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Abstract

In this paper, we propose a new capsule network archi-

tecture called Attention Routing CapsuleNet (AR CapsNet).

We replace the dynamic routing and squash activation func-

tion of the capsule network with dynamic routing (Capsu-

leNet) with the attention routing and capsule activation.

The attention routing is a routing between capsules through

an attention module. The attention routing is a fast forward-

pass while keeping spatial information. On the other hand,

the intuitive interpretation of the dynamic routing is finding

a centroid of the prediction capsules. Thus, the squash ac-

tivation function and its variant focus on preserving a vec-

tor orientation. However, the capsule activation focuses on

performing a capsule-scale activation function.

We evaluate our proposed model on the MNIST, affNIST,

and CIFAR-10 classification tasks. The proposed model

achieves higher accuracy with fewer parameters (×0.65 in

the MNIST, ×0.82 in the CIFAR-10) and less training time

than CapsuleNet (×0.19 in the MNIST, ×0.35 in the CIFAR-

10). These results validate that designing a capsule-scale

operation is a key factor to implement the capsule concept.

Also, our experiment shows that our proposed model is

transformation equivariant as CapsuleNet. As we perturb

each element of the output capsule, the decoder attached to

the output capsules shows global variations. Further ex-

periments show that the difference in the capsule features

caused by applying affine transformations on an input im-

age is significantly aligned in one direction.

1. Introduction

Convolutional neural networks(CNNs) have had much

success in computer vision tasks [8] [13] [3] [6]. The convo-

lutional layer is an effective method to extract local features

due to its local connectivity and parameter sharing with spa-

tial location. However, the convolutional layer has a lim-

ited ability to encode a transformation. For example, if the

convolutional layer is combined with a max-pooling layer,

the extracted feature is local translation invariant. As CNN

models become deeper [3] [15], the receptive field of each

feature is getting larger. Then, the information loss from the

translation invariance also increases.

To overcome the transformation invariance of CNNs, the

transforming autoencoder [4] uses the concept of ”capsule”.

A capsule is a vector representation of a feature. Each cap-

sule not only represents a specific type of entity but also de-

scribes how the entity is instantiated, such as precise pose

and deformation. In other words, the capsules are transfor-

mation equivariant.

The CapsuleNet [12] is a novel method that implements

the idea of the capsules. By introducing the dynamic rout-

ing algorithm and squash activation function 1, CapsuleNet

uses vector-output capsules as a basic unit instead of scalar-

output features.

squash(sj) =
||sj ||2

1 + ||sj ||2
sj

||sj ||
(1)

where sj is a pre-activation capsule. However, CapsuleNet

has a room for development. The number of parameters of

CapsuleNet is much larger than that of comparable perfor-

mance CNN-based models. Also, the dynamic routing is an

iterative process. The reported accuracy of CapsuleNet on

the benchmark datasets like CIFAR-10 is inferior to state-

of-the-art CNN models. [18]

In this paper, we propose a convolutional capsule net-

work architecture comprised of building blocks of CNNs.

We substitute the dynamic routing and squash capsule-

activation function of CapsuleNet[12] with attention rout-

ing and capsule activation. In the attention routing, the log

probabilities of agreement coefficients between the lth layer

and the (l + 1)th layer are learned by a scalar-product be-

tween the capsules of the lth layer and the kernel of con-

volution. The kernel of convolution serves as an approxi-

mation of the reference vector to perform routing. By re-

placing an iterative process of the dynamic routing with

forward-pass convolution, the attention routing is fast while

maintaining spatial information. Two important properties

of squash activation function 1 is that the squash activation

function preserves a vector orientation and is a capsule-wise

activation function, not an element-wise activation function

such as ReLU or tanh. The dynamic routing is an unsuper-
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Figure 1. Overview of AR CapsNet. AR CapsNet is composed of primary caps layer, conv caps layer, and fully conv caps layer. BN denotes

the batch normalization. Conv Transform and Caps Activation denotes the convolutional transform and capsule activation respectively.

vised algorithm to find a centroid-like output capsule of the

prediction capsules. Therefore, the squash activation func-

tion and its variant 2 [18] focus on preserving a capsules

orientation.

squash variant(sj) =

(

1− 1

exp (||sj ||)

)

sj

||sj ||
(2)

However, we focus on the capsule-wise operation rather

than preserving orientation. The capsule activation per-

forms an affine transform on the capsules and then applies

an element-wise activation function. The capsules on the

same capsule channel share parameters used in the affine

transformation. Thus, the capsules on the same capsule

channel are mapped to the same feature space, and the op-

eration is parameter efficient. Therefore, the capsule activa-

tion is a capsule-wise function that does not preserve a vec-

tor orientation. Since the capsule activation applies a non-

linear transformation to a linear combination of the predic-

tion capsules, parametrizing the routing process through the

attention routing is compatible. We refer to our proposed

model as Attention Routing CapsuleNet (AR CapsNet).

We evaluate the AR CapsNet on three datasets (MNIST,

affNIST, and CIFAR-10). The AR CapsNet significantly

outperforms CapsuleNet in the affNIST and CIFAR-10

classification task and shows a comparable performance in

the MNIST dataset while being faster and using less than

half parameters than CapsuleNet. Moreover, the AR Cap-

sNet preserves the transformation equivariant property of

CapsuleNet. As we perturb each element of the output

capsule, the decoder attached to the output capsules shows

global variations as in [12]. Further experiment showed that

the affine transformations on an input image cause the fea-

ture capsules to change in the significantly aligned direc-

tion. From these experiments, we prove that the AR Cap-

sNet encodes an affine transformation on the input image in

some basis of capsule space. In addition, our proposed ar-

chitecture is constructed in a convolutional manner so that

it can be easily extended to a deeper network structure.

1.1. Contribution

• We propose a new architecture called AR CapsNet by

introducing two modifications to the CapsuleNet [12].

These modifications are the attention routing and cap-

sule activation.

• The capsule activation expands the concept of the ex-

isting capsule-wise activation functions such as the

squash activation. The capsule activation performs

an orientation-nonpreserving transform on the pre-

activation capsules. The performance of the AR Cap-

sNet demonstrates that the transformation equivariant

features can be extracted even if the routing process is

not restricted to the clustering approach and the cap-

sule activation is not limited to the normalization.

• The AR CapsNet shows better results on the affNIST,

and CIFAR-10 classification tasks and comparable re-

sults on the MNIST classification task while using

much smaller parameters than CapsuleNet. Also, the

AR CapsNet preserves the transformation equivariant

property of the CapsuleNet. As we perturb each ele-

ment of the output capsule, the decoder attached to the

output capsule shows global variation as in [12].

• To investigate the transformation equivariance further,

we suggest a new experiment. We observe the differ-

ence in the output capsule caused by applying transfor-

mations on an input image. In the AR CapsNet, these

difference vectors are significantly aligned compared

to a set of random vectors. These results demonstrate

that transformation on an input image is encoded in

some basis vector.

2. Related Works

The CNN models that consist of convolutional layers and

max-pooling layers have a local translation invariance. To

overcome transformation invariance, CapsuleNet [12] uses

vector-output capsules and the dynamic routing in place of

scalar-output features and max-pooling. By demonstrating



that the dimension perturbation of digit capsules leads to a

global transformation of the reconstruction image, Capsu-

leNet claims to have transformation equivariance.

A number of methods to improve the performance of

CapsuleNet have been proposed in [5] [17] [1] [9] [10].

In [17], they interpreted the routing-by-agreement process

as an optimization problem of minimizing clustering loss.

They proposed another routing process from the point of

view of clustering. Their approach achieved better results

on an unsupervised perceptual grouping task compared to

[12]. The matrix capsules with EM routing [5] proposed

another routing method called EM routing. The EM routing

measures compatibility between matrix capsules by clus-

tering matrix capsules through Gaussian distributions. The

matrix capsules with EM routing achieved the state-of-the-

art performance on a shape recognition task using the small-

NORM dataset. The spectral capsule networks [1] is a vari-

ation of [5]. Spectral capsule networks use a singular value

to compute the activation of each capsule instead of the lo-

gistic function in [5]. Spectral capsule networks achieved

better performance on a diagnosis dataset compared to [5]

and deep GRU networks while showing faster convergence

compared to [5].

The SegCaps [9] applied a capsule network to the object

segmentation task. The SegCaps introduced two modifica-

tions to the CapsuleNet and devised the concept of deconvo-

lutional capsules from these modifications. The two modi-

fications are the locally connected dynamic routing and the

sharing of transformation matrices within the same capsules

channel. The sharing of transformation matrices is equiva-

lent to the convolutional transform of our conv caps layer

except for the addition of biases. The EncapNet [10] per-

forms a one-time pass approximation of the routing process

by introducing two branches. The master branch extracts

a feature from the locally connected capsules as in [9] and

the aide branch combines information from all the remain-

ing capsules. Also, they introduced a Sinkhorn divergence

loss which works as a regularizer. The EncapNet achieved

competitive results on CIFAR-10/100, SVHN, and a subset

of ImageNet.

Our proposed model uses attention architecture as a rout-

ing algorithm. The attention architecture learns a compat-

ibility function between low-level features and high-level

features. In [2], the output of attention architecture is a

weighted sum of input features, and the weights are the

compatibilities based on the input features and the RNN

hidden state. The compatibility function is a feedforward

neural network with a softmax activation function. In [11],

they experimented on various kinds of attention architec-

tures from global attention to local attention and three com-

patibility functions. One of the three compatibility func-

tions was a softmax output of the scalar-products between

a target hidden state vector and source hidden state vector.
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Figure 2. Detailed operation process of conv caps layer. Conv

Transform denotes the convolutional transform. The convolutional

transform performs a locally connected affine transform on each

capsule channel. The attention routing learns the agreement be-

tween the convolutional transformed capsules for each spatial lo-

cation. The capsule activation applies a capsule-wise activation

function on each capsule channel.

The transformer network [16] uses a similar attention archi-

tecture as in [11]. Transformer performs a scaled scalar-

product between the keys and values and then applies a

softmax activation function. Our proposed attention routing

computes the scalar product between capsules and a kernel.

3. Proposed Method

Our proposed architecture consists of primary caps

layer, conv caps layer, and fully conv caps layer. We de-

note the lth capsule layer as u
l
w,h,d,n, where w, h, d, and

n index the spatial width axis, spatial height axis, capsule

dimension axis, and capsule channel axis, respectively. We

refer to the capsules with the same capsule channel index as

a capsule channel ul
(:,:,:,n)

1.

3.1. Primary Caps Layer

We denote the primary capsule layer as the 0th cap-

sule layer. Before entering the primary caps layer, we ex-

tract local features x̃ from the input image x by performing

the convolution blocks composed of convolution layer and

batch normalization.[7] We consider the local features x̃ as

a single capsule layer. In our primary caps layer with N

channels of D dimensional output capsules, 3x3 convolu-

tion with kernels of filter size D and stride 2 is performed

on the input capsules x̃ N times independently. Each output

of a convolution layer is a capsule channel.

s
0
(:,:,:,n0)

= ReLU (Conv3×3 (x̃)) (3)

Note that this is equivalent to performing a 3x3 convo-

lution of N × D kernels and then reshaping the features

to (B,W,H,D,N) where B denotes the batch size and

(W,H) denotes the spatial size of the capsule layer. Then,

the capsule activation is applied to each capsule channel in-

stead of the squash activation function in [12].

1
u
l
(:,:,:,n0)

:= {ul
w,h,d,n

|n = n0}



3.2. Capsule Activation

The capsule activation takes an affine transformation on

each capsule channel and then applies tanh activation func-

tion. The capsules on the same capsule channel share pa-

rameters of the affine transformation. Thus, the capsule ac-

tivation is equivalent to taking 1x1 convolution with a kernel

of filter size D and tanh activation function on each capsule

channel.

u(:,:,:,n0) = tanh
(

Conv1×1

(

s(:,:,:,n0)

))

(4)

Each element of the output capsules of the capsule activa-

tion depends on the corresponding input capsule. Therefore,

the capsule activation is a capsule-wise activation function.

The tanh activation function normalizes each element of

capsules, thus stabilizes the lengths of the capsules.

3.3. Conv Caps Layer

We denote the input to the lth conv caps layer as ul−1
w,h,d,n

which is the output of the (l−1)th conv caps layer. We first

perform a convolutional transform on each capsule chan-

nel. The convolutional transform is a locally-connected

affine transformation sharing parameters within the same

capsule channel. In particular, the convolutional transform

is a 3x3 convolution of Dl kernels without activation func-

tion, where Dl denotes the capsule dimension of the lth

conv caps layer.

s̃
l,n

(:,:,:,m) = Conv3×3

(

u
l−1
(:,:,:,m)

)

(5)

Each output of the convolutional transform is fed to the at-

tention routing. The output of attention routing is a linear

combination of the convolutional transformed capsules with

the same spatial location.

s
l
(w,h,:,n) =

∑

m=1,··· ,N l−1

c
l,n

(w,h,m) · s̃
l,n

(w,h,:,m) (6)

where the capsules s
l
(w,h,:,n), s̃

l
(w,h,:,m) ∈ R

Dl

. The

weights c
l,n

(w,h,m) ∈ R are computed by the at-

tention routing. The log probabilities b
l,n

(w,h,m) are

the scalar-product between a concatenation of capsules

[ũl
w,h,:,1, ũ

l
w,h,:,2, · · · , ũl

w,h,:,N l−1 ] and a parameter vector

wl
n ∈ R

Dl×N l−1

. This operation can be implemented

efficiently by 3D convolution on the convolutional trans-

formed capsule layers with kernels wl
n ∈ R

1×1×Dl×N l−1

,

stride=(1,1,1), and valid padding.

b
l,n

(:,:,:) = Conv3D1×1×Dl

(

s̃
l
(:,:,:,:)

)

(7)

where [ũl
(:,:,:,1), · · · , ũl

(:,:,:,N l−1)] denotes a concatenation

of capsule channels. The weights c
l,n

(w,h,m) are softmax

outputs of the log probabilities b
l,n

(w,h,m) along the capsule

channel axis.

c
l,n
w,h,m =

exp(bl,n(w,h,m))
∑

1≤m≤N l−1 exp(b
l,n

(w,h,m))
(8)

Note that the attention routing adjusts the weight c
l,n
w,h,m for

each spatial location (w, h) corresponding to the convolu-

tional transformed capsules {ũl
(w,h,:,m)}m with the same

spatial location.

Finally, the capsule activation is performed on each cap-

sule channel sl(:,:,:,n). A set of convolutional transform, at-

tention routing, and capsule activation is performed inde-

pendently N l times. (i.e., each output of the convolutional

transform, attention routing, and capsule activation is a cap-

sule channel ul
(:,:,:,n) )

u
l
(:,:,:,n) = tanh

(

Conv1×1

(

s
l
(:,:,:,n)

))

(9)

Intuitively, the dynamic routing uses a centroid of the

transformed capsules as the reference vector to measure

agreement by scalar-product. As the dynamic routing pro-

cess iterates, the capsule with the higher agreement has

a larger weight, and the reference vector evolves in that

capsule direction. On the other hand, since the capsule

activation in the conv caps layer do not preserve vector

orientation, the output capsule u
l
(:,:,:,n) cannot approxi-

mate the centroid of transformed capsules {ũl
(w,h,:,n)}. In-

stead of measuring agreement between the transformed cap-

sules and the output capsule u
l
(:,:,:,n), the attention routing

parametrizes the routing process. The parameter vector wl
n

which is the kernel of convolution serves as an approxima-

tion of the reference vector to perform routing.

We propose replacing the dynamic routing of [12] with

the convolutional transform and attention routing. Com-

pared to dynamic routing, our proposed operation is faster

and more parameter efficient. Since dynamic routing is con-

structed in a fully connected manner, the transform weight

matrices are assigned for each pair of the input capsule and

output capsule. We share the weight matrices across the

spatial location and keep the translation equivariance by

performing 3x3 convolution on the lth layer in the convo-

lutional transform.(Section 4.4) Besides, the dynamic rout-

ing has an iterative routing process to compute the weight

clw,h,n. On the other hand, by introducing a trainable param-

eter vector, our proposed operation is a fast forward-pass.

3.4. Fully Conv Caps Layer

The fully conv caps layer is almost the same as the

conv caps layer and serves as the output layer of AR Cap-

sNet. The convolutional transform combines capsule fea-

tures from the all spatial location by applying a kernel of



Algorithm 1: The process of Attention Routing

1 Input: u�=0 ∈ R
(w,h,Dℓ=0,Nℓ=0)

2 for ℓ = 1, · · · , L do

3 for n = 1, · · · , N � do

/* Convolutional transformation

for each capsule channel */

4 for m = 1, · · · , N �−1 do

5 s̃
�,n

(:,:,:,m) ← Conv2D3×3(u
�−1
(:,:,:,m))

6 end

7

/* Attention through capsule

channel */

8 b
l,n ← Conv3D1×1×Dℓ(s̃�)

9 for w, h = 1, · · · ,W �, H� do

10 c
n,l

w,h,:Nℓ−1 ← softmax(b�,n

w,h,:Nℓ−1)

11 s
�
w,h,:,n ←
∑

m=1,··· ,N l−1 c
n,l
w,h,m · s̃�,n

(w,h,:,m)

12 end

13

/* Capsule activation for each

capsule channel */

14 u
�
(:,:,:,n) ← tanh(Conv2D1×1(s

�
(:,:,:,n)))

15 end

16

17 end

the same spatial size as the input with valid padding. There-

fore, the output of the fully conv caps Layer has a shape of

(1, 1, DL, NL).

3.5. Margin Loss and Reconstruction Regularizer

We adopt the margin loss and reconstruction regularizer

in [12]. Since the output capsules of capsule activation have

a length of up to
√
DL where DL denotes the capsule di-

mension, we use the normalized length to predict the prob-

ability of the corresponding class of the dataset.

||uL
n ||nor =

||uL
n ||√
DL

(10)

where ||uL
n || denotes the output capsules of the fully conv

caps layer and n indexes the capsule channel axis. We ap-

plied the Margin loss, Ln, for each class n on the ||uL
n ||nor.

Ln = Tn max(0,m+ − ||uL
n ||nor)2

+ λ(1− Tn)max(0, ||uL
n ||nor −m−)2

(11)

where Tn = 1 iff the corresponding class of output capsule

is present and m+ = 0.9 and m− = 0.1.

The output capsules {uL
n}n=1,··· ,N are fed to the recon-

struction decoder. We used a decoder consisting of 3 fully

connected layers as in [12] except that our decoder has (512,

512, the number of input image pixel) nodes. We refer to

the mean of L2 loss between an input image and the decoder

output as a reconstruction loss. We add the reconstruction

loss that is scaled down by 0.3 to the margin loss as a regu-

larization method.2

4. Experiments

We evaluate our model on the MNIST, affNIST, and

CIFAR-10 datasets. For each dataset, we split the training

images into a training set (90%) and a validation set (10%).

We choose the model with the lowest validation error and

evaluate the model on the test set. Then, we compare the

results with CapsuleNet [12]. We use a Keras implementa-

tion3 for CapsuleNet.

Before training the model on the image dataset, we di-

vide each pixel value by 255 so that it is scaled in the range

of 0 to 1. Then, we extract the local features x̃ from an input

image through two convolutional layers with batch normal-

ization(BN) [7] and ReLU activation function. These two

convolutional layers use 3x3 kernels with a stride 1. Then,

the features go through the AR CapsNet to obtain vector

outputs. For each conv caps layer and fully conv caps layer,

the dropout layer [14] of keep probability 0.5 is applied to

the input capsules before the convolutional transform.

We use the RMSprop optimizer with rho of 0.9 and decay

of 1e-4 to minimize the loss defined in Section 3.5. We set

the learning rate as 0.001 and batch size as 100

4.1. Classification Results on MNIST and affNIST

Dataset The MNIST dataset is composed of 28×28 hand-

written digit images. We adopted 0.1 translation as a data

augmentation for the MNIST dataset. The affNIST dataset

consists of 40 × 40 images, which are obtained by apply-

ing various affine transformations such as rotation and ex-

pansion to the images from MNIST. For the affNIST clas-

sification task, we trained our model with randomly trans-

lated MNIST images in horizontal or vertical directions up

to shift fraction 0.2 as in [12]. Any other affine transfor-

mations like rotations were not used in the training process.

The affNIST dataset has a separate validation set, thus we

chose the model with the lowest validation error based on

the affNIST validation set. Then, we tested our model with

the affNIST test set.

Implementation For the MNIST and affNIST datasets,

we used the AR CapsNet which consists of a primary caps

layer, one conv caps layer and fully conv caps layer. Be-

fore entering the AR CapsNet, an input image goes through

2CapsuleNet [12] scaled the reconstruction loss by 0.392. Since we use

the mean of L2 loss and CapsuleNet use the sum of L2 loss, 0.392 = 0.0005

× 784.
3https://github.com/XifengGuo/CapsNet-Keras



Method MNIST MNIST+ affNIST C10 C10+

CapsuleNet[12] 99.45∗ 99.75 (99.52∗) 79.0 63.1∗ 69.6∗

CapsuleNet+ensemble(7) - - - - 89.4

Ours 99.46 99.46 91.6 87.19 88.61

Ours+ensemble(7) - - - 88.94 90.11

Table 1. Test accuracy (%) on the MNIST, affNIST, and CIFAR-10 classification tasks. C10 represents the CIFAR-10 dataset. + denotes

training with data augmentation. We adopted translation for MNIST+ and translation, rotation, and horizontal flip for C10+. ∗ indicates

the results from our experiment.

two convolutional layers of 64 channels (3x3 Conv - BN

- ReLU). The primary caps layer has eight channels of 16-

dimensional capsules, the conv caps has eight channels, and

the fully conv caps layer has ten channels. Each capsule

channels in the conv caps layer and fully conv caps layer

has 32 dimensions in the MNIST and 16 dimensions in the

affNIST. We decreased the spatial size of the capsule fea-

tures by applying a 3x3 convolution of stride 2 in the con-

volutional transform of the conv caps layer. We trained our

model for 20 epochs.

Accuracy Our model shows a comparable accuracy with

the substantial decrease in the number of parameters and

training time. Our model with 5.31M parameters achieved

99.45% accuracy on the MNIST dataset without any data

augmentation and 99.46% accuracy with data augmenta-

tion. (Table 1) The CapsuleNet with 8.21M parameters

achieved 99.45% accuracy without any data augmentation

and 99.52% with data augmentation. The reported accu-

racy of CapsuleNet on the MNIST dataset with translation

augmentation is 99.75% [12]. Also, the training took 37.2

seconds per epoch for our proposed model and 199.5 sec-

onds per epoch for CapsuleNet when we experimented on

GTX 1080 GPUs.

In the affNIST experiments, there are two options to gen-

erate training images from the MNIST dataset. The first

option is to create a larger dataset by generating a set of

all the possible augmented data before training. The sec-

ond option is to apply translation over the original dataset

for each epoch. The reported accuracy of CapsuleNet is

79% and that of the baseline CNN model is 66% in [12].

The experiment is performed on the former option.4 Our

proposed model achieved 91.6% accuracy for the latter op-

tion. Under the comparable experiment, our model outper-

formed the CapsuleNet and the baseline CNN model. Since

our model is transformation equivariant (Section 4.4), our

model is robust to affine transformations.

4.2. Classification Results on CIFAR-10

Dataset The CIFAR-10 dataset is a 32×32 colored natural

images in 10 classes. We adopted 0.1 translation, rotation

up to 20 degrees, and horizontal flip as a data augmentation

4https://github.com/Sarasra/models/tree/master/research/capsules

for CIFAR-10.

Implementation For the CIFAR-10 classification task,

we added four conv caps layer between a primary caps layer

and fully conv caps layer. We decreased the spatial size of

the capsule features in the first conv caps layer as in Sec-

tion 4.1. Each conv caps layer has eight channels of 32-

dimensional capsules and is connected to the next conv caps

layer with a residual connection [3]. Note that the residual

connection in [3] connects the lth layer and (l + 2)th layer,

but our residual connection connects the lth conv caps layer

and (l + 1) conv caps layer. We trained our model for 200

epochs.

Accuracy The results in Table 1 show that our model

outperforms CapsuleNet with and without data augmenta-

tion. CapsuleNet with 11.74M parameters shows 63.1%

accuracy in C10 and 69.6% accuracy in C10+. However,

our proposed model with 9.6M parameters shows 87.19 %

accuracy in C10 and 88.61% accuracy in C10+. In [12],

an ensemble of 7 models achieves 89.4% accuracy when

the models are trained with 24 × 24 patches of images and

the introduction of a none-of-the-above category. However,

an ensemble of 7 AR CapsNet models trained with C10+

achieved 90.11% test accuracy. Note that C10+ only uses

rotation, shift, and horizontal flip as data augmentation and

not the cropping or the none-of-the-above category.

4.3. Robustness to hyperparameters

Implementation The AR CapsNet requires a set of hy-

perparameters, such as the number of conv caps layer and

the capsule dimension of each capsule layer. To test the ro-

bustness to hyperparameters, we evaluate the AR CapsNet

in the CIFAR-10 classification tasks according to the vari-

ous setting of hyperparameters. The evaluated AR CapsNet

architecture is the same as the models mentioned in Sec-

tion 4.1 and 4.2. The primary caps layer has eight chan-

nels of 16-dimensional capsules, and the conv caps layer

has eight capsule channels. In the setting of hyperparame-

ters, the Conv caps layer denotes the number of conv caps

layer between the primary caps layer and fully conv caps

layer. In every model with at least one conv caps layer, the

first conv caps layer decreases the spatial size of the capsule

layer by adopting a 3x3 convolution of stride 2 in the con-



Conv caps layer Caps dim Params C10 C10+

0
16 7.3M 77.51 81.89

32 12.6M 77.44 81.97

1
16 3.5M 81.96 82.83

32 7.7M 82.39 83.92

2
16 3.7M 84.48 84.77

32 8.4M 85.46 87.01

3
16 3.8M 85.56 86.93

32 8.9M 86.56 87.91

4
16 4.0M 86.37 87.21

32 9.6M 87.19 88.61

Table 2. Test accuracy (%) on the MNIST and CIFAR-10 for

various hyperparameters. In each experiment, we trained a model

for 200 epochs and chose the model with the lowest validation

error. For each hyperparameter setting, AR CapsNet shows stable

performance without showing severe degradation.

Figure 3. Decoder outputs according to dimension perturbations.

We observed the variations of decoder output as we perturbed

one dimension of the output capsules by steps of 0.05
√
DL from

−0.25
√
DL to +0.25

√
DL. The perturbation leads to the combi-

nation of variations in the decoder output images. (e.g., rotation,

thickness, etc.).

volutional transform. The Capsule dim denotes the capsule

dimension of the conv caps layer and fully conv caps layer.

Robustness All the AR CapsNet models trained with

CIFAR-10 dataset show decent performance in Table 2. In-

creasing capsule dimension and the number of conv caps

layer lead to an improvement in the test accuracy. The AR

CapsNet model with four conv caps layer shows 86.37% ac-

curacy with 16-dimensional capsules and 87.19% accuracy

with 32-dimensional capsules. The AR CapsNet with four

conv caps layer and 32-dimensional capsules shows the best

results of 87.19% in C10 and 88.61% in C10+. Also, the AR

CapsNet model with no conv caps layer has more parame-

ters than the model with four conv cap layer and shows the

worst performance. The features in the primary caps layer

has a large spatial size. Thus, the fully conv caps layer con-

nected to the primary caps layer assigns excessive parame-

ters, and this causes overfitting.

4.4. Transformation Equivariance

Dimension perturbation To prove that our proposed

model is transformation equivariant, we executed experi-

ments on the MNIST model as in [12]. We observed the

Digit Rot+ x+ y+ Rot- x- y-

8 0.89 0.89 0.91 0.86 0.87 0.86

5 0.89 0.78 0.73 0.84 0.88 0.86

avg
0.88 0.86 0.84 0.83 0.83 0.84

(0.89) (0.88) (0.80) (0.81) (0.84) (0.84)

Table 3. The average of relative ratio {ri} for each combination

of digit and transformation. The avg represents the average of all

10,000 test samples for each affine transformation. We report the

results of models trained on the MNIST+ dataset in the (). A high

relative ratio implies the difference vectors are strongly aligned.

For random vectors, the average of relative ratio {ri} is 0.311 and

standard deviation is 0.262.

variations of decoder output as we perturbed one scalar el-

ement of the output capsules (Figure 3). The experiments

in the [12] perturbed one scalar element from -0.25 to 0.25.

Since the output capsules of the AR CapsNet have lengths

of up to
√
DL compared to 1 in [12], we perturbed one

scalar element from −0.25
√
DL to 0.25

√
DL where DL

denotes the capsule dimension of output capsules. Figure

3 shows that some dimensions of the output capsules rep-

resent variations in the way the digit of the corresponding

class is instantiated. Some dimensions of the output cap-

sules represent the localized skew in digit 0, the rotation

and the size of the higher circle in digit 8, and the rotation,

thickness, and skew in digit 9.

Alignment ratio Each scalar element of the output cap-

sules represents a combination of variations such as rota-

tion, thickness, and skew. (Digit 9 in Figure 3) Since the

length of the output capsules is basis-invariant, the trans-

formation on an input image could be represented in co-

ordinates of any basis. To further test the transformation

equivariance of the AR CapsNet, we tested whether the dif-

ference in the output capsules caused by applying a trans-

formation on an input image is aligned in one direction.

Let {Ti}i=1,··· ,N be a set of affine transformations on an

input image x. We denote the difference between the output

capsules u
L
n(Ti(x)) and u

L
n(x) as vi(x) where n denotes

the corresponding class of x.

vi(x) = u
L
n(Ti(x))− u

L
n(x) (12)

We denote the concatenation of vi(x) along the row axis

as V. In order to obtain a representative unit vector ṽ of

{vi(x)}, we apply a Singular-Value Decomposition(SVD)

on matrix V.

c, ṽ = argmin
ci,ṽ

∑

i

||vi(x)− ci · ṽ||22 (13)

= argmin
ci,ṽ

||V − c · ṽT ||2F (14)

where F denotes the Frobenius norm, c = (c1, · · · , cN )T ,

and ci ∈ R. The exact solution of this low rank approxima-



Figure 4. Distribution of cosine similarity between unit align vec-

tors ṽ of positive and negative affine transformations.

tion problem is the first right-singular vector ṽ of V. This

experiment is similar to the Principal Component Analy-

sis(PCA) except that we do not subtract the mean for each

columns of V. The align vector ṽ corresponds to the princi-

pal vector of PCA. We observed the relative ratio ri of prin-

cipal component of vi(x) to the vector norms ||vi(x)||2.

ri =
|vi(x) · ṽ|
||vi(x)||2

(15)

We randomly chose 10,000 images from the test set. For

each test image, we generated five images by applying an

affine transformation and observed the relative ratio ri. In

Table 3, Rot(±) represents ±{5, 10, 15, 20, 25} degrees ro-

tations and x(±) represents a horizontal translation up to

±5 pixels. y(±) represents a vertical translation up to ±5
pixels as well. We observed the average of relative ratio ri
for each combination of digit and transformation. Table 3

shows the average of relative ratio ri for two digits (highest :

digit 8, lowest : digit 5) and the average for 10,000 test sam-

ples for each transformation. As a reference, we generated

five random vectors from the standard multivariate normal

distribution. We conducted the same experiment for random

vectors for 1,000 times as well. We obtained an average of

0.311 and a standard deviation of 0.262 for random vectors.

Even for the worst-case digit 5, every transformation shows

a significantly higher relative ratio ri of 0.73 in y+ than the

random vectors. This result implies that the difference vec-

tors are strongly aligned in one direction. Therefore, AR

CapsNet encodes affine transformations on an input image

by some vector components. Also, we report the results of

models trained on the MNIST+ dataset in the (). The mod-

els trained on the MNIST+ show comparable relative ratio

ri to those trained on the MNIST. This result shows that

AR CapsNet encodes affine transformations even without

observing transformations during training.

An interesting observation is that AR CapsNet is trans-

formation equivariant but do not distinguish the positive and

negative transformations. Figure 4 shows the histogram

Figure 5. Output capsules uL
n when the cosine similarity between

align vectors of positive and negative transformations is -1 or 1.

T+ and T− represent the positive and negative transformation.

Left: cosine similarity -1. Right: cosine similarity 1.

of the cosine similarity between the align vectors of posi-

tive and negative transformation.5 We observed two peaks

around -1 and 1. The cosine similarity of -1 and 1 imply that

positive and negative transformations are encoded in one di-

mension. However, the cosine similarity of 1 suggests that

the difference vectors of positive and negative transforma-

tions have the same direction.(Figure 5) We leave the expla-

nation of this observation to future work.

5. Conclusion

In this work, we suggested a new capsule network ar-

chitecture called Attention Routing CapsuleNet (AR Cap-

sNet). By introducing the attention routing and capsule ac-

tivation, AR CapsNet obtained a higher accuracy compared

to CapsuleNet while using fewer parameters and less train-

ing time. The attention routing is an effective way to route

between capsules because it only compares capsules of the

same spatial location. In addition, the attention routing does

not require an iterative routing process as the dynamic rout-

ing does because it directly learns the weights between cap-

sules. The capsule activation is based on the assumption

that the capsule-scale activation can extract transformation

equivariant features even if it is not orientation-preserving.

This assumption distinguish the capsule activation from the

squash activation function and its variant.

While using the building blocks of CNNs, AR Cap-

sNet is transformation equivariant. We showed that cap-

sules have transformation information by manipulating the

output capsules and then observing the decoder output im-

ages. Also, we observed the difference vectors between the

output capsules of an original image and an affine trans-

formed image. By showing that the difference vectors are

strongly aligned in one direction, we proved that AR Cap-

sNet encodes transformation information in some dimen-

sions. There are natural variations of AR CapsNet such as

introducing a feature compression by 1x1 convolution to the

capsule activation and a transformer network [16] to the at-

tention routing. We plan to study these variations in the

future.

5The direction of the first right-singular vector ṽ is given by vi(x)·ṽ >

0 in for each positive and negative transformation.
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