
Adaptive Convolutional Kernels

Julio Zamora-Esquivel, Adan Cruz Vargas, Paulo Lopez Meyer, Omesh Tickoo

Intel Labs, Mexico.

julio.c.zamora.esquivel@intel.com

Abstract

The quest for increased computer vision recognition per-

formance has led to the development of high complex-

ity neural network architectures, each time with evolving

deeper topologies. To avoid high computing resource re-

quirements of such complex networks, and to enable op-

eration on devices with limited resources, this work intro-

duces the concept of adaptive kernels applied to convolu-

tional layers. Motivated by the non-linear perception re-

sponse in human visual cells, the input image is used to de-

fine the weights of a dynamically changing kernel, named

adaptive kernel. This novel adaptive kernel is used to per-

form a second convolution operation over the input image

in order to generate the output features. Adaptive kernels

enable accurate recognition with significant lower memory

requirements; this is accomplished by reducing the number

of kernels and the number of layers needed as compared to

typical CNN configurations. Additionally, the use of adap-

tive kernels allow the decrease by 2X the number of epochs

required for training, and the number of activation function

computations. Our experimental results show a reduction

of 66X of the parameters needed of a CNN compared to

LeNet when evaluated with the MNIST dataset, maintaining

>99% of accuracy. Additionally, when using adaptive ker-

nels implemented in a ResNet18, we observed a higher per-

formance when compared to a known ResNet100 reported

in the literature for CIFAR10 and it also gets better accu-

racy for ImageNet database.

1. Introduction

Convolutional Neural Networks (CNN) have demon-

strated their capacity to achieve state-of-the-art (SoA) ac-

curacy in different computer vision tasks (CV), e.g. im-

age classification, semantic segmentation, and object de-

tection. Most of the proposed research in this area rely

on deeper and deeper architectures, comprising of millions

of trainable parameters, in order to increase the recogni-

tion performance of the models. The benefit behind hav-

ing deeper architectures is that more complex features can

be abstracted as we add more layers to a neural network

(NN). However, such models are not suitable to be imple-

mented for edge computing, e.g. in embedded devices, cell-

phones, or drones, due to its size and computational cost.

In recent years, there have been several approaches pro-

posed like ShuffleNet [26], MobileNet [7], HENet [19], and

SqueezeNet [4], in an attempt to generate smaller size mod-

els that require less computational resources, and with a low

trade-off in terms of accuracy performance.

Previous reported research has demonstrated that the re-

sponse of visual cells in the human eye is a non-linear func-

tion of their stimuli [23]. Thus, finding non-linear models

that best represent visual data could increase the recogni-

tion performance of CV tasks. Given that a typical convo-

lutional layer in a CNN is represented by a linear system,

its ability to express the above mentioned response is lim-

ited by the type of intermediate layers, and the number of

neurons in them. The use of a non-linear neuron, as it was

firstly explored to solve the XOR problem [15] which can-

not be solved by a first order neuron but can be by a second

order neuron, seems an appropriate way to tackle this non-

linearity issue. Ideally, such non-linear approaches should

be able to provide similar performance as compared to tradi-

tional CNNs, albeit at a much lower computation and mem-

ory costs. On the other hand, in the CV field, the filter used

to extract borders in an image is different to the filter used

to extract corners, etc. Our method uses the input image

to define the filter that extracts better features depending on

the input image.

Motivated by the second order neurons approach, a con-

volutional kernel is proposed in this work that includes de-

fined non-linear transformations, and that results in similar

performance as the SoA algorithms reported in the litera-

ture, while yielding a significant reduction in required mem-

ory. In addition, this method can be implemented with most

of the existent CNN architectures, like ResNet, generating

an improved version of it.

The main contributions of this work are: (i) we define

the non-linear convolutions designed for high image classi-

fication accuracy under memory constraints; (ii) using the

proposed non-linear convolutions, we present a deep NN

design that is partially pre-defined and is capable of com-

pleting self-definition during the pattern evaluation phase,

including dynamically defining the convolutional kernels

on-the-fly, depending of the input pattern; (iii) we present

a method to tackle problems associated with higher order

NN. For example, the problem of saturation of the activation

due to the N-order of multiplications used can be solved by

constraining every new dynamically generated weight to a

pre-known range defined by the activation function, e.g. if a

hyperbolic tangent function is used, the dynamically gener-

ated weights would be all within the (−1, 1) range; and (iv)

we make available for testing a pytorch-based implementa-

tion located in [24].

In the following sections we describe and prove the

points mentioned above: Section 2 mentions previous re-

lated approaches reported in the literature; Section 3 ex-

plains in detail our proposed method; Section 4 shows the

experimental results obtained by our implementation for

different datasets; and in Section 5, we present the conclu-

sions drawn from the results obtained.

2. Related work

Different ways of increasing the accuracy of NN have

been addressed in the existing scientific literature. Most of

these rely on the use of CNNs, as they are generalized lin-

ear models, and their level of abstraction is low [12]. Some

works have dealt with this low abstraction by having addi-

tional layers [10, 21], resulting in a considerable increase in

the accuracy over different datasets, e.g. CIFAR-10 [9] and

ImageNet [3]. However, although the network depth has

shown a crucial importance in NN performance, the diffi-

culty to train these models also increases, and moreover,

the accuracy of the network might tend to drop [5].

A proposal to tackle this problem is the use of ResNet

blocks [5], which given a set of inputs X , with their asso-

ciated labels Y and a function H(x) that maps X to Y , the

network defines a building block y = F (x)+x, where F (x)
represents the residual mapping to be learned. This residual

network allows to train a deeper network without being af-

fected by degradation, using a larger amount of layers and

parameters. Because of this, these type of models are not

suitable for embedded devices.

In the work presented in [12] a non-linear function ap-

proximator is proposed as a solution to increase the level

of abstraction of the feature extractor. The typical convo-

lutional kernel is replaced with a micro network, i.e. the

non-linear approximator. A multilayer perceptron is used

as the instantiation of this micro network, and by sliding

the micro network over the input in a similar manner as a

CNN, the feature maps are obtained, but this is not used to

define new filters as we do.

In the approach proposed in [2], a dynamic filter mod-

ule is presented, where the filters used for the convolution

are generated dynamically depending on the input. This dy-

namic filter module consists of two parts: a filter generating

network, which creates sample specific parameters given an

input, and a the dynamic filtering layer, which applies the

parameters to a different input. Although [2] presents simi-

lar components to our proposed work, it is important to no-

tice the differences between them: in [2], a CNN is trained

to get the convolutional kernels, and then an additional net-

work is defined to generate such kernels, where this second

network is trained independently. In our work, we define

a second order convolutional kernel trained using a novel

training rule, which is explained in detail in the following

section. This second order convolutional kernel allows the

training of smaller networks that results in comparable per-

formance.

3. Method

An adaptive kernel (K) is defined by a dynamic filter

that changes its weights by itself depending on the input

image. This adaptive kernel can be generated using an array

of traditional kernels Q. For instance, each element (u, v)
in a 3 × 3 Adaptive Kernel could be generated by a 3x3

linear filter Qu,v , as shown in Figure 1.

Figure 1. One adaptive kernel created by the convolution of the

input image with a matrix of kernels: a (3 × 3) region of the

input image is convoled simultaneously with 9 filters to gener-

ate (3× 3)σu,v outputs, the hyperbolic tangent of the outputs

tanh(σu,v) is computed to get each Ku,v element of the dynamic

kernel.

In order to generate this new adaptive kernel K, the con-

volution operation of each 3× 3 filter Qu,v with the input

image X , and using a sliding window of 3× 3 (for this ex-

ample), generates a component σu,v , defined as:

σu,v =

N−1∑

i=0

N−1∑

j=0

Q(u,v)
i,j
xi,j , (1)

At this point, the hyperbolic tangent is applied to gener-

ate the new value Ku,v of kernel. By using the tanh ac-

tivation function, we guarantee the range of values will be

within (−1, 1)

Ku,v(σ) = tanh(σu,v), (2)

This new dynamically generated kernel K is convolved

again with the input image X to generate: (Figure 2).

S =
∑

u,v

xu,vKu,v. (3)

In the final step, the output pixel is computed us-

ing hyperbolic tangent as the activation function like

f(s) = tanh(S). Other activation functions could be used

in the same fashion, e.g. sigmoid or Relu. As mentioned

above, we opted for hyperbolic tangent in order to constraint

weights to be in the range of (−1, 1). By sliding the win-

dow through all the input image X , we generate the final

filtered image. Given that the convolutional kernel Ku,v

Figure 2. A single resulting pixel output from the convolution of

the input image and the high order kernel that generates a dynamic

kernel, which is convolved with the input image again.

is not static, the computation of σ would require to store

the feature and kernel maps, making an inefficient usage of

GPU parallelism. In order to speedup its computation and

take advantage of current CNN libraries, it is possible to

compute the convolution of the entire input image X with

each filter (as illustrated in Figure 3):

σ =
∑

u,v

Qu,v ⊗ I(u, v), (4)

where I(u, v) represents the input image X shifted u

columns and v rows, and ”⊗” represents the convolution

operation. In this way, the computation of σ is simplified;

it is important to notice that the Ku,v elements should be

properly gathered from the image Ki,j .

For the adaptive kernel, a new training rule is obtained by

means of the gradient descent technique as a way to adjust

its weights using Qu,v to refer to each linear filter, and us-

ing (i, j) to refer the elements (weights) of each filter Qu,v .

This means the element Q(u,v)(i,j)
is a scalar value and rep-

resents a weight. Since the hyperbolic tangent was used as

the activation function, the training rule is defined by:

Qt+1
(u,v)(i,j)

= Qt
(u,v)(i,j)

+ γE(1− f(S)2)δ(u,v)(i,j) (5)

where γ is the learning rate, E is the pixel error value for

a window position, f(S) = tanh(s) is the output value for

that pixel, and δ is defined by:

δ(u,v)(i,j) = (1−K2
u,v)(xu,v)(xi,j) (6)

For testing purposes, different experiments were eval-

uated to compare against SoA for the MNIST, CIFAR-10

and ImageNet datasets, explained in detail in the next sec-

tion, also, a locally collected dataset was used, to prove the

significant memory compression without affecting the per-

formance of the network using the proposed models. Ad-

ditionally, the usage of adaptive kernels was explored in a

fully connected layer.

4. Experiments and Results

Our adaptive kernel implementation was written as a cus-

tom layer using the Caffe framework for Python [8], with

its associated forward and backward propagation, and it

was tested in two initial experiments: one over the MNIST

dataset, and one over the CIFAR-10 dataset. For the MNIST

experiment, we use Nesterov [16] as the training rule, with

momentum set to 0.9, initializing the learning rate to 0.01,

and a weight decay of 0.0005. We used the same weight ini-

tialization as in [5]; no additional data augmentation or pre-

processing was performed for this dataset. For the CIFAR-

10 [9], we used the same parameters, but with a learning

rate initialized to 0.1, with a reduction by a factor of 5 every

20 epochs, and a weight decay of 0.0001; 32 × 32 crop is

randomly sampled from a 40 × 40 image or its horizontal

flip, with the per-pixel mean subtracted, and divided by the

channel standard deviation, to have standardized data.

To further down on the analysis of adaptive kernels, we

performed three additional experiments: we implemented a

ResNet18 where we replace the initial layer with adaptive

kernels; we used a locally collected data to train a model

Figure 3. The input image shifted u columns v rows and convoluted with the filter Qu,v to compute all values of σ in parallel.

for robot navigation in a known environment, and we used

adaptive kernels in a fully connected network. These exper-

iments are described in the following subsections.

4.1. Experiment 1: MNIST

MNIST is a public dataset that consists of 60,000 28×28
gray scale images in 10 classes (handwritten numbers), with

6000 images per class [11]. There are 50,000 training im-

ages and 10,000 test images in the official data. Here, our

approach has three main advantages: memory reduction, in-

crement of accuracy outperforming traditional CNN mod-

els, and the learning speedup. The results produced by the

implementation of the MNIST digits recognition show a big

memory compression, using 66X less memory measured

through parameter reduction; additionally, a higher accu-

racy was achieved 2X faster. The LeNet NN fully connected

architecture we used as reference is described in detail in

Table 2, and Table 3 describes our proposed topology for

comparison purposes.

Figure 4 shows examples of how the adaptive kernel is

changing at different locations at the input window. Figure

5 shows all the kernels generated for random sample for the

digit seven. It can be noticed that for background pixels, the

kernels are neutral, i.e. they do not extract any features.

There have been many different NN models proposed

for the MNIST classification problem. In Table 4, a sub-

set of these models are presented, selecting only the ones

with > 99% accuracy, and a small number of parameters.

In this context, our adaptive kernel technique presents

the smallest CNN model that reaches > 99% accuracy with-

out any pre-processing in only 5 epochs; in contrast, the

Figure 4. A single kernel generated in different positions of the

input image.

LeNet reached 97% after 9 epochs. In terms of the number

of operations, LeNet has 2.29M MAC operations, while our

method has 1.23M MAC operations for the same database.

Here, the number of trainable parameters used by our model

is only 6.52K because a symmetric tensor was used, this

means that instead of 25 different kernels of 5x5 size, we

have only use 15 of the same size.

In order to perform a hyper-parameter sensibility anal-

ysis, eight different models with three layers were trained

using MNIST. By increasing the number of kernels in the

first layer, a saturation on the accuracy can be seen, but this

Table 1. Hyper-parameter sensibility

Model M1 M2 M3 M4 M5 M6 M7 M8

Adaptive 4 5 6 7 4 5 6 7

Conv. 10 10 10 10 20 20 20 20

F.C. 10 10 10 10 10 10 10 10

Accuracy 98.14 98.17 98.24 98.30 98.57 98.65 98.85 99.04

#parameters 6K 6.8K 7.7K 8.6K 9.5k 10.6K 11.7K 12.8K

Table 2. LeNet CNN Topology as in tutorial

Layer Units Type

Layer1 20 Kernels Conv 5x5
Layer2 50 Kernels Conv 5x5
Layer3 500 Neurons FC

Layer4 10 Neurons FC

Table 3. Our Neural Network Topology

Layer Units Type

Layer1 5 Kernels Adaptive 5x55x5
Layer2 10 Kernels Conv 5x5
Layer3 20 Neurons FC

Layer4 10 Neurons FC

Figure 5. Every input window is convolved by a different filter

generated on the fly using the input image.

Table 4. MNIST Accuracy vs Memory for >99% accuracy

Neural Network #Parameters

LeNet [1] 431K

LetNet5 [25] 60K

50-50-200-10NN [14] 226K

Best Practices [17] 132.5K

Adaptive Kernels CNN 6.52K

saturation can be mitigated by increasing the number of ker-

nels in the second layer, as presented in Table 1.

4.2. Experiment 2: CIFAR-10

The CIFAR-10 is a public data set that consists of 60,000

32 × 32 color images in 10 classes, with 6000 images per

class. There are 50,000 training images and 10,000 test

images in the official release. In this context, CIFAR-10

was used for testing with horizontal flipping, padding, and

32×32 random cropping for data augmentation of the train-

ing dataset. As our target model is aimed towards embedded

devices where the memory is critical, the goal is to have the

smallest model and the highest accuracy possible. The pro-

posed topology was implemented as follows: only the first

layer uses adaptive kernels of (3×3)(3×3), in order to high-

light the impact of a single layer in the full topology, and

being the first layer where the main feature extraction takes

place; additionally, it has 8 convolutional layers, and ends

with ten outputs in one final fully connected layer.

Table 5. CIFAR-10 Classification error vs Number of parameters

Neural Network Depth #Parameters Error%

All-CNN [22] 9 1.3M 7.25

MobileNetV1 [7] 28 3.2M 10.76

MobileNetV2 [20] 54 2.24M 7.22

shuffleNet 8G [26] 10 0.91M 7.71

shuffleNet 1G [26] 10 0.24M 8.56

HENet [19] 9 0.7M 10.16

ResNet18 [6] 20 0.27M 8.75

Adaptive Kernels 10 0.2M 7.48

In order to compare against the related work described

before, some of the latest topologies used for CIFAR-10

pattern recognition problem are included (limiting our anal-

ysis to those having less than 2.5M number of trainable pa-

rameters). Our intention is not to outperform the accuracy

of these topologies. Instead, the idea is to achieve similar

results with a significantly smaller model. This approach

can potentially enable us to target an efficient implementa-

tion into embedded systems. Table 5 shows a summary of

results from the smallest models recently reported for the

CIFAR-10 classification problem.

While there is no simple way to determine the efficiency

of a NN, our target is the highest accuracy with the least

amount of memory as shown in Table 5. Comparing with

All-CNN [22] our solution represents a 6X memory reduc-

tion with only a 0.2% drop in accuracy; comparing with

MobileNetV2, we have 11X compression with only a 0.2%

drop in accuracy .

4.3. Experiment 3: ResNet18 + Adaptive kernels

We used the ResNet18[6] topology to implement adap-

tive kernels in it. In this experiment, only the first layer was

changed to use 64 adaptive kernels instead of 64 convolu-

tional kernels, as in the typical topology, in order to show

the contribution of one adaptive layer. Although the topol-

ogy with an adaptive layer has less feature maps in the first

layer, it can achieve better performance when compared to

a larger ResNet100 as can be seen in Table 6.

Table 6. Combining Adaptive layers with ResNet18

Neural Network Depth #Parameters Error%

ResNet18 18 11M 6.98

ResNet50 50 25.6M 6.38

ResNet100 100 44.5M 6.25

Adaptive + ResNet18 18 11.1M 5.55

As table 6 shows in CIFAR-10, the modified ResNet18

that use our Adaptive kernels over performed the

ResNet100, clearly combining or Adaptive layer with

ResNet100 the accuracy could increase even more, but the

number of parameters and the amount of operations is too

high to be considered in embedded applications.

4.4. Experiment 4:ImageNet

Evaluation of Adaptive kernels for ImageNet data

set. Our model is based on the well known topology

ResNet18[18], replacing one layer to use our adaptive ker-

nels, the accuracy increased 0.4%, results in table 7

Table 7. Comparing Error for ResNet18* (with adaptive Kernels)

Vs reported ResNet topologies for ImageNet

Neural Network Depth #Param Top1-Error%

ResNet18 18 11M 30.24

ResNet50 50 25.6M 23.85

ResNet100 100 44.5M 22.63

ResNet18* 18 11M 29.8

4.5. Experiment 5: Embedded Application

In this experiment, a locally collected dataset was used,

in order to train a NN model that drives a robot to navigate

inside of a known room. Given an input image I (200×200)

from the robot camera, it estimates a required direction α ∈

[0, 360], and a distance d ∈ [0, 100], that drives the robot to

reach the center c(xc, yc) of a known region.

Table 8. DroNet Neural Network Topology

Layer Units Type

Layer1 32 Kernels Conv 5× 5
Layer2-5 k-Kernels ResNet 5,3,1
Layer6-8 2k-Kernels ResNet 5,3,1
Layer9-11 4k-Kernels ResNet 5,3,1
Layer12 120 Neurons FC

Layer12’ 100 Neurons FC

Table 9. Our Neural Network Topology

Layer Units Type

Layer1 5 Kernels Adaptive 5× 55×5

Layer2-5 k-Kernels ResNet 5,3,1
Layer6-8 2k-Kernels ResNet 5,3,1
Layer9-11 4k-Kernels ResNet 5,3,1
Layer12 120 Neurons FC

Layer12’ 100 Neurons FC

For this purpose, a NN architecture was created inspired

by DroNet [13] described in Table 8, but instead of a stan-

dard convolutional layer, an adaptive convolutional layer

was used (Table 9) this is because the DroNet uses 7.2M

parameters and need to reduce to 0.2M parameters (32X re-

duction) to enable the usage in small drones. The last two

layers of the network were trained considering a classifica-

tion problem, in order to estimate a steering angle class and

a distance class.

Figure 6. Accuracy vs parameter reduction with standard and

adaptive models, training (top) and testing (bottom).

The compression of the model is achieved by reducing

the number of filters in the three ResNet blocks. In Table 9

we have k, 2k, and 4k kernels for each block, respectively.

When the compression increases, accuracy drops, but the

adaptive kernels helps to keep a better accuracy in compar-

ison with the traditional convolutional layers, (Figure 6).

4.6. Experiment 6: Adaptive Kernels in a Fully
Connected Network

The methodology we are using for adaptive convolu-

tional layers can be applicable for models based on fully

connected layers, by moving from a vector to a matrix of

weights Q defined by:

S =
∑

u

wuxu → S =
∑

u

xuKu (7)

where Ku is not a constant pre-trained value, it is generated

based on the input vector doing Ku(σ) = tanh(σu), and

σu is the inner product of Qu vector with the input x:

σu =

N−1∑

i=0

Q(u)
i
xi. (8)

In this manner, the weight K is dependent of the input vec-

tor. In order to compare this method against the traditional

fully connected layers, a 2D artificial scenario was used

to simplify visualization of the results, where the problem

consists on separating five different classes. This context

is presented in Figure 7. The hyper-parameters were de-

Figure 7. Simple 2D classification scenario

fined based on an incremental process, testing two and three

fully connected layers until the majority of the input pat-

terns where correctly classified. As a result, the smallest

topology that best solves the problem is 20-20-5, i.e. two

hidden with 20 units each and one output layer with 5 units.

Classification results for this fully connected model are col-

ored in Figure 8, obtained after 923 iterations with simple

gradient descendent.

In contrast, our proposed adaptive fully connected topol-

ogy produced the best results using 13-5, i.e. one hidden

layer with 13 units and one output layer with 5 units. The

result generated after 404 iterations of simple gradient de-

scendent is shown colored in Figure 9.

For this experiment, the use of the adaptive fully con-

nected layer resulted in a reduction of the number of pa-

rameters from 540 to only 182 (3X smaller), less number

of layers needed (two instead of three), and a faster conver-

gence in 404 epoch instead of 923 (2X less epochs).

5. Conclusion

In this work, we introduced the concept of adaptive con-

volutional kernels, capable of redefining dynamically the

convolutional kernel during the inference time and depend-

ing on the input image. The experimental results obtained

show that our technique not only reduces the memory size

of the model, but also reduces the time during the train-

ing process. Additionally, our results suggest that the adap-

tive convolutional kernels generalize better than traditional

CNNs. This is because kernels adapt dynamically to extract

better features depending on the input image. In terms of ef-

ficiency, our method showed very compelling results, gen-

erating 6X lighter solutions with less than 0.2% accuracy

drop. Based on this, our solution should be able to impact

directly the computational cost of inference on embedded

systems, increasing the operational scope of applications for

these systems. As in traditional CNNs, the increase in the

number of kernels in a layer tends to produce saturation,

with a marginal increment of accuracy, thus the topology

definition also plays an important role. In our experiments

it was observed that less adaptive kernels in a layer gen-

erate comparable or even a better level of abstraction than

a higher number of traditional convolutional kernels within

a layer. For instance, in ResNet18, the 64 convolutional

filters in the first layer were replaced with adaptive filters,

Figure 8. Fully connected layer based classification, using 20-20-5

topology

Figure 9. Adaptive fully connected layer based classification, us-

ing 13-5 topology

producing even better results when compared to the larger

ResNet100 topology. Lastly, it was proven that fully con-

nected layers can also benefit from this technique, where

one adaptive layer can replace two traditional layers.

References

[1] BAIR/BVLC. Lenet architecture in caffe tutorial. Github,

2018.

[2] B. D. Brabandere, X. Jia, T. Tuytelaars, and L. V. Gool. Dy-

namic filter networks. CoRR, abs/1605.09673, 2016.

[3] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei.

Imagenet: A large-scale hierarchical image database. In In

CVPR, 2009.

[4] M. W. M. K. A. W. J. D. K. K. Forrest N. Iandola, Song Han.

Squeezenet: Alexnet-level accuracy with 50x fewer parame-

ters and ¡0.5mb model size. ICLR2017, 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-

volutional architecture for fast feature embedding. CoRR,

abs/1408.5093, 2014.

[9] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Proceedings of the 25th International Conference on Neural

Information Processing Systems - Volume 1, NIPS’12, pages

1097–1105, USA, 2012. Curran Associates Inc.

[11] Y. LeCun and C. Cortes. MNIST handwritten digit database.

2010.

[12] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,

abs/1312.4400, 2013.

[13] A. Loquercio, A. I. Maqueda, C. R. D. Blanco, and D. Scara-

muzza. Dronet: Learning to fly by driving. IEEE Robotics

and Automation Letters, 2018.

[14] S. C. Y. L. Marc Ranzato, Christopher Poultney. Effi-

cient learning of sparse representations with an energy-based

model. NIPS2006, 2006.

[15] M. Minsky and S. Papert. Perceptrons: An Introduction

to Computational Geometry. MIT Press, Cambridge, MA,

USA, 1969.

[16] Y. Nesterov. A method of solving a convex programming

problem with convergence rate O(1/sqr(k)). Soviet Mathe-

matics Doklady, 27:372–376, 1983.

[17] J. C. P. Patrice Y. Simard, Dave Steinkraus. Best practices for

convolutional neural networks applied to visual document

analysis. ICDAR 2003, 2003.

[18] Pytorch. https://pytorch.org/docs/stable/torchvision/models.html,

2019.

[19] R. Z. Qiuyu Zhu. Henet: A highly efficient convolutional

neural networks optimized for accuracy, speed and storage.

arXiv:1803.02742, 2018.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018.

[21] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[22] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Ried-

miller. Striving for simplicity: The all convolutional net.

CoRR, abs/1412.6806, 2014.

[23] R. G. Szulborski and L. A. Palmer. The two-dimensional

spatial structure of nonlinear subunits in the receptive fields

of complex cells. Vision Research, 30(2):249 – 254, 1990.

[24] https://github.com/adapconv/adaptive-cnn. Adaptive convo-

lutional neural networks source code: Pythorch implementa-

tion. Our Code, 2018.

[25] Y. B. P. H. Yann Lecun, Lon Bottou. Gradient-based learning

applied to document recognition. Proceedings of the IEEE,

1998.

[26] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile de-

vices. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6848–6856, 2018.

