
Adaptive Activation Functions Using Fractional Calculus

Julio Zamora-Esquivel, Adan Cruz Vargas, Jose Rodigo Camacho-Perez

Paulo Lopez Meyer, Hector Cordourier, Omesh Tickoo.

Intel Labs, Mexico

julio.c.zamora.esquivel@intel.com

Abstract

We introduce a generalization methodology for the au-

tomatic selection of the activation functions inside a neural

network, taking advantage of concepts defined in fractional

calculus. This methodology enables the neural network

to define and optimize its own activation functions during

the training process, by defining the fractional order of the

derivative of a given primitive activation function, tuned as

an additional training hyper-parameter. By following this

approach, the neurons inside the network can adjust their

activation functions, e.g. from MLP to RBF networks, to

best fit the input data, and reduce the output error. The re-

sult show the benefits of using this technique implemented

on a ResNet18 topology by outperforming the accuracy of a

ResNet100 trained with CIFAR10 reported in the literature.

1. Introduction

Emergence of Deep Learning (DL) has led to multiple

Neural Network (NN) topologies and architectures being

proposed to solve classification problems; an important part

of the definition of these architectures consists in the proper

selection of the activation function from a set of commonly

known options, e.g. Tanh, Sigmoid, RBF, ReLU, Softplus,

etc. This set of popular options for activation functions is

in constant growth due to the active effort of the Artificial

Intelligence community. The usual practice is to manually

select the activation function, relying heavily on the ex-

perience of the NN architect. Therefore, it is not rare to

go through an exhaustive trial and error methodology, re-

training the NN with a different set of activation functions

in search for an optimal configuration. The available lit-

erature describes in detail the strengths and weaknesses of

different activation function options. For instance, the step

function is the cheapest approach computationally, but can-

not be used for training since it cannot be derived through

the backprogapation process [22]. Additionally, the ReLU

units can be fragile during training and can “die” (accord-

ing to CS231[20][12]), which means, quoting the source,

that “a large gradient flowing through a ReLU neuron could

cause the weights to update in such a way that the neuron

will never activate on any data point again”. To fix this is-

sue, the ELUs were proposed in [2]. But also the Leaky

ReLUs [17], the PReLU [6], and the Swish activation func-

tion have been suggested to avoid this problem. Most of the

literature explore the use of different activation functions

by performing different experiments and comparing results,

and in many cases the selected activation function applies

for all the network, or at least, for all the units in a layer

within a NN. In this work, instead of the manual exploration

of the activation function that fits better, a generalized ac-

tivation function is used that morphs, smoothly switching

from different activation shapes, and adjusting to the shape

that minimizes the error. This work represents an effort to

define a fractional derivative order value (as an additional

training hyper-parameter) to adjust the activation functions.

allowing the automatic selection of an activation function

for optimal results. Rest of this paper is organized as fol-

lows: in Section 2, a detailed description on the concepts

of fractional derivative and integral is presented in order

to set the theoretical bedrock of this proposed work; Sec-

tion 3 explains the methodology followed using known ac-

tivation functions, and how their behaviors change through

fractional derivatives/integrals. The results and discussion,

and our drawn conclusions are presented in Section 4 and 5,

respectively.

2. Related Work

There is plenty of work in the research community re-

lated to new activation functions, showing improvements in

some particular problems. This work is not introducing a

new type of activation function. Instead, it tries to group

existing activation functions into families, and automate the

effort of selecting them properly during the architecture def-

inition of the NN. There are currently some proposals for

parametrizing the activation functions, to perform certain

level of adjustment. Some examples are the Parametric Rec-

tified Linear Unit (PReLU [6]) in which a portion of the ac-

tivation function can be adjusted to create a family of leaky

activation functions, or the Scaled Exponential Linear Units

(SELU) [13] that adjust also a portion of the activation func-

tion using selu(x) = αex − α, α ∈ ℜ is the trainable pa-

rameter. Most of this reported works brings the modifica-

tion to other type of activation function, adding parameters

to create new empirical models. Our work instead identi-

fied that most of the common activation function types can

be considered a part of a family of functions, which can be

generated using fractional derivatives of a primitive func-

tion by changing its derivative order. This brings the need

of introducing some concepts of fractional calculus.

3. Fractional Calculus

This section describes the motivation behind the usage

of fractional derivatives and integrals, as a way to define a

numerical trainable hyper-parameter value to automatically

select an optimal activation function in a NN.

3.1. Fractional Derivative

The concept of the derivative, in its more basic defini-

tion, is associated to natural values (i.e. the first derivative,

second derivative, etc.), and can be defined as:

y′ =
dy

dx
, y′′ =

d2y

dx
, y′′′ =

d3y

dx
, (1)

where the equation terms represent the first, second, and

third order derivative respectively. However, is it possible to

have a non-integer derivative, for example a 1.5 derivative?

In recent years, fractional calculus is gaining more popular-

ity since it provides successful aid into modeling complex

dynamics [23], understanding wave propagation [10], quan-

tum physics[15], and other applications. In order to under-

stand how a fractional derivative works, a simple example

can be useful. Here, we show that the natural n-derivatives

of the function f(x) = xk are defined as:

df(x)

dx
= kxk−1, (2)

d2f(x)

dx2
= k(k − 1)xk−2, (3)

daf(x)

dxa
= k(k − 1)(k − 2) · · · (k − a+ 1)xk−a.(4)

Recalling on the concept of factorial operation (!), equa-

tion 4 can be rewritten as:

daf(x)

dxa
=

k!

(k − a)!
xk−a, (5)

For the case above, the factorial operator (!) can only

be defined for non-negative integer numbers. In order to

generate a fractional derivative, the factorial operator can

be replaced by the Gamma function Γ as proposed in [16]:

Γ(z) =

∫ ∞

0

t(z−1)e−tdt, (6)

For the particular case of n ∈ N:

Γ(n) = (n− 1)!, (7)

A known efficient method to compute Gamma is [3]:

Γ (z) =
e−γz

z

∞
∏

k=1

(

(

1 +
z

k

)−1

e
z

k

)

, (8)

where γ is the Euler-Mascheroni constant (γ = 0.57721..)
[1]. Thus, replacing the factorial in equation 5 by the

Gamma function, the fractional derivative is then given by

[9]:

Daf(x) =
daf(x)

dxa
=

Γ(k + 1)

Γ(k + 1− a)
xk−a. (9)

The above definition represents the fractional derivative

of function f(x) = xk valid for k, x ≥ 0.

3.2. Fractional Integral

Analogous to the derivative, a given function can be inte-

grated successively. For example, using the function y = 1,

the successive integrals J of y are given by:

Jy =

∫ x

0

dt1 = x, (10)

J2y =

∫ x

0

∫ t2

0

dt1dt2 =
x2

2
, (11)

... (12)

Jny =

∫ x

0

· · ·

∫ t2

0

dt1dt2 · · · dtn =
xn

n!
. (13)

Replacing the factorial operator by the Gamma function,

the fractional integral for y = 1 is:

Jay =
xa

Γ(a+ 1)
. (14)

In order to prove how the fractional integral is defined for

any function f(x), let us start with the definition of the in-

tegral as:

J1f(x) = D−1f(x) =

∫ x

0

f(t)dt, (15)

Using the Cauchy formula for repeated integration:

D−nf(x) =
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt. (16)

Again, the Gamma function can be used to remove the

factorial function and generate a fractional integral as:

D−af(x) =
1

Γ(a)

∫ x

0

(x− t)a−1f(t)dt, (17)

The resulting equation is known as the Riemann-

Liouville integral [18]. For example, the fractional integral

of function f(x) = 1 using 17 results in:

D−af(x) =
1

Γ(a)

∫ x

0

(x− t)a−1dt, (18)

Solving the integral:

D−af(x) =
1

Γ(a)

[

−
(x− t)a

a

]x

0

, (19)

Evaluating the limits (0, x) and recalling that aΓ(a) =
Γ(a+ 1):

D−af(x) =
1

Γ(a)

(

xa

a

)

=
xa

Γ(a+ 1)
, (20)

This result matches the result obtained in equation 14,

which demonstrates that fractional derivatives or fractional

integrals can be used depending on the primitive function

selected. In the following sections, these fractional calculus

concepts are used to show how some activation functions

are related to each other, and how a generalized activation

function represents a fractional model for the neuron.

4. Generalizing the Activation Function

There have been several activation functions proposed in

the literature for usage in different NNs. However, we pro-

pose to group them into a smaller number of families by an-

alyzing the activation functions that can be generated math-

ematically from other ones using Fractional Calculus. For

instance, we can prove that it is possible to group, multi-

quadratic and the step function into the same family, be-

cause you can choose one and generate the other by com-

puting its fractional derivative. Based on this, we will detail

three function families that can be put together in this sense.

4.1. Rectified Linear Unit (ReLU)

ReLU function proposed in [19] is the simplest non-

linear activation, known for faster training processing for

large network development. As opposite to the Sigmoid

function, the squeezing effect of back-propagated errors is

not present. ReLU is defined as Max(0,x) or:

f(x) =

{

x x > 0
0 x � 0

(21)

Using the fractional derivative, a generalized activation

function can be generated. In this case, the generalized

function g is the a− th fractional derivative of f , basically

g(x) = Daf(x) using 21:

g(x) =

{

Dax x > 0
0 x � 0

(22)

where the fractional derivative of x is generated using equa-

tion 9 with k = 1:

g(x) = Daf(x) =
Γ(2)

Γ(2− a)
x1−a, (23)

Here, Γ(2) = 1! = 1, then, the generalized ReLU case

is given by:

g(x) =
x1−a

Γ(2− a)
, (24)

The generalized activation function g(x) can change its

shape, going from ReLU when a = 0, to multi-quadratic

(a = 1/2), and to step function for a −→ 1, as shown in

Figure 1.

Figure 1. The fractional derivative of ReLU with order a − th in

the range of [0, 1]. Depending of the fractional derivative order a,

this activation function behaves as ReLU, as multi-quadratic or as

step function.

4.2. Sigmoid

The Sigmoid is a special case of the logistic function

named in 1844 by Pierre François Verhulst[21]. It is called

Sigmoid because it has the shape of the letter “s” and has

been widely used in NNs. On the other hand, the Softplus

activation function f(x) = log(1 + ex) was introduced in

2001[4] as a soft, continuous version of the ReLU function.

Softplus is also the primitive function of Sigmoid, and ex-

poses not only a different range of output values (0,∞), but

also additional convex properties. In this way, the Softplus

function can be used as primitive to generalize Sigmoid-like

functions using fractional derivatives, with ln as particular

case of log.

g(x) = Daln(1 + ex), (25)

then the fractional derivative of Softplus is computed as:

g(x) = lim
h→0

1

ha

∞
∑

n=0

(−1)n
Γ (a+ 1) ln

(

1 + e(x−nh)
)

Γ (n+ 1)Γ (1− n+ a)
(26)

This generalized activation function can morph its shape

from Softplus, when the fractional derivative order a is zero

(a = 0), to Sigmoid when a = 1, or to a bell like shape with

(a = 2) as illustrated in Figure 2.

Figure 2. Fractional derivative of the Softplus Activation function

with order a − th in the range of [0, 2]. Depending on the frac-

tional derivative order a, this activation function behaves as Soft-

plus (a = 0), Sigmoid function (a = 1), or a bell like shape

function suitable for RBF (a = 2).

4.3. Hyperbolic Tangent

The Hyperbolic Tangent f(x) = Tanh(x) is one of the

most used activation functions, mainly because is within

the rage of (−1, 1). Analogously to the cases shown be-

fore, the generalized Hyperbolic Tangent activation func-

tion g(x) = DaTanh(x) can morph from Hyperbolic Tan-

gent to Sech2. In this case, the Sech2 behaves similar to

the activation function y = e−x2

used in RBF NNs. In this

sense, if the generalized function g is defined like

g(x) = Da tanh(x), (27)

similar to the Softplus case, the fractional derivative of the
Hyperbolic Tangent is given by:

g(x) = lim
h→0

1

ha

∞
∑

n=0

(−1)n
Γ (a+ 1) tanh (x− n · h)

Γ (n+ 1)Γ (1− n+ a)
. (28)

Equation 28 represents a generalized activation function

that produces a family of functions that morph from Hyper-

bolic Tangent (a = 0) to square hyperbolic secant function

(a = 1) as shown in Figure 3.

Figure 3. The fractional derivative of the Hyperbolic Tangent with

order a − th in the range of [0, 1]. Depending on the fractional

derivative order a, this activation function behaves as Hyperbolic

Tangent (a = 0), or as Square Hyperbolic Secant function (a = 1)

used in RBF.

In Figure 3, the fractional derivative for a values in the

range of [0, 1] is displayed, although there is not restriction

in the use of just this range of values. For example, us-

ing the a = −1 generates the Hyperbolic Tangent primitive

function.

In conclusion, having the flexibility to morph from one

activation function to another by changing a single frac-

tional derivative order parameter enables the network to ad-

just the activation function to better fit the specific problem

in hand, avoiding the need of handcrafted recipes from the

NN architect, opening the possibility of increasing the per-

formance due to a better optimization of the architecture.

5. Learning the Activation function

In the previous section the activation functions were

grouped as a generalized Activation function, With this, the

training rules required to optimize for a−th order of deriva-

tive will be introduced. Using these training rules, the NN

training process will adjust the parameter “a”, selecting the

activation function shape that minimizes the error.

5.1. Learning ReLU

A way to minimize the error is adjusting the parameter a
using gradient descendent, this process requires the compu-

tation of the partial derivative of the activation function, in

this case given by the equation 24:

∂

∂a
g(x) =

−x1−a

Γ(2− a)2
∂

∂a
Γ(2− a)+

x1−aln(x)

Γ(2− a)

∂

∂a
(1− a)

(29)

Grouping the terms:

∂

∂a
g(x) = −

[

Γ′(2− a)

Γ(2− a)2
+

ln(x)

Γ(2− a)

]

x1−a (30)

Using equation 24 to simplify 30:

∂

∂a
g(x) = −

[

Γ′(2− a)

Γ(2− a)
+ ln(x)

]

g(x) (31)

where, Γ′ represents the partial derivative of Γ:

Γ′(2−a) =
∂

∂a
Γ(2−a) = −

∫ ∞

0

t(1−a)ln(t)e−tdt (32)

Using the definition of the digamma function ψ [9] :

ψ(z + 1) =
Γ′(z + 1)

Γ(z + 1)
= −γ +

∞
∑

n≥1

(

z

n(n+ z)

)

(33)

where γ is one of the many definitions of the Euler-

Mascheroni constant (γ = 0.57721..). For z = 0 we have:

ψ(1) = Γ′(1) = −γ. (3)

Then, the digama function of (2− a) is given by:

ψ(2− a) = −γ +
∞
∑

n=1

(

1− a

n2 + n− an

)

(34)

Using this Digama function ψ, equation 31 can be rewrit-

ten as:

∂

∂a
g(x) = − [ψ(2− a) + ln(x)] g(x) (35)

The equation above is used to minimize the NN error

by adjusting the parameter a, which means adjusting the

activation function for lower error performance.

5.2. Learning Sigmoid

As detailed previously, the generalized Softplus can gen-

erate three activation functions: Softplus, Sigmoid, and

RBF functions, depending on the fractional derivative or-

der a. Here, the training rules to tune a will be defined to

get the optimal value and, in consequence, the selection of

the best activation function for a given problem.

From equation 26 we define the function A containing

the terms depending on a:

A(a) =
Γ (a+ 1)

haΓ (1− n+ a)
(36)

To reduce the error, the partial derivative of 26 is needed,

and it is computed using the partial derivative of A:

∂

∂a
g(x) = lim

h→0

∞
∑

n=0

(−1)
n ln

(

1 + e(x−nh)
)

Γ (n+ 1)

∂

∂a
A(a)

(37)
Then, we will focus on ∂

∂a
A(a).

∂

∂a
A(a) = A(a)

[

Γ′ (a+ 1)

Γ (a+ 1)
−

Γ′ (1− n+ a)

Γ (1− n+ a)
− ln(h)

]

(38)

Using the digamma function 33, the above equation can be
simplified as:

∂

∂a
A(a) = A(a) [ψ (a+ 1)− ψ (1− n+ a)− ln(h)] (39)

where

ψ(a+1)−ψ(1−n+a) =

∞
∑

k=1

n

(k + a)(k + a− n)
(40)

5.3. Learning Hyperbolic Tangent

The formulation of the training rule for Hyperbolic Tan-

gent is similar to the Sigmoid rule described in Section 5.1.

In an analog way, we can assess that equation 37 is now

given by:

∂

∂a
g(x) = lim

h→0

∞
∑

n=0

(−1)
n tanh(x− nh)

Γ (n+ 1)

∂

∂a
A(a) (41)

Here, the partial derivative of A is computed using equa-

tion 39. This training rule morphs the tanh activation func-

tion to sech2, and we can integrate fractionally to obtain a

ReLU-like shape.

6. Experiments, Results and Discussion

To evaluate the effectiveness of our proposed technique,

two different experimental scenarios were used: a shallow

NN with a small artificially created training data set to an-

alyze and visualize the behaviour of the dynamic activation

functions while training; and a ResNet18 network trained

with the CIFAR10 data set [14] to quantify the effect of

implementing our fractional derivative technique in a well

known state-of-the-art CNN architecture.

6.1. Fractional Derivative Order Visualization

For the first experiment, we opted for a simple classifi-

cation task to visualize the behaviour and the effect of ad-

justing the activation function during training. The data set

artificially generated consists of five classes: two of them,

cyan and blue, generate separate clusters or cumulus of pat-

terns; a green class is composed by two clearly separated

cumulus, one on top and one at the button; these are sep-

arated by the red class which is composed by a scattered

Figure 4. These artificially generated data set represents a simple

but non-trivial classification problem of 5 different colors. The

purpose of this data set is to provide a visualization of the gener-

alization power presented by our proposed technique.

region of patterns; finally, a yellow class is composed by

two scattered regions of patterns (see Fig 4).

The NN topology used in this experiment consists of

only five units, one per class, without any hidden layers.

We intentionally selected a shallow model to easily visual-

ize the effect of training on the activation function of each

neuron. A higher order NN s = χTQχ was used instead of

the typical s =
∑

n wiχi in order to generalize from hyper

planes to quadratics as in [5]:

f = Daln(1 + eχ
TQχ), (42)

where χ represents the homogeneous vector of input x, i.e.

χ = [x, 1], and x is a two dimensional vector representing

the input features. To compare our approach against the tra-

ditional practice of selecting a fixed activation function, we

trained the model using: 1) the Softplus activation function

[4], and 2) the fractional derivative of the Softplus, where

the fractional derivative order a was learned as a tunable

hyper-parameter. The experimental results show that not

only the global error was reduced in less number of epochs

when using fractional derivatives during the training, but

also the error reached a lower value, as it can be seen ex-

plicitly in Figure 5.

Besides the error metric described above, it is also

important to consider the generalization behavior of the

trained model, to visualize that every single input vector

(pattern) was evaluated, associating an output for every data

sample and assigning its corresponding color. Figure 6

shows graphically the results of both models evaluated: on

the left side, the fixed Softplus activation function tends to

present an overfitting over all classes, i.e. set more specific

boundaries over the used training data set; in contrast, our

technique, shown on the right side, yields a more general-

ized set of boundaries.

Figure 5. Error values obtained during training when Softplus

activation function (dashed plot), and appied fractional derivative

order a to Softplus (solid pot) were used.

Figure 6. Graphical visualization of the obtained classification

models by using Softplus activation function (left), ans Softplus

activation function subject to fractional derivatives (right).

For each epoch during the training routine, we kept track

of the fractional derivative order of each neuron, i.e. the

type of activation function defined in each neuron. This

progression can be observed in Figure 7. It can be noticed

that, in the final model trained with our methodology, four

of the activation functions (a2 to a5) morphed through the

use of fractional derivatives from Softplus to Sigmoid acti-

vation function, and one (a1) started to morph, but quickly

returned to Softplus activation function, remaining like this

until the end of the training process.

In traditional NN topologies, all activation functions of

all the neurons inside a given layer are equally set, which

means that either all Sigmoids, all Hyperbolic Tangents,

or all ReLU, etc., are initially chosen. A combination of

activation functions is not a common configuration, since

the high number of possible combinations makes the task

of training each configuration quite impractical. In con-

trast, our methodology is designed to automatically select

the shape of each neuron’s activation function that mini-

mizes the global error. To prove this point, we experimen-

tally observed that in our defined classification problem, by

randomly initializing the fractional derivative order a in the

range of [0, 1.5], the model always converged to the same

final configuration of activation function shapes, i.e. four

Figure 7. Evolution of the fractional derivative order a (shape of

the activation function) during the training of the NN. All activa-

tion functions started with a Softplus (a = 0).

Sigmoid shaped and one Softlpus activation function. For

instance, in Figure 8 all activation functions were initial-

ized as Sigmoids (a = 1), and during training, two of them

showed some shape morphing at first, but returned to Sig-

moid shape as the in the experiment presented in Figure

7. Going further with the experimentation, starting from

an order of a = 2, the method reached a different local

minimum, and different units ended with different activa-

tion function shapes, as can be seen in Figure 9

Figure 8. Evolution of fractional derivative order a (shape of the

activation function) during the training of the NN. All activation

functions started with a Sigmoid (a = 1).

6.2. ResNet18 with Trainable Activation Function

The experiments described in the previous section are

useful for visualization of the training behaviour in the acti-

vation function. In this experiment, we want to measure the

benefit of this technique in combination with state-of-the-

art topologies, as we believe that any network can benefit

from the use of this adaptive activation function using frac-

tional derivatives. In this case, we modified a ResNet18

topology [11] to use our trainable activation function. We

performed a training and testing routine using the well

known CIFAR10 image database [14], and compared our

findings with published results [7][8]. We have observed

Figure 9. Evolution of fractional derivative order a (shape of the

activation function) during the training of the NN. All activation

functions started with a RBF (a = 2).

that the new version of ResNet18* (0.27M) over-performed

the ResNet110(1.7M) in [8] with a marginal increment in

the number of parameters. The performance of this net-

work was close to ResNet50 with 25.6M parameters (94X

bigger). Applying the Adaptive AF to ResNet18* (11M) it

also increases 2% as shows table 1.

Table 1. Comparing ResNet18* (with adaptive activation function

Relu)Vs ResNet18** (with adaptive activation function Adaptive

Softplus) Vs reported ResNet topologies for CIFAR10

Neural Network Depth #Parameters Accuracy%

ResNet18 18 0.27M 91.25

ResNet56 56 0.85M 93.03

ResNet110 110 1.7M 93.57

ResNet18** 18 0.27M 92.92

ResNet18* 18 0.27M 93.57

ResNet18 18 11M 93.02

ResNet50 50 25.6M 93.62

ResNet100 100 44.5M 93.75

ResNet18* 18 11M 95.08

It is important to remark that our technique does not pro-

pose a new topology, and it does not compete with other

topologies or architectures. Instead, it can be combined

with existing NN models to improve accuracy further, to

have better generalization, or to optimize the model size.

In most of the experiments realized, the adjustments

of the activation function produced a better generalization,

which in consequence resulted in an increment of the testing

accuracy.

6.3. ImageNet with Trainable Activation Function

The results shown in Table 2 are based on ResNet50 re-

placing AF with our proposed Adaptive AF. These experi-

ments on ImageNet yield 1.06% improvement on the top-

1 error. The results obtained by our modified Resnet50*

over-performs other topologies not listed here like: VGG19,

GoogleNet, Densenet201, Shuflenet, MobileNet.

Table 2. Comparing Error for ResNet50* (with adaptive activation

function Relu) Vs reported ResNet topologies for ImageNet

Neural Network #Param Top1-E% Top5-E%

ResNet18 11M 30.24 10.92

ResNet50 25.6M 23.85 7.13

ResNet101 44.5M 22.63 6.44

ResNet50* 25.6M 22.79 6.59

7. Conclusion

By taking advantage of the concepts defined by frac-

tional calculus, the most commonly used activation func-

tions, e.g. Sigmoid, ReLU, Step, Softplus, Hyperbolic Tan-

gent, Hyperbolic Squared Secant, etc. can be grouped into

families of activation functions, giving the possibility to

generate sets of them by means of a fractional derivative

from their main primitive function, using a new parameter

a that represents the fractional derivative order. Making use

of this generalized activation function (the family of the ac-

tivation functions), the training rule to adjust the fractional

derivative order a during backpropagation was generated.

The use of this technique avoids the need of manual se-

lection of the activation function, providing an automated

optimized adjustment of each activation function. Using

this methodology a single layer can mix different activa-

tion functions in order to find the best architecture for a

given problem. Through our experimentation, this brings

a better generalization with an increment in the accuracy

when compared to the fixed activation function architec-

tures. Applying our technique to a ResNet18 topology, the

boost of accuracy was more than 2% over performing a typ-

ical ResNet100 for CIFAR10, and 1% boost for ImageNet.

References

[1] S. I. Abramowitz, M. Handbook of mathematical functions

with formulas, graphs and mathematical tables. 10th ed:258–

259, 1972.

[2] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and

accurate deep network learning by exponential linear units

(elus). ICLR2016, 2016.

[3] P. J. Davis. ”leonhard euler’s integral: A historical pro-

file of the gamma function”. American Mathematical/

doi:10.2307/2309786, Monthly. 66 (10):849869, 2016.

[4] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia.

Incorporating second-order functional knowledge for better

option pricing. In Advances in neural information processing

systems, pages 472–478, 2001.

[5] M. M. Gupta, I. Bukovsky, N. Homma, A. M. Solo, and Z.-

G. Hou. Fundamentals of higher order neural networks for

modeling and simulation. In Artificial Higher Order Neural

Networks for Modeling and Simulation, pages 103–133. IGI

Global, 2013.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European conference on com-

puter vision, pages 630–645. Springer, 2016.

[9] R. Herrmann. Fractional Calculus. World Scientific Pub-

lishing, 2011.

[10] S. Holm and S. P. Näsholm. A causal and fractional all-

frequency wave equation for lossy media. The Journal of the

Acoustical Society of America, 130(4):2195–2202, 2011.

[11] S. R. J. S. Kaiming He, Xiangyu Zhang. Deep residual learn-

ing for image recognition. arXiv:1512.03385, 2015.

[12] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3128–3137, 2015.

[13] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter.

Self-normalizing neural networks. In Advances in neural in-

formation processing systems, pages 971–980, 2017.

[14] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009.

[15] N. Laskin. Fractional schrödinger equation. Physical Review

E, 66(5):056108, 2002.

[16] I. S. M. Abramowitz, editor. Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables,

chapter 6, pages 253–266. Dover, 10th edition, 1972.

[17] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In Proc.

icml, number 30 in 1, page 3, 2013.

[18] B. Miller, Kenneth S.; Ross. An Introduction to the Frac-

tional Calculus and Fractional Differential Equations. John

Wiley & Sons, isbn 0-471-58884-9 edition, 1993.

[19] M. A. M. R. J. D. H. S. R Hahnloser, R. Sarpeshkar. Digi-

tal selection and analogue amplification coexist in a cortex-

inspired silicon circuit. Nature 405, pages 947–951, 2000.

[20] P. Sachin. Convolutional neural networks

for image classification and captioning.

https://web.stanford.edu/class/cs231a, 2016.

[21] P.-F. Verhulst. Notice sur la loi que la population poursuit

dans son accroissement. Correspondance mathmatique et

physique, 10 edition, 1838/Retrieved 3 December 2014.

[22] P. Werbos. Beyond regression:” new tools for prediction and

analysis in the behavioral sciences. Ph. D. dissertation, Har-

vard University, 1974.

[23] S. W. Wheatcraft and M. M. Meerschaert. Fractional conser-

vation of mass. Advances in Water Resources, 31(10):1377–

1381, 2008.

