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Abstract

We introduce a generalization methodology for the au-
tomatic selection of the activation functions inside a neural
network, taking advantage of concepts defined in fractional
calculus. This methodology enables the neural network
to define and optimize its own activation functions during
the training process, by defining the fractional order of the
derivative of a given primitive activation function, tuned as
an additional training hyper-parameter. By following this
approach, the neurons inside the network can adjust their
activation functions, e.g. from MLP to RBF networks, to
best fit the input data, and reduce the output error. The re-
sult show the benefits of using this technique implemented
on a ResNet18 topology by outperforming the accuracy of a
ResNet100 trained with CIFARIO reported in the literature.

1. Introduction

Emergence of Deep Learning (DL) has led to multiple
Neural Network (NN) topologies and architectures being
proposed to solve classification problems; an important part
of the definition of these architectures consists in the proper
selection of the activation function from a set of commonly
known options, e.g. Tanh, Sigmoid, RBF, ReLU, Softplus,
etc. This set of popular options for activation functions is
in constant growth due to the active effort of the Artificial
Intelligence community. The usual practice is to manually
select the activation function, relying heavily on the ex-
perience of the NN architect. Therefore, it is not rare to
go through an exhaustive trial and error methodology, re-
training the NN with a different set of activation functions
in search for an optimal configuration. The available lit-
erature describes in detail the strengths and weaknesses of
different activation function options. For instance, the step
function is the cheapest approach computationally, but can-
not be used for training since it cannot be derived through
the backprogapation process [22]. Additionally, the ReLU
units can be fragile during training and can “die” (accord-

ing to CS231[20][12]), which means, quoting the source,
that “a large gradient flowing through a ReLU neuron could
cause the weights to update in such a way that the neuron
will never activate on any data point again”. To fix this is-
sue, the ELUs were proposed in [2]. But also the Leaky
ReLUs [17], the PReLU [6], and the Swish activation func-
tion have been suggested to avoid this problem. Most of the
literature explore the use of different activation functions
by performing different experiments and comparing results,
and in many cases the selected activation function applies
for all the network, or at least, for all the units in a layer
within a NN. In this work, instead of the manual exploration
of the activation function that fits better, a generalized ac-
tivation function is used that morphs, smoothly switching
from different activation shapes, and adjusting to the shape
that minimizes the error. This work represents an effort to
define a fractional derivative order value (as an additional
training hyper-parameter) to adjust the activation functions.
allowing the automatic selection of an activation function
for optimal results. Rest of this paper is organized as fol-
lows: in Section 2, a detailed description on the concepts
of fractional derivative and integral is presented in order
to set the theoretical bedrock of this proposed work; Sec-
tion 3 explains the methodology followed using known ac-
tivation functions, and how their behaviors change through
fractional derivatives/integrals. The results and discussion,
and our drawn conclusions are presented in Section 4 and 5,
respectively.

2. Related Work

There is plenty of work in the research community re-
lated to new activation functions, showing improvements in
some particular problems. This work is not introducing a
new type of activation function. Instead, it tries to group
existing activation functions into families, and automate the
effort of selecting them properly during the architecture def-
inition of the NN. There are currently some proposals for
parametrizing the activation functions, to perform certain
level of adjustment. Some examples are the Parametric Rec-
tified Linear Unit (PReLU [6]) in which a portion of the ac-



tivation function can be adjusted to create a family of leaky
activation functions, or the Scaled Exponential Linear Units
(SELU) [13] that adjust also a portion of the activation func-
tion using selu(x) = ae® — a, o € R is the trainable pa-
rameter. Most of this reported works brings the modifica-
tion to other type of activation function, adding parameters
to create new empirical models. Our work instead identi-
fied that most of the common activation function types can
be considered a part of a family of functions, which can be
generated using fractional derivatives of a primitive func-
tion by changing its derivative order. This brings the need
of introducing some concepts of fractional calculus.

3. Fractional Calculus

This section describes the motivation behind the usage
of fractional derivatives and integrals, as a way to define a
numerical trainable hyper-parameter value to automatically
select an optimal activation function in a NN.

3.1. Fractional Derivative

The concept of the derivative, in its more basic defini-
tion, is associated to natural values (i.e. the first derivative,
second derivative, etc.), and can be defined as:
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where the equation terms represent the first, second, and
third order derivative respectively. However, is it possible to
have a non-integer derivative, for example a 1.5 derivative?
In recent years, fractional calculus is gaining more popular-
ity since it provides successful aid into modeling complex
dynamics [23], understanding wave propagation [10], quan-
tum physics[15], and other applications. In order to under-
stand how a fractional derivative works, a simple example
can be useful. Here, we show that the natural n-derivatives
of the function f(x) = z* are defined as:

Yy ey

df(z) k-1

dx ket @
a2 f -

dac(Zm) = k(k- 1)xk % 3
dZJ;(f) = k(k—D(k—2) - (k—a+ 1z

Recalling on the concept of factorial operation (!), equa-
tion 4 can be rewritten as:
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For the case above, the factorial operator (!) can only
be defined for non-negative integer numbers. In order to

generate a fractional derivative, the factorial operator can
be replaced by the Gamma function I" as proposed in [16]:

[(z) = / tEDetay, (6)
0
For the particular case of n € N:
I'(n) = (n—-1), @)

A known efficient method to compute Gamma is [3]:
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where 7 is the Euler-Mascheroni constant (v = 0.57721..)
[1]. Thus, replacing the factorial in equation 5 by the
Gamma function, the fractional derivative is then given by

[9]:
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The above definition represents the fractional derivative
of function f(z) = x* valid for k, z > 0.
3.2. Fractional Integral

Analogous to the derivative, a given function can be inte-
grated successively. For example, using the function y = 1,
the successive integrals J of y are given by:
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Replacing the factorial operator by the Gamma function,
the fractional integral for y = 1 is:
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In order to prove how the fractional integral is defined for

any function f(z), let us start with the definition of the in-
tegral as:
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Using the Cauchy formula for repeated integration:

D" f(z) = ! )!/Ow(x—t)”—lf(t)dt. (16)
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Again, the Gamma function can be used to remove the
factorial function and generate a fractional integral as:
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The resulting equation is known as the Riemann-
Liouville integral [18]. For example, the fractional integral
of function f(x) = 1 using 17 results in:

D™f(x) = ﬁ /Ox(z — ) tat, (18)

Solving the integral:
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Evaluating the limits (0, x) and recalling that aI'(a) =
L(a+1):

This result matches the result obtained in equation 14,
which demonstrates that fractional derivatives or fractional
integrals can be used depending on the primitive function
selected. In the following sections, these fractional calculus
concepts are used to show how some activation functions
are related to each other, and how a generalized activation
function represents a fractional model for the neuron.

4. Generalizing the Activation Function

There have been several activation functions proposed in
the literature for usage in different NNs. However, we pro-
pose to group them into a smaller number of families by an-
alyzing the activation functions that can be generated math-
ematically from other ones using Fractional Calculus. For
instance, we can prove that it is possible to group, multi-
quadratic and the step function into the same family, be-
cause you can choose one and generate the other by com-
puting its fractional derivative. Based on this, we will detail
three function families that can be put together in this sense.

4.1. Rectified Linear Unit (ReLU)

ReLU function proposed in [19] is the simplest non-
linear activation, known for faster training processing for
large network development. As opposite to the Sigmoid
function, the squeezing effect of back-propagated errors is
not present. ReLLU is defined as Max(0,x) or:
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Using the fractional derivative, a generalized activation
function can be generated. In this case, the generalized

function g is the a — th fractional derivative of f, basically
g(x) = D®f(x) using 21:
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where the fractional derivative of x is generated using equa-
tion 9 with k& = 1:
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Here, I'(2) = 1! = 1, then, the generalized ReLU case
is given by:
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The generalized activation function g(x) can change its
shape, going from ReLU when a = 0, to multi-quadratic
(a = 1/2), and to step function for @ — 1, as shown in
Figure 1.
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Figure 1. The fractional derivative of ReLU with order a — th in
the range of [0, 1]. Depending of the fractional derivative order a,
this activation function behaves as ReLU, as multi-quadratic or as
step function.

4.2, Sigmoid

The Sigmoid is a special case of the logistic function
named in 1844 by Pierre Francois Verhulst[21]. It is called
Sigmoid because it has the shape of the letter “s” and has
been widely used in NNs. On the other hand, the Softplus
activation function f(z) = log(1 + e*) was introduced in
2001[4] as a soft, continuous version of the ReLU function.
Softplus is also the primitive function of Sigmoid, and ex-
poses not only a different range of output values (0, c0), but
also additional convex properties. In this way, the Softplus
function can be used as primitive to generalize Sigmoid-like
functions using fractional derivatives, with [n as particular
case of log.

g(z) = D%n(1l+ €"), (25)



then the fractional derivative of Softplus is computed as:
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This generalized activation function can morph its shape
from Softplus, when the fractional derivative order a is zero
(a = 0), to Sigmoid when a = 1, or to a bell like shape with
(a = 2) as illustrated in Figure 2.
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Figure 2. Fractional derivative of the Softplus Activation function
with order a — th in the range of [0, 2]. Depending on the frac-
tional derivative order a, this activation function behaves as Soft-
plus (a = 0), Sigmoid function (a = 1), or a bell like shape
function suitable for RBF (a = 2).

4.3. Hyperbolic Tangent

The Hyperbolic Tangent f(x) = Tanh(x) is one of the
most used activation functions, mainly because is within
the rage of (—1,1). Analogously to the cases shown be-
fore, the generalized Hyperbolic Tangent activation func-
tion g(z) = D*T'anh(z) can morph from Hyperbolic Tan-
gent to Sech?. In this case, the Sech? behaves similar to
the activation function y = ¢~ used in RBF NN. In this
sense, if the generalized function g is defined like

g(x) = D*tanh(z), 27

similar to the Softplus case, the fractional derivative of the
Hyperbolic Tangent is given by:

Ll = n»L(a+1)tanh (z —n-h)
g(f”)—i%ﬁ;(_” Tt DT (A—nta)

Equation 28 represents a generalized activation function
that produces a family of functions that morph from Hyper-
bolic Tangent (a = 0) to square hyperbolic secant function
(a = 1) as shown in Figure 3.
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Figure 3. The fractional derivative of the Hyperbolic Tangent with
order a — th in the range of [0, 1]. Depending on the fractional
derivative order a, this activation function behaves as Hyperbolic
Tangent (a = 0), or as Square Hyperbolic Secant function (a = 1)
used in RBE.

In Figure 3, the fractional derivative for a values in the
range of [0, 1] is displayed, although there is not restriction
in the use of just this range of values. For example, us-
ing the a = —1 generates the Hyperbolic Tangent primitive
function.

In conclusion, having the flexibility to morph from one
activation function to another by changing a single frac-
tional derivative order parameter enables the network to ad-
just the activation function to better fit the specific problem
in hand, avoiding the need of handcrafted recipes from the
NN architect, opening the possibility of increasing the per-
formance due to a better optimization of the architecture.

5. Learning the Activation function

In the previous section the activation functions were
grouped as a generalized Activation function, With this, the
training rules required to optimize for a—th order of deriva-
tive will be introduced. Using these training rules, the NN

training process will adjust the parameter “a”, selecting the
activation function shape that minimizes the error.

5.1. Learning ReLU

A way to minimize the error is adjusting the parameter a
using gradient descendent, this process requires the compu-



tation of the partial derivative of the activation function, in
this case given by the equation 24:
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Using equation 24 to simplify 30:
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where, I represents the partial derivative of T":
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Using the definition of the digamma function v [9] :
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where ~+ is one of the many definitions of the Euler-
Mascheroni constant (y = 0.57721..). For z = 0 we have:
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Then, the digama function of (2 — a) is given by:
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Using this Digama function v, equation 31 can be rewrit-
ten as:
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The equation above is used to minimize the NN error
by adjusting the parameter a, which means adjusting the
activation function for lower error performance.

5.2. Learning Sigmoid

As detailed previously, the generalized Softplus can gen-
erate three activation functions: Softplus, Sigmoid, and
RBF functions, depending on the fractional derivative or-
der a. Here, the training rules to tune a will be defined to
get the optimal value and, in consequence, the selection of
the best activation function for a given problem.

From equation 26 we define the function A containing
the terms depending on a:

I'(a+1)
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To reduce the error, the partial derivative of 26 is needed,
and it is computed using the partial derivative of A:
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Using the digamma function 33, the above equation can be
simplified as:
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5.3. Learning Hyperbolic Tangent

The formulation of the training rule for Hyperbolic Tan-
gent is similar to the Sigmoid rule described in Section 5.1.
In an analog way, we can assess that equation 37 is now
given by:
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Here, the partial derivative of A is computed using equa-
tion 39. This training rule morphs the tanh activation func-
tion to sech?, and we can integrate fractionally to obtain a
ReLU-like shape.

6. Experiments, Results and Discussion

To evaluate the effectiveness of our proposed technique,
two different experimental scenarios were used: a shallow
NN with a small artificially created training data set to an-
alyze and visualize the behaviour of the dynamic activation
functions while training; and a ResNet18 network trained
with the CIFAR10 data set [14] to quantify the effect of
implementing our fractional derivative technique in a well
known state-of-the-art CNN architecture.

6.1. Fractional Derivative Order Visualization

For the first experiment, we opted for a simple classifi-
cation task to visualize the behaviour and the effect of ad-
justing the activation function during training. The data set
artificially generated consists of five classes: two of them,
cyan and blue, generate separate clusters or cumulus of pat-
terns; a green class is composed by two clearly separated
cumulus, one on top and one at the button; these are sep-
arated by the red class which is composed by a scattered
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Figure 4. These artificially generated data set represents a simple
but non-trivial classification problem of 5 different colors. The
purpose of this data set is to provide a visualization of the gener-
alization power presented by our proposed technique.

region of patterns; finally, a yellow class is composed by
two scattered regions of patterns (see Fig 4).

The NN topology used in this experiment consists of
only five units, one per class, without any hidden layers.
We intentionally selected a shallow model to easily visual-
ize the effect of training on the activation function of each
neuron. A higher order NN s = x7 Qx was used instead of
the typical s = ) w;x; in order to generalize from hyper
planes to quadratics as in [5]:

f=Dn(1 + X @X), (42)

where x represents the homogeneous vector of input z, i.e.
X = [z,1], and z is a two dimensional vector representing
the input features. To compare our approach against the tra-
ditional practice of selecting a fixed activation function, we
trained the model using: 1) the Softplus activation function
[4], and 2) the fractional derivative of the Softplus, where
the fractional derivative order a was learned as a tunable
hyper-parameter. The experimental results show that not
only the global error was reduced in less number of epochs
when using fractional derivatives during the training, but
also the error reached a lower value, as it can be seen ex-
plicitly in Figure 5.

Besides the error metric described above, it is also
important to consider the generalization behavior of the
trained model, to visualize that every single input vector
(pattern) was evaluated, associating an output for every data
sample and assigning its corresponding color. Figure 6
shows graphically the results of both models evaluated: on
the left side, the fixed Softplus activation function tends to
present an overfitting over all classes, i.e. set more specific
boundaries over the used training data set; in contrast, our
technique, shown on the right side, yields a more general-
ized set of boundaries.

Error
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== == = Fixed "a" (Softplus)

s | carning "a"
Figure 5. Error values obtained during training when Softplus
activation function (dashed plot), and appied fractional derivative
order a to Softplus (solid pot) were used.

Figure 6. Graphical visualization of the obtained classification
models by using Softplus activation function (left), ans Softplus
activation function subject to fractional derivatives (right).

For each epoch during the training routine, we kept track
of the fractional derivative order of each neuron, i.e. the
type of activation function defined in each neuron. This
progression can be observed in Figure 7. It can be noticed
that, in the final model trained with our methodology, four
of the activation functions (a2 to as) morphed through the
use of fractional derivatives from Softplus to Sigmoid acti-
vation function, and one (a;) started to morph, but quickly
returned to Softplus activation function, remaining like this
until the end of the training process.

In traditional NN topologies, all activation functions of
all the neurons inside a given layer are equally set, which
means that either all Sigmoids, all Hyperbolic Tangents,
or all ReLU, etc., are initially chosen. A combination of
activation functions is not a common configuration, since
the high number of possible combinations makes the task
of training each configuration quite impractical. In con-
trast, our methodology is designed to automatically select
the shape of each neuron’s activation function that mini-
mizes the global error. To prove this point, we experimen-
tally observed that in our defined classification problem, by
randomly initializing the fractional derivative order a in the
range of [0, 1.5], the model always converged to the same
final configuration of activation function shapes, i.e. four
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Figure 7. Evolution of the fractional derivative order a (shape of
the activation function) during the training of the NN. All activa-
tion functions started with a Softplus (a = 0).

Sigmoid shaped and one Softlpus activation function. For
instance, in Figure 8 all activation functions were initial-
ized as Sigmoids (a = 1), and during training, two of them
showed some shape morphing at first, but returned to Sig-
moid shape as the in the experiment presented in Figure
7. Going further with the experimentation, starting from
an order of @ = 2, the method reached a different local
minimum, and different units ended with different activa-
tion function shapes, as can be seen in Figure 9
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Figure 8. Evolution of fractional derivative order a (shape of the
activation function) during the training of the NN. All activation
functions started with a Sigmoid (a = 1).

6.2. ResNet18 with Trainable Activation Function

The experiments described in the previous section are
useful for visualization of the training behaviour in the acti-
vation function. In this experiment, we want to measure the
benefit of this technique in combination with state-of-the-
art topologies, as we believe that any network can benefit
from the use of this adaptive activation function using frac-
tional derivatives. In this case, we modified a ResNetl8
topology [11] to use our trainable activation function. We
performed a training and testing routine using the well
known CIFARI10 image database [14], and compared our
findings with published results [7][8]. We have observed
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Figure 9. Evolution of fractional derivative order a (shape of the
activation function) during the training of the NN. All activation
functions started with a RBF (a = 2).

that the new version of ResNet18* (0.27M) over-performed
the ResNet110(1.7M) in [8] with a marginal increment in
the number of parameters. The performance of this net-
work was close to ResNet50 with 25.6M parameters (94X
bigger). Applying the Adaptive AF to ResNet18* (11M) it
also increases 2% as shows table 1.

Table 1. Comparing ResNet18* (with adaptive activation function
Relu)Vs ResNet18** (with adaptive activation function Adaptive
Softplus) Vs reported ResNet topologies for CIFAR10

Neural Network Depth #Parameters Accuracy%
ResNet18 18 0.27M 91.25
ResNet56 56 0.85M 93.03
ResNet110 110 1.7M 93.57
ResNet18** 18 0.27M 92.92
ResNet18* 18 0.27M 93.57
ResNet18 18 11M 93.02
ResNet50 50 25.6M 93.62
ResNet100 100 44.5M 93.75
ResNet18* 18 11IM 95.08

It is important to remark that our technique does not pro-
pose a new topology, and it does not compete with other
topologies or architectures. Instead, it can be combined
with existing NN models to improve accuracy further, to
have better generalization, or to optimize the model size.

In most of the experiments realized, the adjustments
of the activation function produced a better generalization,
which in consequence resulted in an increment of the testing
accuracy.

6.3. ImageNet with Trainable Activation Function

The results shown in Table 2 are based on ResNet50 re-
placing AF with our proposed Adaptive AF. These experi-
ments on ImageNet yield 1.06% improvement on the top-
1 error. The results obtained by our modified Resnet50*
over-performs other topologies not listed here like: VGG19,



GoogleNet, Densenet201, Shufienet, MobileNet.

Table 2. Comparing Error for ResNet50* (with adaptive activation
function Relu) Vs reported ResNet topologies for ImageNet

Neural Network  #Param Topl-E%  TopS5-E%
ResNet18 11M 30.24 10.92
ResNet50 25.6M  23.85 7.13
ResNet101 44.5M  22.63 6.44
ResNet50* 25.6M  22.79 6.59

7. Conclusion

By taking advantage of the concepts defined by frac-
tional calculus, the most commonly used activation func-
tions, e.g. Sigmoid, ReLU, Step, Softplus, Hyperbolic Tan-
gent, Hyperbolic Squared Secant, etc. can be grouped into
families of activation functions, giving the possibility to
generate sets of them by means of a fractional derivative
from their main primitive function, using a new parameter
a that represents the fractional derivative order. Making use
of this generalized activation function (the family of the ac-
tivation functions), the training rule to adjust the fractional
derivative order a during backpropagation was generated.
The use of this technique avoids the need of manual se-
lection of the activation function, providing an automated
optimized adjustment of each activation function. Using
this methodology a single layer can mix different activa-
tion functions in order to find the best architecture for a
given problem. Through our experimentation, this brings
a better generalization with an increment in the accuracy
when compared to the fixed activation function architec-
tures. Applying our technique to a ResNet18 topology, the
boost of accuracy was more than 2% over performing a typ-
ical ResNet100 for CIFAR10, and 1% boost for ImageNet.
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