally introduced 8-connected (8C) neigh-

bourhood shift and the less well studied 4-connected (4C)

neighbourhood shift. We find that when replacing ResNet’s

spatial convolutions with shifts, both shift neighbourhoods

give equal ImageNet accuracy, showing the sufficiency of

small neighbourhoods for large images. Interestingly, when

incorporating shifts to all point-wise convolutions in resid-

ual networks, 4-connected shifts outperform 8-connected

shifts. Such a 4-connected shift setup gives the same ac-

curacy as full residual networks while reducing the num-

ber of parameters and FLOPs by over 40%. We then high-

light that without spatial convolutions, ResNet’s downsam-

pling/upsampling bottleneck channel structure is no longer

needed. We show a new, 4C shift-based residual network,

much shorter than the original ResNet yet with a higher ac-

curacy for the same computational cost. This network is

the highest accuracy shift-based network yet shown, demon-

strating the potential of shifting in deep neural networks.

1. Introduction

In recent years, convolutional neural networks (CNNs)

have radically improved the state-of-the-art in image clas-

sification accuracy. Yet this improvement has come at an

exponentially increasing computational expense. The pop-

ular CNN ResNet [10] (2016) is approximately ten times

the computational cost of earlier ImageNet challenge [25]

winners such as AlexNet [18] (2012). The most accurate

networks on ImageNet today, SENet154 [13] (2018) and

NasNet [37] (2018), are approximately twice as expensive

as ResNet.

This work focuses on optimising the computational foot-

print of high accuracy networks by replacing one of their

costliest components in terms of parameters and FLOPs, the

spatial convolution. We work with ResNet, as this popular

network is still close to the most accurate networks today,

and modify its architecture with the shift operation. The

shift operation was recently introduced by Wu et al [32]

and moves all elements within a given channel’s image

plane horizontally and/or vertically, with different (groups

of) channels undertaking different moves. The operation is

FLOP and parameter free, being theoretically equivalent to

a re-referencing of the initial activations maps [11]. Spatial

convolutions are replaced by a shift followed by a point-

wise (1×1) convolution, itself equivalent to a simple matrix

multiplication, and so require fewer parameters and FLOPs.

So far, several shift-based CNN architectures have been

proposed [11, 16, 32] for the small-scale image datasets CI-

FAR10 and CIFAR100 [17]. Computationally constrained

CNN architectures [11, 16, 32] have also been proposed for

large images on ImageNet [25]. High accuracy shift net-

work architectures, equalling or surpassing ResNet [10] on

ImageNet, have not yet been explored. Here, we ask: for

high accuracy networks such as ResNet, how should shifts

be applied, and what discrete shift neighbourhood is best?

The question of the spatial extent of neighbourhoods in vi-

sual recognition is a long-standing challenge, dating back

to cellular arrays in image processing [6] and subsequently

in image filtering [27]. For the spatial extent in rectangu-

lar arrays, two neighbourhoods are generally employed: the

8-connected (8C) neighbours (left, right, up and down + di-

agonals); and the 4-connected (4C) neighbours (left, right,

up and down only). These neighbourhoods, illustrated in

Fig. 1, are also known as the Moore neighbourhood and

von Neumann neighbourhood, respectively [22]. Here we

look at which neighbourhood to use in the high-accuracy

deep learning setting.

The main focus of this work is two-fold. First, we aim

to employ shifts on a full ResNet network (ResNet101) on

a large-scale image dataset. This is with a view to opti-

mising network architecture, either by maintaining accuracy

while cutting computational cost, or by maintaining compu-



tational cost while improving accuracy. Second, we inves-

tigate which neighbourhood extent is sufficient for image

recognition in such networks. The original shift replaces

the 3× 3 spatial convolutional kernel with 3× 3 shifts. Im-

plicitly, they opt for the Moore neighbourhood, but is such

a full extent necessary?

In line with these focus points, we propose two exten-

sions of the ResNet architecture. The first network adds

multiple shifts to ResNet’s residual blocks to reduce FLOPs

and maintain accuracy. The second network focuses on ac-

curacy for the same FLOPs. We highlight that, without the

spatial convolutions, the ’bottleneck’ in ResNet’s channel

structure is no longer needed. We construct a shorter net-

work with a simpler channel structure, without down- and

up-sampling, and show it gives superior performance on Im-

ageNet. We then make the following contributions:

• We explore alternative neighbourhoods variants of the

shift operation in ResNet on ImageNet. When directly

replacing spatial convolutions, we find that shifting

only to the 4-connected neighbours is sufficient for im-

age recognition.

• We propose a multi-shift architecture, adding spa-

tial information to the downsampling and up-sampling

convolutions of ResNet. We find that performance is

improved with this approach, but only for 4-connected

shifts. This result highlights the importance of con-

straining neighbourhood extents when shifting on

large networks. Our proposed multi-shift network then

reduces ResNet’s computational costs by 43% while

maintaining accuracy.

• We propose a multi-shift-based ResNet variant with-

out the ’bottleneck’, which becomes possible when re-

placing spatial convolutions with shifts. The channel

structure then becomes less complex, as the same num-

ber of channels is used throughout each residual block,

and the network much shorter (35 layers) than the orig-

inal (101 layers). We show a network with this design

using 4-connected shifts which has approximately the

same computational costs as ResNet101 and an accu-

racy increase of +0.8%. This is the highest accuracy

shift-based network ever demonstrated on ImageNet.

2. Related Work

The shift operation was first introduced in [32]. Shifts

translate activation maps horizontally and/or vertically to a

neighbouring position. The shift operations of [32] con-

sider a square 8-connected neighbourhood for image clas-

sification, with the shift-based CNN architectures demon-

strated in [32] primarily optimised for the miniature image

datasets CIFAR10/100 [17]. Computationally constrained

networks for larger images, tested on ImageNet [25], were

also shown. A higher accuracy network (ShiftResNet50)

for ImageNet was also tested, but its architecture is unpub-

lished. We estimate the FLOPs of this architecture and com-

pare its results to ours in this work. We build on [32]; we

focus on varying the shift neighbourhood and applying it to

high accuracy networks for large images. We furthermore

propose new residual architectures for shifts, resulting in

competitive networks with low computational cost, outper-

forming other shift approaches, such as Wu et al. [32].

Other works have also investigated varying shifts op-

erations for image classification. Closely related to this

work is that of [11], who vary the (discrete) neighbour-

hood of shifts for miniature images. They then build a com-

pact model for large images (accuracy 67.0%), though the

FLOPs and parameters of this model were not shown. Com-

paratively, we focus on comparing shift neighbourhoods for

the large image setting and for much larger, high accuracy

networks (78.4%). We explore additional shift variants, dis-

cussing when they are appropriate, showing the architec-

tural changes required to optimise large shift networks.

Active-shifts, introduced in [16], also relate to this work.

By realising shifts as bi-linear interpolations of an input ac-

tivation map, the horizontal and vertical motions of a shift

can treated as real, trainable values. However, active-shifts

require additional FLOPs to calculate these interpolations.

Further, as activation map motion is non-integer, active

shifts always require additional activation map copies in any

implementation [11]. [16] also focus on optimising network

architectures for miniature image datasets and for computa-

tionally constrained models on ImageNet, while we go be-

yond small datasets and compact networks for shifting.

Most recently, sparse-shifts were introduced in [31].

Sparse shifts attempt to learn discrete shift neighbourhoods

by integer approximations of active-shifts. While [31] do

consider constraining shift neighbourhoods through an L1

regularisation of shift magnitude, they ultimately find un-

constrained shift-neighbourhoods to be optimal, in contrast

to our results. We show the results of [31] in Fig. 2.

Shifts have also been applied in other contexts. These

range from optimising shift-based CNNs for use with FP-

GAs [34] or systolic arrays [19] to re-purposing shifts for

new tasks such as video recognition [20]. To our knowl-

edge, no work has yet explored how shifts should be ap-

plied to a high accuracy network for image classification, or

explored shift neighbourhoods in this setting.

In a broader sense, our work relates to methods to reduce

network computational cost of larger CNNs. Examples of

such methods are in network design (e.g. [26, 15]), tensor

decomposition (e.g. [3, 4]), network pruning (e.g. [9, 8])

and student-teacher network training (e.g. [12, 24]). Shift

operations in general and the shift-variants and CNN archi-

tectures we consider here are both complementary to and

distinct from these approaches.



Figure 1. (Top) Original and proposed residual block designs. Green blocks are convolutions; the height of the blocks correspond to the

number of channels. White boxes with arrows indicate shifts. Batch normalization and ReLU operations, applied after each convolution,

are omitted for clarity. From left to right: (a) the down- and up- sampling bottleneck design of the original ResNet, (b) a single 4-

connected shift residual network, with the bottleneck channel design (c) our proposed multi-shift block, with shifts applied before every

1 × 1 convolution, also with the bottleneck design, and (d) our simplified channel-flattened multi-shift residual block, which is enabled

through the replacement of spatial convolutions. (Bottom) The theoretical receptive field extent of each residual block. Elements within the

receptive field of each block are shown in blue, with the origin indicated in red. Green boxes indicate receptive field extents if 8-connected

shifts are used instead of 4-connected shifts.

3. Method

3.1. The 4-connected shift operation

The shift operation, introduced in [32], moves all the el-

ements of an activation map an integer number of elements

along spatial directions. The set of allowed shift directions

is the shift neighbourhood. Different (subsets of) channels

are moved to different positions within this neighbourhood.

In the original design, the shift neighbourhood matches the

square neighbourhood of the equivalent square convolu-

tional kernel of a spatial convolution (Fig. 1 a). Thus, to

match a square kernel of spatial extent Dk ×Dk, there are

K = D2

k
neighbourhood positions. To perform the opera-

tion, an activation map of M channels is split into D2

k
sub-

groups, each of a size M//D2

k
channels, where ’//’ denotes

integer division. Each of the K channel subgroups’ activa-

tion maps is then moved in one of the K neighbourhood

positions. In the case that division M//D2

k
is not exact, the

remaining (M mod D2

k
) channels are added to the origin

(central element) subgroup and are, in practice, unmoved.

As stated in the introduction, here we ask: what shift

neighbourhood is optimal? We compare the two neigh-

bourhoods which have a long history of importance in im-

age processing: the 8-connected (8C) Moore neighbour-

hood and the 4-connected (4C) von Neumann neighbour-

hood [22, 23, 30, 5]. Fig. 1 visually compares these neigh-

bourhoods. Most modern CNN frameworks, such as Ten-

sorFlow [7] or Pytorch [21] only allow rectangular convo-

lutional kernels in spatial convolution operations, and do

not allow, for example, the cross shape of 4C neighbour-

hoods. Shift operations provide a new opportunity to study

image neighbourhood connectivity, as they do not rely on

these spatial convolution operations.

More formally, for two point-sets X and Z, correspond-

ing to the input and output activation maps of a shift, we

define the neighbourhood function N from X to Z [22]:

N : X → 2Z, (1)

such that for each point x ∈ X, it holds that N(x) ⊂
Z. The 8C neighbourhood and 4C neighbourhood functions

are defined as:

N8C(x) ={y : y = (x1 ± a, x2 ± b) ,

a, b ∈ {0, 1}},
(2)

N4C(x) ={y : y = (x1 ± a, x2) or y = (x1, x2 ± b),

a, b ∈ {0, 1}}.

(3)

Noting the results of [11], we are also interested if the

origin element, a = b = 0, is strictly necessary. In residual

networks, information about the origin element can be car-

ried by the residual connection itself. It might then be nat-

ural to not also include origin element information in shift

operations used in residual networks. We first define the

origin or ’no-shift’ neighbourhood as:

NO(x) = {y : y = (x1, x2)}. (4)

And then define two further shift neighbourhoods with-

out the origin as:



Input shape ResNet101 Shift Multi-shift Flattened multi-shift

224× 224 conv 7× 7 stride-2, max-pool 3× 3 stride-2, out: 64

56× 56





conv1× 1, 64
conv3× 3, 64
conv1× 1, 256



 × 3





conv1× 1, 64
S conv1× 1, 64

conv1× 1, 256



 × 3





S conv1× 1, 64
S conv1× 1, 64
S conv1× 1, 256



 × 3





S conv1× 1, 256
S conv1× 1, 256
S conv1× 1, 256



 × 1

56× 56





conv1× 1, 128
conv3× 3, 128
conv1× 1, 512



 × 4





conv1× 1, 128
S conv1× 1, 128

conv1× 1, 512



 × 4





S conv1× 1, 128
S conv1× 1, 128
S conv1× 1, 512



 × 4





S conv1× 1, 512
S conv1× 1, 512
S conv1× 1, 512



 × 1

28× 28





conv1× 1, 256
conv3× 3, 256
conv1× 1, 1024



 × 23





conv1× 1, 256
S conv1× 1, 256

conv1× 1, 1024



 × 23





S conv1× 1, 256
S conv1× 1, 256
S conv1× 1, 1024



 × 23





S conv1× 1, 1024
S conv1× 1, 1024
S conv1× 1, 1024



 × 8

14× 14





conv1× 1, 512
conv3× 3, 512
conv1× 1, 2048



 × 3





conv1× 1, 512
S conv1× 1, 512

conv1× 1, 2048



 × 3





S conv1× 1, 512
S conv1× 1, 512
S conv1× 1, 2048



 × 3





S conv1× 1, 2048
S conv1× 1, 2048
S conv1× 1, 2048



 × 1

7× 7 avg. pool 7× 7, fc 1000, soft-max

Table 1. Overview of the architectures used in this work. Repeating residual blocks are indicated in square brackets, with the number of

times the block is repeated to the right. A bold S indicates shift placement. For each convolution in a residual block, the number after the

comma indicates the number of output channels from an operation.

N8C−O(x) = N8C(x) \NO(x), (5)

N4C−O(x) = N4C(x) \NO(x). (6)

As a form of sanity check, we ask what happens if we

use no shifts at all. This creates a baseline for the benefit of

using shift operations when compared to a network of oth-

erwise identical configuration. This case uses the ’no-shift’

neighbourhood. Hence in total we investigate five neigh-

bourhood variants. We apply these operations to the origi-

nal ResNet [10]. We replace the 3 × 3 convolution within

each residual block with a shift operation immediately fol-

lowed by a point-wise 1×1 convolution. In all experiments

(CIFAR100 and ImageNet) we use ResNet’s ’bottleneck’

residual block design (Table 1). The proposed changes are

shown diagramatically in Fig. 1. We (initially) do not alter

the channel structure of a block. We do this to ensure that

each shift design is identical in terms of FLOPs and param-

eter count and can be more simply compared to ResNet.

Finally, we note a change to the downsampling method

for shift-based networks. ResNet uses stride-2 spatial (3×3)

convolutions to downsample within a residual block. All in-

put activations to this spatial convolution then contribute to

its output. For shift / point-wise convolution based residual

blocks, this is no longer the case: most of an input activa-

tion map’s information is lost following a (shifted) stride-2

point-wise convolution. We instead use a 2 × 2 average

pooling to downsample, similar to [14]. We perform this

pooling immediately prior to the shift / point-wise convolu-

tion, matching the downsample location to ResNet.

3.2. Multi-stage shifting residual blocks

In Fig. 1 b we simply replace the spatial convolution in-

side each residual block with a shift operations followed by

1× 1 convolution. We now add further shift operations be-

fore the down-sampling and up-sampling 1 × 1 point-wise

convolutions (Fig. 1 c), these convolutions previously in-

tended to be used only for dimensionality reduction and ex-

pansion [10]. By adding shifts, we can add spatial infor-

mation to these down- and up-sampling convolutions and

expand the theoretical receptive field of each block signif-

icantly, as shown in Fig. 1 c. The same maximum recep-

tive field extent of three blocks is then accomplished in one

block, as information from a wider area is incorporated in

each block’s network optimization.

Inspired by [36] we also add an inner residual connec-

tion, which is across the middle convolution of the residual

block. Now that spatial information is also carried by the

first and last convolutions of the residual block, such an in-

ner residual connection will no-longer carry only redundant

information with respect to the outer residual connection.

3.3. Flattening the residual bottleneck

We now look at the network channel structure in this

multiple shift setting. The purpose of down- and then up-

sampling within bottlenecks is to reduce the dimensionality

of the spatial convolution in each residual block [10]. While

this process reduces the amount of information processed

by the spatial convolution, it also reduces computational ex-

pense. By using shifts and 1 × 1 convolutions, we have

removed spatial convolutions from network. Shift based

networks then do not have the same computational need

to perform dimensionality reduction. As such, we flatten

ResNet’s channel structure by widening the channel count

in the middle of each block to be the same as the residual

(see Table 1). This change is motivated by the improved

performance of an increased channel width in other con-

texts, such as in Wide ResNet[35] and ResNeXT [33]. Even

without spatial convolutions, this change increases the pa-



CIFAR-100 ImageNet

#params FLOPs acc. #params FLOPs acc.

ResNet101 [10] 1078K 154M 74.9 44.6M 7.80G 77.6

ResNet50 [10] 540K 78M 72.3 25.6M 4.09G 75.9

8-connected shift 605K 85M 74.3 25.6M 4.41G 77.3

4-connected shift 605K 85M 73.8 25.6M 4.41G 77.3

8-connected shift (nO) 605K 85M 74.2 25.6M 4.41G 77.0

4-connected shift (nO) 605K 85M 73.5 25.6M 4.41G 77.0

No shift 605K 85M 58.4 25.6M 4.41G 61.2

Table 2. Results for directly replacing spatial convolutions in

ResNet101 with shifts of various neighbourhoods, compared to

baselines of ResNet101 and ResNet50. nO denotes no origin.

We find that 4-connected neighbourhoods are sufficient shifting

in residual networks.

rameter count and FLOPs of the network. As the receptive

field extent has also increased due to the multi-shift archi-

tecture, we reduce the length of the network to limit these

costs to roughly the same as the original ResNet. Table 1

gives an overview of the architectures of this work.

4. Experiments and Discussion

Datasets: We focus on two well-known image recogni-

tion datasets: CIFAR-100 and ImageNet. CIFAR-100 con-

tains 50,000 training examples and 10,000 test examples for

100 classes. All images are of size 32× 32. For ImageNet,

we use the 1,000 classes and 1.3M images train / 50K im-

ages test split as outlined by the Large-Scale Visual Recog-

nition Challenge (ILSVRC) [25]. All images are resized to

a resolution of 224× 224.

Models and training: The initial ResNet model we take

from [10]. For all datasets, we employ ResNet101 as a base-

line, using the ’bottleneck’ residual block. The same chan-

nel configuration as ResNet101 is used for all shift imple-

mentations; the computational cost is then identical across

all shift based networks in the first experiments (Table 2).

To train ImageNet we use an initial learning rate of 0.1

and reduce it by a factor of 10 every 30 epochs for 100

epochs in total. We use a momentum of 0.9 and a batch

size of 128. In training we use a random-resized crop and

a single central crop for testing following [10]. We test one

weight decay of 4× 105 in the first set of ImageNet experi-

ments (Table 2), and this value and an additional weight de-

cay value of 1×104 in the second set of experiments (Table

3). Results for ImageNet are from training on 4 NVIDIA

1080Ti GPUs. Code and trained models are available on-

line.

For training CIFAR-100, we use the same initial learn-

ing rate of 0.1 and reduce it by a factor of 10 every 100

epochs for 300 epochs. Training on a single NVIDIA TI-

TANX GPU, we use a higher weight decay of 5× 104, and

a batch size also of 128.

4.1. Comparing shift operations

In table 2 we show how the direct replacement of spatial

convolutions in ResNet with different shift types affects ac-

curacy. We first look at CIFAR100 results. When compared

to the ResNet101 baseline, all investigated shifts decrease

computational cost by nearly half and suffer an accuracy

penalty. This penalty is however smaller than that of using

a shorter ResNet of comparable computational cost, such

as ResNet50. The accuracy drop is also slightly larger for

those shifts not including the origin than those shifts that do

include the origin. This implies that, even though the resid-

ual connection carries information about the origin, it is still

necessary to also include this information within shift oper-

ations. On CIFAR100, when using only one shift within

a residual block, 8-connected shifts tend to outperform 4-

connected shifts.

Similar results on are seen on ImageNet as on CIFAR-

100: using shifts reduces computational cost, but an accu-

racy penalty is suffered. Noting that the absolute accuracies

on both CIFAR-100 and ImageNet are similar, this penalty

is smaller for ImageNet, between -0.3% and -0.6%, than for

CIFAR-100, between -0.6% and -1.4%. We again find that

shifts with an origin component outperform those without

an origin component. One important difference between

CIFAR-100 and ImageNet results is that 4C shifts show

equal performance to 8C shifts. This result is unexpected,

as the theoretical size of the receptive field is restricted for

4C shifts when compared to 8C shifts (Fig. 1).

Lastly, we note that for both CIFAR-100 and ImageNet,

we find that having no shift at all drops accuracy signifi-

cantly, but only to 58.4% and 61.2% for each dataset respec-

tively. That network accuracy remains this high is surpris-

ing: these networks have only a single spatial convolution in

their first layer. All other convolutions are point-wise 1× 1
and cannot include spatial information (Table 1) - yet accu-

racy is still high enough to beat AlexNet [18]. Such no-shift

networks are similar in structure to BagNets [2] - networks

which have a highly restricted set of spatial convolutions.

The most important distinction is that our no-origin net-

works do not include any spatial convolutions beyond the

first convolution. Comparatively, BagNets still include one

additional spatial convolution in each of ResNet’s four lay-

ers. Our networks then have a greater spatial extent restric-

tion than BagNets. Our results then suggest that perceptual

tasks such as ImageNet can be solved by even smaller spa-

tial feature extents than previous shown in [2].

In the next section, we examine the effects of placing

shifts at additional positions in the network. We do this for

both the best performing shifts on ImageNet from this sec-

tion, the 8C and 4C shifts including an origin component.



CIFAR-100 ImageNet

#params FLOPs accuracy #params FLOPs accuracy

wd: 4× 10−5 wd: 1× 10−4

Baselines

ResNet101 [10] 1078K 154M 74.9 44.6M 7.80G 77.6 77.4

Multi-shifting

8-connected 605K 85M 74.3 25.6M 4.41G 76.8 77.2

4-connected 605K 85M 75.1 25.6M 4.41G 77.3 77.6

Flattened architecture

8-connected 1068K 162M 76.9 40.8M 7.72G 77.2 77.8

4-connected 1068K 162M 77.5 40.8M 7.72G 77.8 78.4

Table 3. Results for networks with additional shifts placed before down- and up-sampling convolutions, compared to the baseline

ResNet101. For both datasets we find that, when using multiple shifts, 4-connected shifts are preferred over 8-connected shifts. The

accuracies of multiple 4-connected shift networks are competitive with the baseline at a reduced computational cost. Using multiple shifts

in a flattened residual block channel structure results in an improved performance over standard ResNets at a similar computational cost.

In this flattened architecture, we again find 4-connected shifts are preferred over 8-connected shifts.

4.2. Multi-stage shifting

In Table 3 we show networks with multiple shift opera-

tions in each residual block and compare them to a baseline

ResNet101, again on both CIFAR-100 and ImageNet.

For CIFAR-100, we find that the multi-4C shift net-

works improves against single-4C shift networks (+1.2%),

but multi-8C shift networks show no improvement over

single-8C shift networks. The accuracy for multi-4C shift

networks is slightly above the baseline (+0.2%), while re-

ducing computational costs by 45%. The final architecture

studied flattens the channel structure of bottlenecks and has

a reduced network length, keeping computational costs ap-

proximately the same as the baseline ResNet101. In this

architecture, 4C shifts are again found to outperform 8C

shifts. Both shift types outperform the baseline in this ar-

chitecture, with 4C shifts giving the greatest accuracy im-

provement (+2.6%).

For ImageNet models we compare two weight decay set-

tings: 4 × 10−5, suggested in [13] for use with ResNet ar-

chitectures, and 1×10−4, used in the original ResNet exper-

iments [10]. We find that multi-shift networks are particu-

larly sensitive to weight decay within this range. All multi-

shift networks benefit from using the same weight decay as

originally suggested for ResNet, though ResNet itself does

not. While not shown in Table 2, a higher weight decay de-

grades performance for single shifts. In both weight decay

settings, we find that multiple 4C shifts outperform multiple

8C shifts. This is despite the reduced theoretical receptive

field size of 4C shifts when compared to 8C shifts. Compar-

ing optimal weight decay settings for each network, adding

multiple shift modules improves 4C shift results (+0.3%),

but does not change 8C results. The multi-4C shift architec-

ture provides the same accuracy as the original ResNet101,

yet with a 43% reduction in computational costs.

Table 3 also shows ImageNet results from networks with

a flattened channel structure and equipped with either mul-

tiple 4C shifts or multiple 8C shifts. We also find that

in this architecture, multiple 4C shift out-perform multi-

ple 8C shifts. In this architecture, using either 8C or 4C

shifts results in an improved accuracy against the base-

line ResNet101 while keeping computational cost approxi-

mately the same, with use of 4C shifts yielding the largest

improvement (+0.8%). This improved accuracy is in spite

of these shift-based networks being considerably less deep

(35 layers) than the baseline (101 layers), see Table 1. This

choice of depth was made to keep the FLOPs and parame-

ter count approximately the same as ResNet, and does not

appear to have restricted accuracy.

In our final figure, Fig. 2, we comparatively evaluate the

top1-accuracy on ImageNet of different networks as a func-

tion of both the number of FLOPs and the number of net-

work parameters. The figure shows how our multi-4C shift

residual network design significantly improves in computa-

tional cost against one of the most popular modern network

designs, ResNet [10], while maintaining accuracy. On the

other hand, our flattened multi-4C shift architecture has a

similar numbers of FLOPs and parameters as ResNet and

improves accuracy.

We draw a comparison to shift papers with ImageNet ar-

chitectures [16, 32, 31]. We highlight that while the net-

works shown in these works are computationally efficient,

their accuracies are comparatively lower. This is as these

works principally focused on improving compact, low pa-

rameter / FLOP networks; their results can thus be seen to-

wards the left of the figure. The exception is ShiftResNet50

shown in [32]. The exact architecture and FLOPs of this

network were not reported; here we have estimated the net-

work’s FLOPs from the number of reported parameters and

show the results in Fig. 2.



Figure 2. ImageNet top-1 accuracies as they relate to FLOPs, with

the parameter count indicated by circle size. See text for data

sources. Our approach (orange circles) demonstrates shifts can im-

prove FLOPs/parameters or accuracy against ResNet. ’A’ and ’B’

denote 4C-MS-ResNet101 and 4C-MS-ResNet50. Both are mod-

els using multiple shifts with the original ResNet channel struc-

ture. ’C’ denotes 4C-MSF-ResNet35 which uses the flattened

channel structure. All variants use 4-connected shifts. In terms

of accuracy, our networks outperform the popular CNN architec-

tures VGG-19 [28] and MobileNetv2 [26] and all other shift-based

networks [16, 32]. The FLOPs for Shift-ResNet-50 [32] are not

available and have been estimated from the parameter count.

We also compare to well established standard CNN ar-

chitectures [29, 28, 13, 37, 26]. For the accuracies, FLOPs

and parameters of standard CNNs, we use the benchmark

analysis of Bianco et al. [1]. Compared to other standard

CNN architecures, the accuracy of our networks are supe-

rior to MobileNetv2 [26], GoogleNet [29] and VGG [28].

The current best performers on ImageNet, SENet-154 [13]

and NasNet-A-Large [37], have a higher accuracy than our

networks, but come with a much larger FLOP and parameter

demand. We envision that these networks can similarly ben-

efit from using 4-connected shifts in their architecture, re-

ducing their FLOP requirement yet maintaining accuracy.

5. Conclusions

This work investigates shifts in deep residual networks

and how best to apply them in the high accuracy, large im-

age classification setting. We examine shifts based on both

the 8-connected and 4-connected neighbourhoods. We find

that, when used solely within residual blocks, both neigh-

bourhoods offer similar performance. When used multiple

times, the shift neighbourhood should be restricted to the 4-

connected neighbours. As such, we posit that only shifting

to the 4 nearest neighbours is sufficient in deep residual net-

works. We have outlined two high-accuracy networks us-

ing 4-connected shifts: the first reduces computational cost

against ResNet101 by 43% without compromising on accu-

racy; the second improves on ResNet101’s accuracy, while

keeping computational costs roughly equal. These results

show that shifts can be successfully applied in the high-

accuracy deep learning setting, offering large improvements

in computational cost or accuracy. Code and trained models

are available online.
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