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Abstract

Modern deep networks generally implement a certain

form of shortcut connections to alleviate optimization dif-

ficulties. However, we observe that such network topol-

ogy alters the nature of deep networks. In many ways,

these networks behave similarly to aggregated wide net-

works. We thus exploit the aggregation nature of shortcut

connections at a finer architectural level and place them

within wide convolutional layers. We end up with a se-

quentially aggregated convolutional (SeqConv) layer that

combines the benefits of both wide and deep representa-

tions by aggregating features of various depths in sequence.

The proposed SeqConv serves as a drop-in replacement of

regular wide convolutional layers and thus could be hand-

ily integrated into any backbone network. We apply Seq-

Conv to widely adopted backbones including ResNet and

ResNeXt, and conduct experiments for image classifica-

tion on public benchmark datasets. Our ResNet based

network with a model size of ResNet-50 easily surpasses

the performance of the 2.35× larger ResNet-152, while

our ResNeXt based model sets a new state-of-the-art accu-

racy on ImageNet classification for networks with similar

model complexity. The code and pre-trained models of our

work are publicly available at https://github.com/

GroupOfAlchemists/SeqConv .

1. Introduction

Convolutional neural networks (CNNs) have gained

overwhelming success for visual recognition owing to their

representational ability. Recent work has shown that the

depth of representation is of crucial importance to the per-

formance of CNNs [26, 34, 10, 14]. Eldan et al. conclude

that depth is a determinant factor of the expressiveness of

neural networks [5]. Several studies [24, 40, 1] have also

been conducted to investigate the width of the representa-

tion, it however does not seem to be the major concern of
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recent network architecture designs. The possibility to uti-

lize the representational power of both wide and deep rep-

resentations under a given model complexity has remained

an unexplored problem.

Increasing depth by simply stacking more layers leads to

optimization difficulties as the information flow gets gradu-

ally obscured by each layer during propagation [2, 30] in

deep networks. An intuitive approach to ameliorate this

problem is introducing shortcut connections towards far-

ther layers to enable direct access to the guiding signal

through propagation. This method has been shown partic-

ularly effective by various recently proposed state-of-the-

art networks [10, 19, 14, 3], with its effectiveness further

confirmed by visualizing the loss landscape of such net-

works [22].

Despite the fact that shortcut connections make it viable

to optimize extremely deep networks as they help preserve

the information flow, they seem to change the expected be-

haviors of deep networks. In many ways, these networks

exhibit the property of having weak dependencies between

consecutive layers while layers generally share strong de-

pendencies in regular deep networks [36]. It is reported that

ResNets [10], a typical network architecture with heavy use

of shortcut connections, behave similarly to ensembles of

many shallow networks [36], suggesting that such networks

could be viewed from the aspect of a collection of several

mostly independent subsections. This quality of having in-

dependent subsections and the aggregation nature of skip

connections provide us the insight to link networks with

shortcut connections to pseudo-wide networks.

The benefit of having wide representations lies in the fact

that it allows for a larger feature space by introducing higher

feature throughput to the network, however we argue that

wide convolutional layers are not the only means to achieve

this goal. A wide representation could also be collectively

formulated by aggregating many transformations with small

kernels. The shortcut connections are a case of aggregated

transformations as they aggregate outputs from many lay-

ers, thus there is no surprise when we observe certain prop-

erties that resemble the behavior of a wide network on a



Figure 1. A regular wide convolutional layer (left), a sequentially aggregated convolutional layer (middle) and its windowed variant (right)

with g=3.

deep and thin network with shortcut connections.

We propose a novel aggregation-based convolutional

layer (SeqConv) to construct networks with the benefits of

both wide and deep representations following the aggre-

gation nature of shortcut connections. We divide a regu-

lar wide convolutional layer into several groups and place

in-layer shortcut connections between each group. We

then aggregate the outputs from all groups in sequence to

formulate a collective wide representation. The SeqConv

layer not only preserves the width of a regular convolu-

tional layer, but as well introduces a hierarchical multi-path

micro-architecture that is capable of representing hetero-

geneous kernels [27]. The representation capability of the

layer is thus greatly enhanced, it is possible for a single Se-

qConv layer to produce multi-scale representation [34, 33]

with deep hierarchical features. Our contributions in this

paper are threefold:

• We propose sequentially aggregated convolutional

(SeqConv) layers, along with several enhanced vari-

ants, that are capable of producing stronger represen-

tations than standard convolutional layers.

• We analyze the relations of SeqConv to DenseNet [14],

and reinterpret the success of DenseNet with small

growth rate from the perspective of sequentially aggre-

gated wide representations. A windowed aggregation

mechanism is also proposed to address the parameter

redundancy and high computational cost of dense ag-

gregation.

• We adopt SeqConv as the drop-in replacement of regu-

lar wide convolutional layers to construct networks for

image classification. Our models achieve higher accu-

racy than significantly larger state-of-the-art models.

2. Related Work

Skip connectivity. Deep networks have been shown hard

to optimize via gradient-based methods due to obstructed

information flow through propagation, namely the dimin-

ishing feature reuse problem for forward propagation [30]

and the vanishing gradient problem for backward propaga-

tion [2]. Networks with shortcut connections [10, 19, 14, 3]

were proposed to alleviate such optimization difficulties by

introducing shorter paths to farther layers and thus pre-

serving the information flow through propagation. Several

implementations of skip connectivity have been proposed

to demonstrate the effectiveness of this network topology.

Highway networks [30, 31] and residual networks [10, 11]

construct skip connections with addition. Fractal net-

works [19] replace addition with element-wise mean which

makes no distinction between signals from each path and

thus allows a new form of regularization, Drop-path, to be

applied. DenseNets [14] and its successors [12, 42] adopt

concatenation to implement shortcut connections and attain

favorable performance over previous work.

Ensembles of relatively shallow networks. Several anal-

yses were conducted to investigate properties of the partic-

ularly effective residual networks. Veit et al. [36] reported

that removing building blocks from residual networks or

only keeping the shortcut paths did not lead to apparent ac-

curacy drop. Huang et al. [15] randomly dropped residual

blocks while training and actually obtained improved per-

formance. Both studies suggest that layers in residual net-

works do not share strong dependencies between each other

and such observation is not expected for a regular deep net-

work. As reported by Veit et al. [36], removing layers from

a VGG network does lead to drastic performance drop. This

indicates that a residual network does not actually exhibit

behaviors of an ultra-deep network, it rather behaves sim-

ilarly to ensembles of many mutually independent shallow

networks.

Width vs. Depth for ResNets. As discussed in Sec-

tion 1 that the aggregation nature of shortcut connections

links deep networks with such topology to pseudo-wide net-

works, we compare residual aggregation with actual wide



networks. We find that simply widening the network is of

higher efficiency than stacking more residual blocks once

the network has reached a certain depth. Reported by

Zagoruyko et al. [40], a 40-layer residual network of 4×
width outperformed a 1001-layer network on CIFAR with

fewer parameters. A wider 101-layer residual network also

achieved higher accuracy on ImageNet classification than

a 200-layer network with the same model complexity [38].

One possible explanation is that residual aggregation entan-

gles outputs from each layer and thus hinders the ability

to search for new features [42]. We hence implement in-

layer shortcut connections for SeqConv with concatenation

instead of addition to avoid such limitation.

Aggregated transformations. The implementation of

aggregated transformations is generally supported by a

multi-path architecture. Each path applies a transformation

with a small kernel and features produced by each path are

then aggregated to formulate the final representation in a

larger feature space. The representation capability is deter-

mined by the multi-path architecture and this could be, a set

of homogeneous paths [38], a set of hierarchical paths [14],

other more complex structures [39, 33], or even learnable

structures as reflected by the cell design of recent studies on

network architecture search [44, 16].

3. Methods

3.1. Sequentially Aggregated Transformations

Consider a regular wide convolutional layer gets divided

into several groups of transformations, we employ a simple

yet elegant hierarchical multi-path architecture to aggregate

each group as briefly described in Section 1. A comparison

between a standard convolutional layer and the proposed

sequentially aggregated convolutional (SeqConv) layers is

illustrated in Figure 1.

Basic layers. For a SeqConv layer with g groups of trans-

formations, let x0 denote the input of the layer, xi denote

the output of the ith group. The layer is defined by:

xi = Fi([x0, x1, . . . , xi−1]) (1)

where Fi denotes the non-linear transformation function of

the ith group, while [. . . ] refers to the concatenation op-

eration. The final representation produced by a SeqConv

layer is formulated by the aggregation of outputs from all

g groups [x1, x2, . . . , xg]. The width of the representation

is preserved by the concatenation-based aggregation while

the depth is drastically increased. For each transformation

function, the sequential aggregation enables the view over

features extracted by previous groups. Each time a group of

features xi pass through the transformation function Fi+1 of

the following group, a group of deeper features xi+1 could

be extracted. The final representation aggregates features

of various depths, including very deep features from latter

groups of the layer. The representation capability is thus

greatly enhanced [5].

Relations to DenseNet. The sequential aggregation was

first introduced to convolutional neural networks by

DenseNet [14]. The hierarchical multi-path architecture de-

fined by Eq.1 is shared by both SeqConv and a dense block

in DenseNet, except that SeqConv does not include the in-

put x0 in its final representation similar to a regular convolu-

tional layer while a dense block does. Aside from the appar-

ent architectural similarity, SeqConv is still fundamentally

different from DenseNet in two aspects:

• SeqConv is derived on a different basis than that of

DenseNet. In [14], Huang et al. place heavy empha-

sis on feature reuse and improved information flow for

deep networks using shortcut connections. SeqConv,

instead, is based on the observation that it is not viable

to build genuine deep networks using such network

topology due to the vanishing gradient problem on the

longest gradient path [36]. The aggregation nature and

shorter gradient paths of shortcut connections already

lead to behaviors resembling wide architectures in a

seemingly deep network. We thus embrace this side

effect that links shortcut connections to wide architec-

tures to modify actual wide networks. Concretely, we

utilize the hierarchical aggregation capability of short-

cut connections as formulated by SeqConv to enhance

the representational power of a single wide convolu-

tional layer.

• SeqConv is derived from wide convolutional layers,

and thus has a finer architectural granularity than

DenseNet. SeqConv is a layer-level architecture

and could be integrated into a large variety of back-

bone networks such as ResNet [11], ResNeXt [38],

DLA [39], etc. by simply replacing the regular convo-

lutional layers. Such flexibility has not been explored

in [14] since each transformation unit in DenseNet is

regarded as a separate layer. We argue that such inter-

pretation not only impedes the flexibility to integrate

sequential aggregation into other backbone networks,

but itself might also be problematic. We further ana-

lyze this limitation in our following reinterpretation of

DenseNet.

The layers in DenseNet are unusually narrow, the only

rationale seems to be a vague statement about “collective

knowledge” [14] and a clear analysis is absent. A layer,

as described by [20], produces a representation of the in-

put. This clearly is not the case of a “layer” in DenseNet.

Features extracted by a DenseNet “layer” are not enough

to solely constitute a representation and are instead always

amalgamated with features extracted by other “layers” to
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Figure 2. A residual block (left) and an exploded view of the block (right) revealing its internal structure in details.

jointly comprise a hierarchical representation. It thus might

not be accurate to refer to such transformation units in

DenseNet as “layers”, since each one of them only con-

tributes to one feature group of a very wide representation

that comprises many such groups. We attribute the success

of sequential aggregation, including DenseNet, to the ex-

pressiveness of hierarchical wide representations. Reuse of

feature groups [14] is an implementation to produce such

representations. Moreover, overemphasis on feature reuse

also has its own drawbacks as we address in the following

section of windowed SeqConv layers. It is also worth not-

ing that DenseNet bears a close resemblance to SeqConv

plugged into a VGG-like [26] backbone network.

Transformation functions. For a basic SeqConv layer,

we follow the common settings in [10] and implement the

transformation function with three consecutive operations:

3×3 convolution (Conv) followed by batch normalization

(BN) [17] and a rectified linear unit (ReLU) [7]. The num-

ber of filters for each group is determined by the channel

number of the convolution and is denoted by k.

To further improve the computational efficiency and

model compactness, we also implement a bottleneck trans-

formation function following [10, 35, 14]. For this bot-

tleneck variant, we first employ a 1×1 Conv to reduce

the channel number of the aggregated features down to k,

then apply the transformation with a 3×3 Conv. The bot-

tleneck transformation function comprises six consecutive

operations: Conv(1×1)-BN-ReLU-Conv(3×3)-BN-ReLU,

and the SeqConv layer with this transformation function is

marked by the “B” postfix (SeqConvB).

Windowed layers. The dense aggregation defined by

Eq.1 assigns more weights to earlier features of a represen-

tation produced by SeqConv. Consider a representation x′

0

of g′ groups [x1−g′ , x2−g′ , . . . , x0] produced by a previous

SeqConv layer goes through the current layer. The earli-

est features x1−g′ are utilized by both F2−g′ , . . . , F0 of the

previous layer and all transformation functions of the cur-

rent layer, while the latest features x0 are only utilized by

the current layer. x1−g′ is thus assigned with more weights

than x0 since each time a group of features pass through

a transformation function, certain weights are assigned to

that group of features. The extra weights assigned to ear-

lier features give rise to a vast number of required param-

eters growing at an asymptotic rate of O(n2), where n is

the width of the SeqConv layer, whereas a regular convo-

lutional layer merely has a linear parameter growth rate.

Recent study [42] suggests that this quadratic growth suf-

fers from significant parameter redundancy. It is observed

that DenseNet, which shares the same aggregation mecha-

nism with SeqConv, has many skip connections with aver-

age absolute weights close to zero [42, 13]. We also notice

that features exploited by a particular group are mostly dis-

tributed over the outputs of recent preceding groups of that

group [12, 42], since the information carried by the outputs

of earlier groups has been abundantly exploited.

Thus, to reduce the parameter redundancy and lower the

computational cost of SeqConv, we propose a windowed

variant of SeqConv (WSeqConv) that only aggregates the

outputs from most recent groups. The WSeqConv is defined

as follows:

xi = Fi([xi−g′ , xi−g′+1, . . . , xi−1]) (2)

the representation produced by WSeqConv is still formu-

lated by the aggregation [x1, x2, . . . , xg]. Note that Eq.2 is

equivalent to applying a sliding rectangular window func-

tion φ across the channel dimension on Eq.1:

φi(x) =

{

1 i− g′ ≤ x ≤ i− 1

0 otherwise
(3)

ωi = [φi(1− g′), φi(2− g′), . . . , φi(i− 1)] (4)



xi = Fi([xi−g′ , xi−g′+1, . . . , xi−1])

= Fi([x1−g′ , x2−g′ , . . . , xi−1] ◦ ωi)

= Fi([x
′

0, x1, . . . , xi−1] ◦ ωi)

(5)

◦ denotes the operator for the Hadamard product. The win-

dow φ truncates the input for each group to a constant width,

the parameter number and computational cost of WSeq-

Conv are thus reduced to the same as of a regular convo-

lutional layer.

3.2. Network Architecture

We apply SeqConv and WSeqConv to three widely-

adopted backbone networks, pre-activation ResNet [11]

with basic residual blocks, ResNet with bottleneck residual

blocks and ResNeXt [38] and refer to them as, respectively,

SeqResNet, SeqResNet-B and SeqResNeXt. We evaluate

these models on image classification following [10, 38, 14,

42].

Residual blocks. We construct residual blocks with WSe-

qConv layers (or its bottleneck variant) as the building

blocks of our networks. Following [10], we place two lay-

ers in each residual block. Residual connections are em-

bedded in the aggregation of the second layer owing to pre-

activation identity mapping as in [11]. This specific resid-

ual connectivity pattern allows earlier features that fall out

of the aggregation view of the second layer to be implicitly

shared with the layer without introducing any extra param-

eters, which further encourages feature reuse at the network

level. A detailed breakdown of the structure of residual

blocks with WSeqConv layers is illustrated in Figure 2.

Down-sampling blocks. Down-sampling is an essential

part of the classification networks as it enables the net-

work to extract features from different levels of abstraction.

The common practice of down-sampling in a classification

network reduces the spatial resolution of each feature map

while the width of the representation is multiplied. This

is however incompatible with sequential aggregation since

it is not viable to aggregate feature maps of different spa-

tial dimensions. We thus introduce down-sampling blocks

to facilitate down-sampling for networks with SeqConv. A

down-sampling block consists of an extension layer and a

downsizing layer as illustrated in Figure 3. The represen-

tation is first extended to the target width by the extension

layer. The spatial dimensions are then reduced by the down-

sizing layer. The grouping of downsizing prevents infor-

mation leaks among features of different groups and hence

preserves the hierarchy of the aggregated features, which is

essential if the down-sampling block is followed by a WSe-

qConv layer that requires a hierarchical input.

Subgroups. A new dimension called “cardinality” was

introduced in ResNeXt[38]. This dimension divides a 3×3
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Figure 3. The topology of a down-sampling block, the extension

layer and downsizing layer are, respectively, implemented by a

WSeqConv layer and a grouped Conv layer of stride 2.

stage output SeqResNet SeqResNet-B

conv1 32×32 3×3, 16 3×3, 16

conv2 32×32

3×3, 16×r ∗ 1×1→3×3, 16×r ∗
[

3×3, 16 × r *

3×3, 16 × r *

]

× N

[

1×1→3×3, 16 × r *

1×1→3×3, 16 × r *

]

× N

conv3 16×16

3×3, 16×r *

Concatenate, 32×r

3×3, 32×r, stride 2, groups = 32×r
k

1×1→3×3, 16×r *

Concatenate, 32×r

3×3, 32×r, stride 2, groups = 32×r
k

[

3×3, 32 × r *

3×3, 32 × r *

]

× N

[

1×1→3×3, 32 × r *

1×1→3×3, 32 × r *

]

× N

conv4 8×8

3×3, 16×r *

Concatenate, 48×r

3×3, 48×r, stride 2, groups = 48×r
k

1×1→3×3, 16×r *

Concatenate, 48×r

3×3, 48×r, stride 2, groups = 48×r
k

[

3×3, 48 × r *

3×3, 48 × r *

]

× N

[

1×1→3×3, 48 × r *

1×1→3×3, 48 × r *

]

× N

1×1, 48×r 1×1, 48×r

1×1
global average pool global average pool

fc, softmax fc, softmax

Table 1. Network template for CIFAR. We use a wide architecture

following [11], the widening factor is denoted by r. N stands

for the number of residual blocks for each stage. SeqConv and

WSeqConv layers are marked by * and * respectively.

Conv into many small groups and allows for a wider repre-

sentation compared to a regular convolutional layer with the

same model complexity. To facilitate cardinality for Seq-

Conv, we further divide the 3×3 Conv in the transformation

function of each group into several subgroups by replacing

it with a 3×3 grouped Conv. The number of subgroups for

each group is denoted by c.

Implementation details. We build SeqResNet and

SeqResNet-B for CIFAR based on [11]. The networks

are divided into three stages with the feature map sizes of

32×32, 16×16, and 8×8 respectively. We place a regular

Conv layer before the first SeqConv layer following [14],

and an equal number of residual blocks for each stage.

We insert a down-sampling block between each stage and



stage output SeqResNeXt-24 SeqResNet B42 / B22

conv1 112×112
3×3, 32, stride 2

3×3, 32

conv2 56×56

1×1→3×3, 256, k=32, c=8 *

3×3, 256, stride 2, 64 groups

1×1→3×3, 128, k=32 *

3×3, 128, stride 2, 4 groups

[

1×1→3×3, 256, k=32, c=8 *

1×1→3×3, 256, k=32, c=8 *

]

×1

[

1×1→3×3, 128, k=32 *

1×1→3×3, 128, k=32 *

]

×3 / ×1

conv3 28×28

1×1→3×3, 256, k=32, c=8 *

concatenate, 512

3×3, 512, stride 2, 64 groups

1×1→3×3, 128, k=32 *

concatenate, 256

3×3, 256, stride 2, 4 groups

[

1×1→3×3, 512, k=64, c=8 *

1×1→3×3, 512, k=64, c=8 *

]

×1

[

1×1→3×3, 256, k=64 *

1×1→3×3, 256, k=64 *

]

×4 / ×1

conv4 14×14

1×1→3×3, 512, k=64, c=8 *

concatenate, 1024

3×3, 1024, stride 2, 64 groups

1×1→3×3, 256, k=64 *

concatenate, 512

3×3, 512, stride 2, 8 groups

[

1×1→3×3, 1024, k=64, c=4 *

1×1→3×3, 1024, k=64, c=4 *

]

×3

[

1×1→3×3, 512, k=64 *

1×1→3×3, 512, k=64 *

]

×5 / ×2

conv5 7×7

1×1→3×3, 1024, k=64, c=4 *

concatenate, 2048

3×3, 2048, stride 2, 64 groups

1×1→3×3, 512, k=64 *

concatenate, 1024

3×3, 1024, stride 2, 8 groups

[

1×1→3×3, 2048, k=128, c=4 *

1×1→3×3, 2048, k=128, c=4 *

]

×1

[

1×1→3×3, 1024, k=128 *

1×1→3×3, 1024, k=128 *

]

×3 / ×1

1×1, 2048 1×1, 1024

1×1
global average pool

1000-d fc, softmax

# params. 26.2×10
6 25.6×10

6 / 11.8×10
6

GFLOPs 4.32 5.33 / 2.73

Table 2. Network architecture and model complexity of our Ima-

geNet models. SeqResNeXt-24 and SeqResNet-B42 have a model

complexity comparable to ResNet-50 while SeqResNet-B22 is

about the half model size. SeqConv and WSeqConv layers are

marked by * and * respectively.

a 1×1 convolution at the end of the third stage before

global average pooling. A classifier consisting of a fully

connected layer and a softmax activation is attached after

average pooling. The exact specifications of our model

template for CIFAR are listed in Table 1.

For the ImageNet evaluation, we adopt SeqResNet-B

and SeqResNeXt with four stages on 224×224 inputs. We

use different k for each stage of our ImageNet models due

to the increasing model complexity and computational cost.

Following [35, 37], We replace the expensive 7×7 convo-

lution and the following max pooling with two 3×3 con-

volutions and a down-sampling block. We list the detailed

configurations of our ImageNet models in Table 2.

4. Experiments

We conduct experiments on three public benchmark

datasets: CIFAR-10, CIFAR-100 [18] and ImageNet [4].

We compare our models with their original backbones [10,

38] and similar state-of-the-art methods [14, 42].

4.1. Datasets

CIFAR. Both CIFAR-10 (C10) and CIFAR-100 [18]

(C100) consist of 50,000 training samples and 10,000 test

samples, which are divided into 10 and 100 classes respec-

tively. All samples are color image of 32×32 pixels. We ap-

ply widely adopted data augmentation including mirroring

and shifting as in [23, 25, 28, 21, 8] for these two datasets

and normalize samples by the channel means and standard

deviations. We refer to the augmented datasets as C10+ and

C100+. 5,000 training samples are randomly selected for

validation as we evaluate our models. We use all training

samples for the final run following [14] and report the final

test error at the end of training.

ImageNet. The ImageNet 2012 classification dataset [4]

contains 1.28 million training images and 50,000 validation

images drawn from 1,000 classes. We adopt the standard

augmentation scheme following [8, 38, 14] and normalize

the dataset by the channel means and standard deviations.

We evaluate our models on the single 224×224 center crop

following [11, 38].

4.2. Training

All models are optimized with stochastic gradient de-

scent (SGD). We apply Nesterov momentum [32] of 0.9 and

L2 weight regularization of 10−4 following [8]. We initial-

ize the second WSeqConv layer of each residual block with

zeros and all other Conv layers are initialized following [9].

The zero initialization disables all residual blocks and imi-

tates a shallow network, which is easier to optimize at the

initial stage of the training. Similar initialization procedures

for ResNet are also proposed in [37, 41]. We apply the ini-

tialization introduced in [6] on the fully connected layer of

the classifier. The training for all models starts with an ini-

tial learning rate of 0.1.

For the CIFAR datasets, we train our models for 300
epochs with batch size 64 and divide the learning rate by

10 at epoch 150 and 225. Due to the limited number of

samples presented in these two datasets, we follow [12] and

apply dropout [29] with a drop rate of 0.1 before the 1×1

convolution (prior to global average pooling) and every Se-

qConv layer (except the first one) to reduce overfitting.

The ImageNet models are trained for 100 epochs with

batch size 256. We report the best validation error of the

first 90 epochs of training and also the best error till all 100
epochs finish for a fair comparison with [10, 38, 14]. We

reduce the learning rate by 10 times for every 30 epochs.

4.3. Results on CIFAR

The experimental results for CIFAR [18] are presented in

Table 3. SeqResNet outperforms the corresponding ResNet

baseline by a large margin. A SeqResNet-B with merely

0.8M parameters achieves higher accuracies than the 1001-

layer ResNet counterpart with more than 10M parameters,

which reduces the model complexity required to obtain an

accuracy comparable to that of ResNet by a factor of 12. Se-

qResNet also consistently outperforms the state-of-the-art
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Figure 4. Training curves of SeqResNet-B22/ResNet-50 (left) and SeqResNet-B42/ResNet-101 (right) on ImageNet.

settings # params. C10+ C100+

ResNet-110 [10] - 1.7M 6.61 -

ResNet-110 (reported by [15]) - 1.7M 6.41 27.22

Wide ResNet-16 [40] 8× width 11.0M 4.81 22.07

Wide ResNet-28 10× width 36.5M 4.17 20.5

ResNet-164 (pre-activation) [11] - 1.7M 5.46 24.33

ResNet-1001 (pre-activation) - 10.2M 4.62 22.71

DenseNet [14] L = 40, k = 12 1.1M 5.24 24.42

SparseNet [43] L = 40, k = 12 0.8M 5.47 24.48

SeqResNet k = 8, r = 4, N = 1 1.2M 4.78 22.65

DenseNet L = 100, k = 12 7.2M 4.1 20.2

SparseNet L = 100, k = 16, 32, 64 7.2M 4.21 19.89

SeqResNet k = 16, r = 10, N = 1 7.6M 3.97 19.72

DenseNet-BC L = 100, k = 12 0.8M 4.51 22.27

SparseNet-BC L = 100, k = 24 1.5M 4.49 22.71

SeqResNet-B k = 16, r = 7, N = 1 0.8M 4.3 20.76

DenseNet-BC L = 100, k = 16, 32, 64 7.9M 4.02 * 19.55 *

SparseNet-BC L = 100, k = 16, 32, 64 4.4M 4.34 19.9

SeqResNet-B k = 32, r = 12, N = 3 6.0M 3.72 18.51

Table 3. Error rates (%) and model sizes on CIFAR. Results that

surpass all competing methods are bold. * indicates results re-

ported by [43].

DenseNet [14] and SparseNet [42] of similar model com-

plexity. A SeqResNet with 1.2M parameters attains about

0.5% lower error rate on C10+ and 2% lower error rate on

C100+ compared to its DenseNet and SparseNet counter-

parts. SeqResNet shows significantly higher parameter effi-

ciency than wide architectures such as wide ResNet [40]

and ResNeXt[38] as well. It only takes 6M parameters

for SeqResNet-B to achieve higher accuracies than the 6×
larger wide ResNet-28, or attain error rates comparable to

the 5.73× larger ResNeXt-29, 8×64d (34.4M parameters,

3.65% error rate on C10+ and 17.77% on C100+).

4.4. Results on ImageNet

We evaluate SeqResNet-B and SeqResNeXt on the large-

scale ILSVRC 2012 dataset to validate the scalability of our

models. Table 4 reports the top-1 and top-5 validation errors

of our models on ImageNet.

# params. FLOPs top-1 err top-5 err

ResNet-101 [10] 44.5M 7.34G 22.44 6.21

DenseNet-264 [14] 33.3M 5.52G 22.15 6.12

ResNet-152 60.2M 10.82G 22.16 6.16

SeqResNet-B42 25.6M 5.33G 22.06 5.98

SeqResNeXt-24 26.2M 4.32G 21.92 5.82

ResNet-50 25.6M 3.86G 24.01 7.02

DenseNet-169 14.1M 3.22G 23.80 6.85

SeqResNet-B22 11.8M 2.73G 23.67 6.78

ResNet-50 * 25.6M 3.86G 23.9 -

SeqResNet-B22 * 11.8M 2.73G 23.35 6.68

ResNeXt-50 [38] * 25.0M 4.00G 22.2 -

ResNet-101 * 44.5M 7.34G 22.0 -

SeqResNet-B42 * 25.6M 5.33G 21.75 5.89

SeqResNeXt-24 * 26.2M 4.32G 21.50 5.73

Table 4. Validation error rates on ImageNet. Models marked by *

are trained for 100 epochs.

SeqResNet-B22 and SeqResNet-B42 not only surpass

the performance of their ResNet counterpart of equal model

size, but even go much further and outperform ResNets

of significantly larger model complexity. Figure 4 (left)

shows that SeqResNet-B22 with less than 12M parameters

exhibits lower training error and validation error than the

much larger ResNet-50 with more than 25M parameters.

A similar trend between SeqResNet-B42 and ResNet-101

is also plotted in Figure 4 (right). The lower training er-

ror with much smaller model size indicates that SeqRes-

Net has much stronger representational ability than ResNet,

in fact, SeqResNet-B42 even outperforms the 2.35× larger

ResNet-152. SeqResNet also shows superior performance

compared against the state-of-the-art DenseNet [14] and

ResNeXt [38]. Both SeqResNet models attain higher ac-

curacy than their DenseNet counterpart with fewer param-

eters. The performance gap between SeqRetNet-B42 and

ResNeXt-50 of similar model complexity, is marked by the

2× complexity ResNet-101 that ResNeXt-50 fails to out-

perform but surpassed by SeqResNet-B42.



Figure 5. Weight visualization of three WSeqConv layers, we plot the heat map for the second WSeqConv layer of the residual block of

each stage from a trained SeqResNet (k = 8, r = 4, N = 1).

Further performance gain could be observed on

SeqResNeXt-24. It has a model complexity similar to

SeqResNet-B42 but achieves higher accuracy with lower

computational cost (FLOPs). SeqResNeXt-24 also signif-

icantly outperforms its ResNeXt-50 counterpart by a show-

ing a top-1 error rate comparable to the 2× complexity

ResNeXt-101 (21.2%). To the best of our knowledge,

SeqResNeXt-24 has the current best accuracy on ImageNet

(with similar augmentation and training/testing procedures)

for non-NAS [44] based models of similar model complex-

ity (about 25M parameters).

4.5. Discussion

Hyperparameter Investigation. We empirically evaluate

the effect of each hyperparameter as listed in Table 5. All

comparing models have been adjusted to a similar complex-

ity. S1 is the standard reference model as we present in Ta-

ble 3. S2 disables windowed aggregation for all SeqConv

layers, it thus has a smaller r (width) than S1 since a basic

SeqConv layer has a higher complexity than WSeqConv. S3
adopts a larger k than S1. S4 further reduces r (width) and

increases N (number of residual blocks) for S3. The higher

error rate of S2 compared to S1 verifies the effectiveness

of windowed aggregation. S3 has marginally more param-

eters than S1 while showing a higher error rate, which in-

dicates that smaller k (more groups, deeper representation)

might be beneficial to the representation capability. How-

ever, further performance gain on CIFAR with even smaller

k is negligible. It is possible that the samples in the CIFAR

dataset are too small (32×32) to utilize extremely deep fea-

tures. Comparison between S3 and S4 shows that a wide

network with fewer residual blocks performs better than a

narrow network with more residual blocks.

Weight Visualization. We conduct the experiment pro-

posed in [14] to visualize the weights of a trained SeqRes-

Net. We pick 3 WSeqConv layers, each from a residual

block of SeqResNet trained on C10+. We plot the weights

based on the exploded view of SeqConv that the normal-

ized weights corresponding to the connection between two

groups are represented by a colored pixel. Results are plot-

ted as heat maps in Figure 5. A red pixel indicates heavy use

settings r k N windowed aggregation # params. err

S1 4 8 1 � 1.2M 4.78

S2 3 8 {1, 2, 1} ✗ 1.2M 4.90

S3 4 16 1 � 1.3M 4.99

S4 3 16 {1, 2, 2} � 1.3M 5.15

Table 5. Error rates (%) of models with different hyperparameters

on C10+.

of an aggregated feature group while a blue pixel indicates

low usage. Pixels of the white color indicate their corre-

sponding feature group does not participate in the aggrega-

tion. We observe from the heat maps that there is hardly any

blue pixel and a significant portion of the non-white pixels

are red, indicating all parameters are reasonably exploited,

whereas DenseNet [14] leaves large blue area on its heat

maps. Our observation suggests that our model exhibits low

parameter redundancy and fully exploits all aggregated fea-

tures, which might explain the improved performance that

our model attains with compact model size.

5. Conclusion

We present a new form of aggregation-based convolu-

tional layer (SeqConv) to enhance the representation capa-

bility of a single layer. SeqConv comprises various inter-

nal groups that are sequentially aggregated to extract fea-

tures of various depths, and thus exhibits the benefits of

both wide representation and deep representation. We also

analyze the relations of SeqConv to DenseNet [14] which

bears apparent similarity to our work, but is found to be

ultimately different. A windowed aggregation mechanism

is proposed as well to address the parameter redundancy

of dense aggregation. SeqConv has the same model gran-

ularity as a regular convolutional layer and thus could be

integrated into a wide variety of backbone networks. We

adopt ResNet [11] and ResNeXt [38] as the backbone net-

works for our models. Experimental results on image classi-

fication indicate that our models with SeqConv significantly

outperform their original backbones, and perform favorably

against state-of-the-art methods [38, 14, 42].
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